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Breadth of Study

• Cold Flow
– Comparison between engineering 

and high-fidelity LES

– Develop UQ strategies and calibrate 
turbulence model parameters using 
channel flow

– Application:  Jet-in-Crossflow

• Reacting Flow
– Implement industrial and advanced 

combustion models

– Infer combustion model parameters

– UQ of reacting jet-in-crossflow
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Burke Schumann Methane Combustion

Temperature



What is Engineering LES?
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Cost

Uncertainty

Direct Numerical Simulations

Hi-Fi LES
Large Eddy Simulations

Reynolds Averaged Navier-Stokes

Engineering LES

CFD Spectrum



Uncertainty Quantification of 
Channel Flow

DNS of Isotropic Turbulence 
(JHU) 

Engineering LES for Channel Flow 
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Calibrate Subgrid-Scale Kinetic Energy (ksgs)               
One-Equation LES Model

Transport Model:

Production:

Dissipation:

Calibrate: and
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Bayesian Calibration

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants: Cϵ & Cμϵ

• The likelihood P(D|θ) is the probability of observing D given θ. If Cϵ & 

Cμϵ values are right, what are the chances of seeing D.

• The prior distribution P(θ) is the belief of what θ should be. Gaussians 

centered around the current nominal values for θ.

• The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 7



Data

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants: Cϵ & Cμϵ

• The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cμϵ

values are right, what are the chances of seeing D.

• The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ.

• The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 8



Data is Filtered DNS to LES scale

3 Filter sizes: 

• ∆ = L/64

• ∆ = L/32

• ∆ = L/16

DNS ∆ = L/32
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Bayes formula:

Bayesian Calibration: Likelihood

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants: Cϵ & Cμϵ

• The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cμϵ

values are right, what are the chances of seeing D.

• The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ.

• The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 10



Likelihood
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Likelihood Depends on 
Model Assumptions

• Additive Error (Classical) Model (AEM)
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θ = {Cμϵ, Cϵ}



Embedded Error Model (EEM)

• Hermite-Gauss PCEs

• Data model
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(Sargsyan, Najm, Ghanem - 2015)



Bayesian Calibration: Prior

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants: Cϵ & Cμϵ

• The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cμϵ

values are right, what are the chances of seeing D.

• The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ.

• The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 14



Independent Gaussian Priors

• Centered at values from the literature (Cμϵ, Cϵ)

• Range of Marginal Standard Deviations
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Bayesian Calibration: Posterior

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants: Cϵ & Cμϵ

• The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cμϵ

values are right, what are the chances of seeing D.

• The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ.

• The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 16



Cϵ and Cμϵ are Highly Correlated 
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Filter:
• ∆ = L/16
Prior:
• 0.0845,0.85
• σ = (0.01, 0.1)



Both Error Assumptions Recover 
Production to Dissipation Ratio
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Filter:
• ∆ = L/16
Prior:
• 0.0845,0.85
• σ = (0.01, 0.1)



EEM Approach Results in
Greater Model Uncertainty
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Small Prior Uncertainty Medium Prior Uncertainty

High Prior Uncertainty

Joint Posterior Density 
Distributions
• Black – AEM
• Red – EEM 



A Posteriori Test Shows EEM 
Recovers Data Uncertainty

• Green – Medium filtered DNS data

• Dashed – EEM 

• Solid – AEM :     -no error      - including error model
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Different Prior Means and Standard Deviations



Forward UQ – Predictive Assessment 

� Cϵ,Cμϵ = Σ	��Ψk(ξ1,ξ2)
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• y – quantity of interest: mean 
x velocity, rms, �̇

• Modeled by Polynomial 
Chaos Expansion 

• Galerkin projection:



Quadrature to Construct PC Expansion for 
Model Output

Rosenblatt

Transformation
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Fuego LES Simulations with Calibrated 
Parameters

• ksgs Turbulence Model with various 
Cϵ and Cμϵ corresponding to 
quadrature points

• Normalized Input Parameters

– ρ = 1.0

– μ = 1/Reτ = 1/590

• No slip walls at top and bottom

• Body force in x-direction to 
produce flow

• Dimensions:

– Flow direction: x = 2π (periodic)

– Wall normal direction: y = 2

– Cross flow direction: z = π (periodic)
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• 250k nodes
• y+ ≈ 1.15 at walls
• Hyperbolic tan to same

spacing as in z
• 40 processors ~ 780 hours 

• DNS (Moser et al.)
~ 37 M points



Average Velocity at the Centerline
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Moser DNS time averaged value: 21.26
• 15% off 



Average Velocity at the Centerline
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Moser DNS time averaged value: 21.26
• 15% off 

• 250k nodes
• y+ ≈ 1.15 at walls
• Hyperbolic tan to same

spacing as in z
• 40 processors ~ 780 hours 

• DNS (Moser et al.)
~ 37 M points



Creating the Polynomial Chaos Expansions
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�� =
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� Cϵ(ξ1,ξ2),	Cμϵ(ξ1,ξ2)	
= Σ	��	Ψk(ξ1,ξ2)

Run LES 25 times

Calculate weighting coefficient

Create PCE



Creating the Polynomial Chaos Expansions
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Sample Mean Velocity with PCE

• For one prior and filter width
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�� Cϵ(ξ1,ξ2),Cμϵ(ξ1,ξ2)
= Σ		��Ψk(ξ1,ξ2)

Sample many times

For each pair of 
Cϵ,Cμϵ, get   ��



Sample Different Mean Velocity with PCE

• Same PCE

• Different prior and filter width
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Sample many times

For each pair of 
Cϵ,Cμϵ, get   ��

�� Cϵ(ξ1,ξ2),Cμϵ(ξ1,ξ2)
= Σ		��Ψk(ξ1,ξ2)



Midline Average Velocity –
AEM vs EEM

• Red - ∆ = L/64

• Green - ∆ = L/32

• Blue - ∆ = L/16

• Solid –AEM

• Dashed – EEM

• Moser DNS = 21.26
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Conclusions

• Used DNS isotropic turbulence to predict 
engineering LES channel flow Quantities of Interest

• Production and dissipation terms for the ksgs model 
are highly correlated 

• Filter width matters in the construction of the 
Posterior

• AEM vs. EEM
– EEM enables posterior checks without need to account for extra 

error information 

• Discrepancy in QoI values from Channel flow DNS
– “engineering level”

– Filter size is too small
31



Thank You

&

Questions
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Midline Average Velocity - AEM

• 6 Prior and 3 Filter widths

• Red - ∆ = L/64

• Green - ∆ = L/32

• Blue - ∆ = L/16

• Solid = (0.0845, 0.85) 

• Dashed = (0.07, 1.05)

• Moser DNS = 21.26

σ=0.4
σ=0.04

σ=0.2
σ=0.02
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Less confident 
in prior

More confident 
in prior



Effect of Filter Size and Prior

Posterior for Cμϵ
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Gas Turbine Challenges

Gas Turbine Engine 

Complex flow physics coupled with 
chemistry drives efficiency and 
pollutant emissions

RANS solutions and modeling
strategies are inadequate given 
the free flow and turbulence driven
by heat release

Gas Turbine Combustor Flow
Stanford ASCI Alliance Center

High Fidelity LES vs Engineering LES
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Breadth of Study

• Cold Flow
– Comparison between engineering 

and high-fidelity LES

– Develop UQ strategies and calibrate 
turbulence model parameters using 
channel flow

– Application:  Jet-in-Crossflow

• Reacting Flow
– Implement industrial and advanced 

combustion models

– Infer combustion model parameters

– UQ of reacting jet-in-crossflow and 
complex geometry flow
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Burke Schumann Methane Combustion

Temperature



Principal Component Analysis 
of Joint PDF’s
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First Principal Component yields similar 
results to Joint PDF

• Solid – Joint PDF

• Dashed – 1st PC
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Velocity and Mass Flux
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Moser DNS time averaged value: 21.26
• 15% off 

Moser: 117
16% off



Max RMS Velocity

• text
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Moser: 2.7
60% off



Wall-Model Calibration (in progress)

Calibrate boundary layer and bulk model parameters
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Likelihood Depends on 
Model Assumptions

• Presumed Error (Classical) Model (PEM)

• Embedded Error Model (EEM)
– (Sargsyan, Najm, Ghanem - 2014)
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