MISSOURI

Matching Hyper-heuristics and Genetic Programming

Mentor: Matthew A. Martin Faculty Advisor: Dr. Daniel R. Tauritz
Natural Computation Laboratory Natural Computation Laboratory
Department of Computer Science Department of Computer Science

Students: Sean N. Harris & Travis J. Bueter
Natural Computation Laboratory
Department of Computer Science

&

Motivation

Modern society is faced with ever more complex problems,
many of which can be formulated as generate-and-test
optimization problems. General-purpose optimization algorithms
are not well suited for real-world scenarios where many
instances of the same problem class need to be repeatedly and
efficiently solved, such as routing vehicles over highways with
constantly changing traffic flows, because they are not targeted
to a particular scenario. Hyper-heuristics automate the design of
algorithms to create a custom algorithm for a particular

Project Objective

Hyper-heuristics typically employ Genetic Programming (GP), an evolutionary
algorithm-based methodology inspired by biological evolution, and this project
aimed to investigate the relationship between the choice of GP and performance
in Hyper-heuristics. This poster presents results demonstrating the existence of
problems for which there was a statistically significant performance differential
between the use of different types of GP. Also presented are some preliminary
findings on how to match the type of GP employed in a hyper-heuristic with the
problem being addressed.

Approach

* 5GP techniques were chosen to be evaluated:
e Tree-based
J Linear
* Cartesian
e Grammatical
e Stack-based
* Each GP used the same pool of primitives to evolve
solutions.
e Each GP was employed to evolve iterative search

scenario.

algorithms for solving a Boolean satisfiability problem (SAT)
with 2000 clauses and 500 variables.
. Each GP ran 30 times, with each run allowed 40

. . i d each algorithm allowed 100 generations.
Mutate Figure 2: (Left) Top-performing program generations, an
= criated b(y tjf:(g Tr(;)epbased GPg(Zelgw) » The most effective algorithms generated were then used to
X T . ’ - quantify the effectiveness of each GP technique.
Peformance Comparison of GP Types (SA P Top-performing program created by the
Slecser~ Stack-based GP.
. P Tree vs. Stack
G Mutste_,
= e Tree- and stack-based GPs not only
E - o equivalently outperformed the other GPs, but
g Select:3 Mutate also evolved similar solutions.
K]
bt — = * Tree-based GP had a greater density of good
g - e |
t S /;"—:'.';‘6'1 solutions than stack-based GP.
ﬂ - = E=
E = * Tree-based GP’s genetic operators respect
=z /umm (e “ locality during evolution whereas stack-based
A 4 m GP’s do not.
Cartesian Grammatical Stack = — * Stack-based GP’s structure allows for introns
o o whereas tree-based GP’s does not.
_— L
Last ’ .
Figure 1: Performance comparisons are of the best e y ls)taCk':ase_d s a”‘f’wance of 'r;]'f:o"_s C|°“|d
individuals generated over 30 runs per GP. — —_— — = S CUENEI [[FERETEIEE Wil i (o
g P /Pﬂ:l::fy /Tw::ﬂﬂy //;p"l::hy ﬁ‘l‘ny locality could be hindering it.

Conclusion

Results demonstrate a statistically significant benefit of using tree- or stack-

based GP.

* Stack-based GP shows potential of being a viable alternate to tree-based GP
where it has been traditionally used.

* Results show the choice of GP does have a strong impact on the quality of
algorithms produced.

* Evidence of the importance for any work with hyper-heuristics to carefully
consider which type of genetic programming is used.

Future

Greater focus on testing tree- and

Work

stack-based GP, and comparing their

performance.

Expand testing to problem configurations ideal for an individual GP and
compare how the others GPs perform against it.

Implement GP-specific primitives that take advantage of unique traits to
improve its performance.

Develop system for matching the optimal GP for a given problem
configuration.

