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ABSTRACT

Isolated resonance curves are separate from the main
nonlinear forced-response branch, so they can easily be
missed by a continuation algorithm and the resonant re-
sponse might be underpredicted. The present work explores
the connection between these isolated resonances and the
nonlinear normal modes of the system and adapts an energy
balance criterion to connect the two. This approach provides
new insights into the occurrence of isolated resonances as
well as a method to find an initial guess to compute the
isolated resonance curve using numerical continuation.

The concepts are illustrated on a finite element model
of a cantilever beam with a nonlinear spring at its tip. This
system presents jumps in both frequency and amplitude in
its response to a swept sinusoidal excitation. The jumps
are found to be the result of a modal interaction that cre-
ates an isolated resonance curve that eventually merges with
the main resonance branch as the excitation force increases.
FEzxcellent insight into the observed dynamics is provided with
the NNM theory, which supports that NNMs can also be a
useful tool for predicting isolated resonance curves and other
behaviors in the damped, forced response.
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1 INTRODUCTION

Nonlinearity is important in many structural dynamic
applications that are of interest to engineers, for example in
structures with bolted interfaces [1] or machinery with rub-
ber isolation mounts. In other cases the baseline structure
is linear, but its performance can be enhanced by adding or
engineering certain types of nonlinearities [2,3]. Nonlinear
dynamics is a rich and complicated field and new analysis
techniques have to be developed to provide insight into the
behavior of the system.

Vibration modes form the foundation of our under-
standing of linear dynamic systems, and influence efforts
related to testing, modeling, validating and controller de-
sign. Rosenberg [4] extended modal analysis to nonlinear
systems in the 1960’s, coining the phrase nonlinear nor-
mal mode (NNM). The area received new attention in the
1990’s [5-7] and now it is clear that NNMs can be used
to obtain a wealth of insight into the response of a non-
linear system [6,8]. For example, NNMs have been used
to explain internally resonant and non-resonant motions of
structures [9,19], to design a nonlinear vibration absorber
(also called a nonlinear energy sink) [2], to create or vali-
date a reduced order model for a system [10], and to explain
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changes in the oscillation frequency and the deformation
shape of the free and forced response of a structure [8].

In recent years important progress has been made in
the numerical calculation of undamped [11-14] and damped
NNMs [15,16]. These new algorithms have been used to
compute the nonlinear modes of a geometrically nonlinear
finite element model of a component from a diesel exhaust
system, a full-scale aircraft, a bladed disk from a turbine
and a strongly nonlinear satellite in [12,17-19], respectively.

One fundamental property of undamped NNMs is the
fact that they can be realized when a harmonic forcing func-
tion cancels the damping force in the damped system [20].
As a result, they form the backbone of the nonlinear forced
response (NLFR) curves [7,8,24] and hence they approxi-
mate the oscillation frequency and deformation shape that
are exhibited at resonance, when a structure is at the great-
est risk of failure. The relationship between the NLFR
and the NNM backbone is simple for mild nonlinearities,
but most realistic systems exhibit complicated NNMs with
many interactions between the various modes leading to in-
ternally resonant branches.

This work explores the relationships between these in-
teracting NNMs and the forced response of the nonlinear
system, especially for the case in which the forced response
shows an isolated resonance curve (IRC). Specifically, we
show that the interactions between NNMs are responsible
for the IRCs in the forced response. We note that the pa-
per [25] discusses the relationships between bifurcations of
backbone curves and IRCs; it is therefore the ideal com-
panion of the present study. These detached families of
solutions are frequently not detected because they do not
emerge naturally from the fundamental response when nu-
merical continuation is used. They can lie outside or inside
the main resonance curve [26,27], with the former case typ-
ically being more important because one is likely to under-
estimate the response of the nonlinear system [28,29].

The paper is organized as follows. Section 2 reviews the
methodology used to compute the periodic motions of the
undamped and damped form of the nonlinear equations of
motion, along with a phase resonance condition extended
to nonlinear systems. An adaptation of the energy balance
procedure presented by Neild et al. [30,31], which can be
used to estimate the forcing amplitude required to isolate
the NNM is also presented in Section 2, drawing a direct
connection between the damped and undamped periodic
solutions. The nonlinear modes of a linear cantilever beam
with a cubic nonlinear spring attached at the beam tip are
computed in Section 3 and the NLFR is presented in Sec-
tion 4. An IRC is discovered near one of the modal inter-
actions of the underlying undamped NNMs. Section 5 ex-
plores the effect of damping on the IRCs by tracking the fold
bifurcations in the NLFR as the level of damping changes.

The conclusions of the present study are presented in Sec-
tion 6.

2 PERIODIC SOLUTIONS OF A NONLINEAR SYSTEM
2.1 Undamped System: Nonlinear Normal Modes

The N-degree-of-freedom (DOF) equations of motion
(EOM) for a nonlinear finite element model generally can
be written as

MX—FC)'(-I—KX-FfNL(X):f(t) (1)

The N x N matrices M, C, and K respectively repre-
sent the linear mass, damping and stiffness matrices com-
monly used for linear models. The displacement, velocity
and acceleration are represented with the NV x 1 vectors x,
%, and X, and the external loads are applied through the
N x 1 force vector f(t). The N x 1 nonlinear restoring force
vector, £y (x), accounts for the nonlinearity in the physical
system. In this work we only consider the case where the
nonlinear restoring force depends on displacement.

The undamped NNM definition used in this work comes
from the works of Lee [32] and Kerschen et al. [8]. They de-
fined an NNM as a not necessarily synchronous periodic mo-
tions of the conservative equations of motion. By this def-
inition, the periodic motions that occur when two or more
modes interact are still considered NNMs since they relaxed
the restriction of synchronous motion defined originally by
Rosenberg [4].

A periodic solution satisfies the condition

2(t+T) =a(t), Vit 2)

The state of the system z =[x %T]T, where (-)T repre-
sents the transpose operator, relates to the displacement
and velocity of the undamped form of Eq. (1). A variety
of methods exist to find the periodic solutions (or NNMs)
for the undamped EOM. In this work we employ the shoot-
ing technique [33] combined with numerical integration and
a Newton-Raphson scheme to iteratively find the periodic
solutions that satisfy Eq. (2). A shooting function H is
defined as the difference between the initial state and the
state of the system after some period of integration, T

H(zo,T) = 2z(z0,T) —zo = 0. (3)

Given an initial state, zg, and a minimum oscillation period,
T, that satisfy the periodicity condition in Eq. (3) to some
numerical tolerance, the resulting periodic motion over that
period is subsequently defined as the NNM.
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When the shooting technique is combined with numeri-
cal continuation (as done in [12,14]), a continuous branch of
NNMs is computed, showing the evolution of the periodic
motions as the energy changes. Numerical continuation re-
quires that a known solution exist in order to trace out a
branch of solutions, making the linear normal modes at low
energy an excellent starting point.

2.2 Damped System: Nonlinear Forced Response

The damped system includes the linear damping and
external forces in the EOM, exactly as given in Eq. (1). In
this work, the periodic motions refer to the steady state mo-
tion in response to a monoharmonic excitation force, which
is defined as

f(t) = Re (Fe™") (4)

The complex amplitude vector F is arbitrarily applied at
any of the system’s DOF. The steady state response to the
force in Eq. (4) at each forcing frequency, w, is referred to
as the nonlinear forced response (NLFR).

In this work we employ an algorithm that is similar to
that used to find NNMs above, namely, shooting combined
with numerical continuation in order to find the NLFR over
a range of forcing frequencies. The shooting function is only
slightly different from the one used to find the NNMs in Eq.
(3), as

H(zo,w,T) = z(z0,w,T) —20 =0 (5)

This function evaluates the difference of the forced response
at time T due to a forcing frequency w and a set of initial
conditions, zg. The shooting technique with numerical inte-
gration and a Newton-Raphson procedure is again combined
with numerical continuation to find a continuous branch of
solutions for a fixed forcing amplitude, F. Unlike the linear
case, the NLFR does not scale linearly with forcing ampli-
tude, so a new NLFR branch must be computed for each
amplitude of interest.

The NLFR reveals new phenomena that cannot be ob-
served with linear theory, such as frequency-energy depen-
dence, subharmonic and superharmonic resonances, coex-
isting solutions, and stable/unstable periodic motions. The
objective of this work is to study IRCs, which cannot be
arrived at by continuing the main NLFR branch.

2.3 Resonance of a Nonlinear System: Phase
Quadrature
A damped system can be made to respond in a sin-

gle NNM motion of its underlying conservative system if

a multi-point, multi-harmonic excitation is applied to the
system in Eq. (1) [20]. Specifically, this force is given as

£(t) = i Re (eri’m) (6)
k=1

The fully populated N x 1 vector Fj corresponds to the
complex amplitude of the force for the k™ harmonic fre-
quency. Using a complex Fourier series representation of
the response and the nonlinear restoring force in the EOM
(1), each harmonic can be balanced to give the following
two relations

—k*w?MXy, + KX +Fyp =0 (7)

ikaXk = Fk (8)

The N x 1 vectors X, and Fyp, j are the complex ampli-
tudes for the &*" harmonic of the response and nonlinear
restoring force, respectively.

These equations reveal an important relationship be-
tween the forced response and the NNMs of the system.
That is, if all harmonics of the force exactly cancel out the
harmonics of the damping forces given by Eq. (8), then the
periodic response will exactly satisfy the undamped EOM,
as shown by Eq. (7), which by definition is an NNM. Equa-
tion (8) also shows there is a 90 degrees phase difference
between each harmonic of the displacement and the force
harmonics. This phase lag quadrature condition can be
used to indicate when an NNM motion has been isolated
from the NLFR.

Of course, in practice it is unlikely that the forcing of
interest will exactly cancel damping as outlined above, be-
cause this requires that the force be distributed in space
and that it be comprised of many harmonics. A few stud-
ies [20-23,35] have shown that an accurate approximation to
the NNM can be obtained by a much simpler force that ex-
cites resonance. For example, Peeters et al. [20,21] explored
whether a single-point, monoharmonic excitation could ap-
proximately isolate an NNM, and found good results in sim-
ulations and experiment with a lightly damped beam. In
their efforts it was helpful to define a multi-harmonic mode
indicator function (MIF) which indicates when the 90 de-
grees phase lag condition has been obtained. When a single-
point sinusoidal force is applied to the nonlinear structure,
which is the case considered herein, the MIF is defined as
follows

o = R Rk o
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where the operator (-)* represents the complex conjugate
transpose. Using the complex amplitude of the fundamental
harmonic, Xy, of the computed NLFR, the MIF in Eq. (9)
indicates that resonance occurs when A; is equal to one.

2.4 Force Required to Obtain NNM Motion

The relationship between backbone curves and the
forced response was also studied using an energy balanc-
ing technique in [30,31]. Based on the second-order normal
form theory, the analytical developments hold for weakly
nonlinear regimes of motion. This technique is slightly re-
visited herein by employing a numerical viewpoint, which
allows one to consider more strongly nonlinear regimes.

Let us first consider a linear system. As shown in [36],
if the system is oscillating in a linear normal mode denoted
as x(t), then the damping forces instantaneously exert a
distributed force Cx(t) and the power dissipated at any
instant is

Paiss = %(t) T CX(t) (10)

and the total energy dissipated over one cycle is

T
Ediss/cyc = /0 Pyissdt (11)

Similarly, an arbitrary forcing function f(¢) inputs energy
into the system as

T
Buojere = || %07 s0) (12

At resonance, the energy dissipated by the damping forces
must match the total energy input to the system over the
period T. The balance is enforced by setting Eg;ss/cyc =
Eipjeye [36]. For a single-point, monoharmonic force with
complex amplitude A + 0, the scaling on A can be com-
puted by satisfying

T T
) T twt _ % T %
A/O %x(t)" (ene )dt/o (t) - Cx(t)dt (13)

where e,, is a vector of zeros with a value of one at the
location n, which is the point at which the force is applied.
This energy balance criterion is a useful result, because it
enables the practitioner to formally establish the direct link
from the computed linear normal modes, i.e., the periodic

motions of the undamped, unforced system, to the resonant
response of the damped forced system.

The energy balance, Eg;ss/cyc = Ein/eye, also holds for
nonlinear systems. So, if both the NNMs x(¢) and the
damping C in the system are known, Eq. (13) can be readily
used to estimate the forcing amplitude A that would excite
the system at resonance with associated motion x(t). While
it is common practice to excite a system using a monohar-
monic force, one should note that higher harmonics might
be necessary to achieve a reasonable approximation to the
NNM motion, especially near internal resonances, so any
calculations based on Eq. (13) should be regarded as ap-
proximate.

As in [30, 31], the energy balance criterion will prove
useful for computing the forced resonant response in cor-
respondence to the backbone curve. Sections 4 and 5 will
show that it can also be used in conjunction with the NNM
to find the forcing amplitude at which IRCs are created and
to compute the corresponding forced response.

3 NUMERICAL CASE STUDY: NNMS OF A CAN-

TILEVER BEAM

In the present and next sections, a model of a can-
tilevered beam with a cubic nonlinear spring attached at
the beam tip is used to investigate the connection between
undamped NNMs and the damped NLFR.

A schematic of the FEA model is shown in Fig. 1, which
is similar to the one studied in [14]. A lumped mass of 0.5 kg
was added a = 0.31 m from the fixed end. The addition of
the mass lowered the second natural frequency most, while
having a minimal effect on the first mode. This shifted the
location of the 3:1 modal interaction with NNM 2 on the
first NNM branch (as seen later in Fig. 2(a)). A linear finite
element model of the planar beam was created in Abaqus
using 20 B31 Euler-Bernoulli beam elements and imported
in Matlab, giving a total of 60 DOFs, where each node had
x and y displacement, and z rotation. The beam was 0.7
m in length, with a width and thickness of 0.014 m, and
was constructed of structural steel with a Young’s modulus
of 205 GPa and a density of 7800 kg/m3. The cubic non-
linear spring had a coefficient of K7 =6 x 109N/m?, and
was attached at the beam tip affecting only the transverse
direction.

The first NNM of the cantilever beam was computed
using the shooting and pseudo-arclength continuation al-
gorithm, and the frequency-energy plot (FEP) is shown in
Fig. 2(a), where the black line represents the stable periodic
solutions and the red dots are unstable. As the response
amplitude of the nonlinear mode increased, the continua-
tion algorithm traced the family of periodic orbits forming
a continuous branch of solutions. The FEP has two dis-
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FIGURE 1: Schematic of a cantilever beam with a cubic
nonlinear spring attached to the beam tip and a modifying
lumped mass.

tinct features, namely a backbone, and tongues that em-
anate from the backbone. The backbone shows an increase
in fundamental frequency as the energy in the periodic so-
lutions increase revealing that the nonlinear spring has a
stiffening effect on this mode. The tongues that emerged
from the backbone are referred as modal interactions, or
internal resonances, and occur when two or more NNMs
interact.

The dashed, colored lines in Fig. 2(a) represent the
frequency-energy behavior of the higher order NNMs after
dividing the frequency by various integers. By shifting these
NNMs down the frequency axis, it was possible to observe
the location where the backbones of higher modes intersect
with the NNM 1 backbone and cause a modal interaction to
occur. Considering the modal interaction at approximately
37 Hz, which has the appearance of the Greek letter a and
will hereafter be referred to as an a-tongue, the 1/3rd fre-
quency branch of the NNM 2 branch intersects the backbone
of NNM 1. This causes NNM 1 to bifurcate and create a 3:1
internal resonance tongue that has solutions where NNM 1
and 2 interact. The other three modal interactions along
NNM 1 were a 9:1 interaction with NNM 3 near 44 Hz, a
15:1 interaction with NNM 4 near 47 Hz, and a 13:1 inter-
action with NNM 4 near 54 Hz.

Once the NNMs have been computed, Eq. (13) was
used to estimate the monoharmonic driving force required
to excite the NNM motion. A mass and stiffness propor-
tional damping model was used, defining the damping ma-
trix as C = aK +bM with a = —0.0391 and b= 1.4710~%.
These parameters were chosen such that the damping ra-
tios of the first and second linear modes were 1% and 5%,
respectively. The computed force amplitude and the corre-
sponding frequency are displayed for the first NNM in Fig.
2(b). Interestingly, the force does not increase monotoni-
cally. For example, a force of 22.6 N could achieve reso-
nance at about 37.5 Hz, 45.8 Hz and 47.4 Hz as shown with
the circular markers. This has important implications for
the forced response, as will be discussed in the next section.

4 NUMERICAL CASE STUDY: NLFR OF A CAN-
TILEVER BEAM

4.1 Response to Sine Sweep Excitation

Some unexpected behavior occurred with the damped
beam, using the same damping model described in the pre-
vious section, when a single-point force was applied 0.21 m
from the fixed end in the transverse direction. A set of nu-
merically computed sine sweeps are shown in Fig. 3, which
plots the displacement of the beam tip for different force
amplitudes, namely A = 11.3 N, 22.6 N, 26.7 N, 32.5 N,
35.6 N, and 45.2 N, with a sweep rate of 0.5 Hz/s. For ref-
erence, the response of the linear model at a force amplitude
of A = 4.45 N was computed (black line), and resulted in
the largest tip displacement (even though the force ampli-
tude was the lowest), with a resonance at the linear natural
frequency. The nonlinear spring caused the tip to displace
at a significantly lower amplitude, and shifted the resonant
frequency depending on the force amplitude. The nonlinear
sweep at the force amplitude A = 11.3 N (red line) showed
that resonance occurred near 37 Hz, resulting in a sudden
jump, the so-called jump phenomenon, to a lower response
amplitude as the frequency continued to sweep upwards.
When the force amplitude doubled (green line, A = 22.6
N), the resonant frequency occurred near 39 Hz. However,
doubling the force amplitude once more (cyan line, A =
45.2 N) caused a dramatic shift in resonant frequency and
tip displacement. Now the response dropped off around 57
Hz, indicating that the increased force amplitude from 22.6
N to 45.2 N shifted the resonance nearly 18 Hz. Considering
the amplitudes A = 32.5 N and 35.6 N (yellow and magenta
lines) shows that the dramatic shift in resonant frequency
occurred in this range of forcing amplitudes. Summarizing,
Figure 3 depicts that both a jump in amplitude (the well-
known jump phenomenon) and a jump in frequency may
exist for nonlinear systems. We could not find other occur-
rences of simultaneous jumps in amplitude and frequency
in the mechanical engineering literature.

Another dynamical phenomenon, which only appeared
for A = 35.6 N and 45.2 N, is the modulation of the signal’s
envelope in the range of 40-45 Hz. It was further exam-
ined by monitoring bifurcations [37] along the NLFR (not
shown here for brevity) [38]. Around 40 Hz, a Neimark-
Sacker bifurcation changes the stability of the NLFR and
generates a new branch of quasiperiodic oscillations. As
a result, a stable torus attracts the dynamics and is re-
sponsible for the observed envelope modulation. Around
45 Hz, a second Neimark-Sacker bifurcation transforms the
quasiperiodic motion back into stable periodic motion.
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FIGURE 2: NONLINEAR BEAM. (a) FIRST NNM WITH VIEW OF THE CROSSING OF HIGHER ORDER NNMS IN
DASHED LINES AT FRACTIONS OF THEIR FUNDAMENTAL FREQUENCY; (b) ESTIMATE OF FORCE AMPLI-
TUDE REQUIRED TO OBTAIN THE MOTION GIVEN AT EACH POINT ON NNM 1, AS PREDICTED BY EQ. (13).
CIRCULAR MARKERS INDICATE ACHIEVABLE RESONANCE FREQUENCIES FOR A FORCE OF 22.6 N.
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FIGURE 3: NUMERICAL SINE SWEEPS AT A RATE
OF 0.5 HZ/S WHERE THE DISPLACEMENT OF THE
BEAM TIP IS PLOTTED FOR FORCE AMPLITUDES
OF (RED) 11.3 N, (GREEN) 22.6 N, (BLUE) 26.7 N,
(YELLOW) 32.5 N, (MAGENTA) 35.6 N AND (CYAN)
452 N.

4.2 Response to Stepped Sine Excitation

An explanation for the jump in frequency of Fig. 3 was
sought by computing the NLFR through a range of frequen-

cies that spanned the first NNM. A single-point, monohar-
monic force with arbitrary complex amplitude A +i0 was
applied to the beam at the same location as the sweeps. The
FEPs of the forced response at four different forcing ampli-
tudes (A = 0.445 N, 0.890 N, 2.22 N and 4.45 N) are shown
in the left plot of Fig. 4, where the energy on the horizon-
tal axis represents the maximum energy of each steady-state
solution in the NLFR, and the vertical axis represents the
forcing frequency. The NNM was superposed on the plot
to show how the forced response wraps around the NNM,
acting as the backbone to the NLFR.

As the forcing frequency increased from 20 Hz, a fold
bifurcation occurred in the NLFR and turned back around
the backbone of the NNM. At this fold, the MIF from Eq.
(9) in the right plot in Fig. 4 is approximately equal to 1
indicating that the NLFR approximately excited the NNM
motion of the underlying undamped system.

Higher forcing amplitudes (A = 11.3 N, 22.6 N, 26.7
N, 35.6 N, and 45.2 N) were considered in Fig. 5 in order
to examine the response near the a-tongue on NNM 1 and
to match some of the amplitudes used in the sine sweep
results. For A = 11.3 N in Fig. 5(a), the NLFR again
wrapped around the backbone of the first NNM, as previ-
ously observed in Fig. 4. When the force amplitude doubled
(A =22.6 Nin Fig. 5(b)), the resonance on the main NLFR
branch occurred at 38.1 Hz and approached the 3:1 modal
interaction on NNM 1. Initially, the green curve on the
left is all that was computed by the continuation algorithm,
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FIGURE 4: (LEFT) NONLINEAR FORCED RESPONSE CURVES AT FREQUENCIES NEAR THE FIRST NNM WHERE
(SOLID) ARE STABLE PERIODIC MOTIONS AND (DASH DOT) ARE UNSTABLE PERIODIC MOTIONS. (RIGHT)
MODE INDICATOR FUNCTION OF THE FORCED RESPONSE. THE FORCE AMPLITUDES FOR EACH CURVE
ARE (RED) 0.445 N, (GREEN) 0.890 N, (BLUE) 2.22 N, AND (MAGENTA) 4.45 N.

since it started at low frequency and followed the curve
upwards. However, the force estimated in Fig. 2(b) sug-
gested that resonance might be excited at multiple points
on the NNM using the same force. Specifically, this figure
highlighted that a force of 22.6 N could achieve resonance
at about 37.5 Hz, 45.8 Hz and 47.4 Hz. So the two latter
points were used to initiate the NLFR algorithm and obtain
the branch between 43 and 48 Hz in Fig. 5(b). This addi-
tional branch is referred to as an isolated resonance curve,
or IRC. The response on this IRC is much larger than on
the main branch so one would significantly underestimate
the response if it was not found. By examining the NNMs
and employing the energy balance criterion introduced in
Sec. 2.4 we have avoided dramatically under-predicting the
resonant response at this forcing amplitude. These new so-
lutions still wrapped around the backbone of NNM 1 and
corresponded to the NNM at two different frequencies, 43.9
Hz and 48.5 Hz, as indicated by the MIF. These frequencies
are in relatively close agreement with the frequencies pre-
dicted using the energy balance criterion, 45.8 Hz and 47.4
Hz.

The forcing amplitude was slightly increased in Fig.
5(c) (A =26.7 N), and the resonant frequency on the main
branch did not shift very much (from 38.1 Hz to 38.5 Hz).
The fold bifurcation on the main NLFR branch still tran-

spired prior to the modal interaction on NNM 1. Again
the IRC persisted and became larger, increasing its fre-
quency range from 41 Hz to 51 Hz. A stable portion of the
IRC has however become unstable through the emergence
of Neimark-Sacker bifurcations (not represented). The lat-
ter will persist at higher forcing levels and are responsible
for the quasiperiodic oscillations discussed in Fig. 3.

Increasing the amplitude even more (A = 35.6 N in
Fig. 5(d)) caused the main branch and the IRC to merge
together, forming one continuous NLFR branch up to 55 Hz.
The merging of these two branches offers an explanation as
to why the jump in resonant frequency occurred during the
sine sweep excitation in Fig. 3. The sine sweeps at A =
22.6 N, A =26.7 N and A = 32.5 N fell off around 38 Hz,
because the IRC was disconnected from the main branch,
and there was no path for the response to follow to the
higher frequency resonance. However, once the two NLFR
branches merged together (A=35.6 N), the sine sweeps were
able to stay along the high amplitude path up to resonance
around 55 Hz.

For the highest forcing amplitude shown (A = 45.2 N in
Fig. 5(e)), the resonant frequency shifted to 56.6 Hz. This
smooth increase in the resonant frequency and displacement
amplitude continued at higher forces as well. Moving from
Fig. 5(d) to Fig. 5(e) also caused one resonance to be
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FIGURE 5: (LEFT) NONLINEAR FORCED RESPONSE CURVES AT FREQUENCIES NEAR THE FIRST NNM WHERE
(SOLID) ARE STABLE PERIODIC MOTIONS AND (DASH DOT) ARE UNSTABLE PERIODIC MOTIONS. (RIGHT)
MODE INDICATOR FUNCTION OF THE FORCED RESPONSE.THE FORCE AMPLITUDES FOR EACH CURVE (A
- E) ARE (RED) 11.3 N, (GREEN) 22.6 N, (BLUE) 26.7 N, (MAGENTA) 35.6 N, AND (CYAN) 45.2 N, RESPECTIVELY.

eliminated, as indicated by the MIF.

The FEPs of the NNM and NLFR effectively condense
the complicated dynamics of the nonlinear beam onto a two-
dimensional plane. An additional comparison (not repre-
sented) between the time histories of the response for the
NLFR and the corresponding NNM shows all were in good
agreement. A slight phase shift was however observed for
some solutions. This can be explained by the use of a mono-
harmonic force input, whereas a multi-harmonic force would
be needed to exactly isolate the NNM.

4.3 Energy Balance Criterion

For further validation of the energy balance criterion
(13), Figure 6 superposes the responses of Figs. 4 and 5
where the MIF is equal to 1 onto Fig. 2(b). The cross
markers, which represent the forced resonant response, are
in close, though not exact, agreement with the predictions
of the energy balance criterion.

Additional insight can be gained from this plot. For
instance, one can guess from the leftmost point of the upper

branch the amplitude and frequency at which the IRC is
created, i.e., 22.3 N and 46.5 Hz. Considering that the IRC
merges with the main branch around 35 N, the jump in
frequency can be predicted by considering the point at 35
N on the upper branch at 53.8 Hz.

Finally, one important observation about the birth and
the merging of the IRC was that they occurred when the
main NLFR branch approached the 3:1 interaction between
NNM 1 and NNM 2. Indeed, this interaction produced the
non-monotonic increase in the forcing amplitude observed
in Fig. 2(b), which was found to be the driving mechanism
for IRC onset in Section 4.2. This demonstrates that inter-
actions between NNMs are responsible for the IRCs in the
forced response. It should be noted that this behavior was
not found to occur with other modal interactions on the
NNM branch whose tongues were sharper in the FEP. We
also stress that the NNM definition relies on the underlying
Hamiltonian system, whereas the NLFR is a result for the
damped system. Damping also plays a role in the existence
of IRCs, that is they may cease to exist if damping is large
enough. This is illustrated in the next section.

Copyright (© 2015 by ASME



(4]
(52
T

Jump in
50F frequency
Creation of

—_—
N 45+ the IRC °
=
2 401 g
[
>
o
2 351
w

Merging of
the isola

10° 10" 10° 10°
Force Amplitude, N

107 10"
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5 (CROSS MARKERS).

5 INFLUENCE OF DAMPING

Bifurcation tracking in the codimension-2 space
(frequency-forcing amplitude-energy) was performed in or-
der analyze the evolution of the fold bifurcations for differ-
ent forcing amplitudes. The procedure used in this section
is based on the harmonic balance method described in [39],
which approximates the periodic solutions with Fourier se-
ries (truncated to the first seven harmonics herein). Figure
7 gives a convenient projection of the bifurcation branch
onto the frequency versus forcing amplitude plane. The
turning point indicated with a diamond marker shows the
frequency /forcing amplitude at which the fold bifurcations
at the tips of the IRC were created. The corresponding
values (45.7 Hz and 20.7 N) reflect the good predictive ca-
pability of the energy balance criterion (46.5 Hz and 22.3 N
in Section 4.3). The square marker indicates when the IRC
merges with the main resonance peak (33.1 N).

The fold bifurcation tracking analysis was again used
to study the effect of structural damping on the observed
IRCs. The damping matrix introduced in Section 4 was
perturbed by adding a scaling term, x, such that C =
K (—0.0391K +1.47 10*4M). Several bifurcation branches
are given in Fig. 8 for different values of k, namely 1, 1.5,
1.8 and 1.9. The IRC was robust against damping since it
was still visible for higher levels of damping (x > 1), how-
ever, increasing x caused the IRC to appear later in forcing
amplitude, and shorten the range where it existed. For the
largest damping case studied, for k = 1.9, the IRC was no
longer present. This analysis shows that a sufficiently large
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FIGURE 7: TRACKING OF FOLD BIFURCATIONS.
PROJECTION OF THE BIFURCATION BRANCH
ONTO THE (FORCING AMPLITUDE - ENERGY)
PLANE. THE DIAMOND AND SQUARE MARKERS IN-
DICATE THE APPARITION AND THE MERGING OF
THE IRC, RESPECTIVELY.

60

Frequency, Hz
o [
SR

IN
e

IN
=

%o 15 20 25 30 35 40 45
Forcing amplitude, N

FIGURE 8: INFLUENCE OF DAMPING ON THE BIFUR-
CATION BRANCHES. THE BLACK, RED, BLUE AND
GREEN LINES DEPICT THE BRANCHES OF THE SYS-
TEM WITH k =1, 1.5, 1.8 AND 1.9, RESPECTIVELY.
THE DIAMOND AND SQUARE MARKERS INDICATE
THE APPARITION AND THE MERGING OF THE IRC,
RESPECTIVELY.

value of structural damping can destroy the IRCs.

6 CONCLUSIONS
This paper demonstrates the intimate connection that
exists between nonlinear normal modes (NNMs), i.e., the
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periodic motions of the undamped, unforced system, and
the forced response of the damped system. To bridge the
gap between these two types of response, the energy bal-
ance criterion was adapted so it could be used with the
results of the numerical computations in order to estimate
the resonant response to harmonic forcing from the NNMs
and the damping matrix. This criterion strengthens the
link that exists between NNMs and the resonant responses
of the damped, forced system.

We have also shown that interactions between NNMs
with non-necessarily commensurate linear frequencies are
responsible for the isolated resonance curves (IRCs) in the
forced response. IRCs, which might easily be missed dur-
ing numerical continuation or experimental testing, have
important practical consequences. The associated response
can be much larger than on the main branch, and, when
they connect to the main resonance branch, they may lead
to a dramatic jump in frequency. To the best of our knowl-
edge, this is the first time that this jump in frequency is
observed in the mechanical engineering literature.

Finally, these developments extend the usefulness of the
NNM concept to the interpretation of the complex dynamics
exhibited by harmonically forced nonlinear systems.
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