
Matching Hyper-heuristics and Genetic Programming

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Modern society is faced with ever more complex problems,
many of which can be formulated as generate-and-test
optimization problems. General-purpose optimization algorithms
are not well suited for real-world scenarios where many
instances of the same problem class need to be repeatedly and
efficiently solved, such as routing vehicles over highways with
constantly changing traffic flows, because they are not targeted
to a particular scenario. Hyper-heuristics automate the design of
algorithms to create a custom algorithm for a particular
scenario.

Motivation
Hyper-heuristics typically employ Genetic Programming (GP), an evolutionary
algorithm-based methodology inspired by biological evolution, and this project
aimed to investigate the relationship between the choice of GP and performance
in Hyper-heuristics. This poster presents results demonstrating the existence of
problems for which there was a statistically significant performance differential
between the use of different types of GP. Also presented are some preliminary
findings on how to match the type of GP employed in a hyper-heuristic with the
problem being addressed.

Project Objective
• 5 GP techniques were chosen to be evaluated:

• Tree-based
• Linear
• Cartesian
• Grammatical
• Stack-based

• Each GP used the same pool of primitives to evolve
solutions.

• Each GP was employed to evolve iterative search
algorithms for solving a Boolean satisfiability problem (SAT)
with 2000 clauses and 500 variables.

• Each GP ran 30 times, with each run allowed 40
generations, and each algorithm allowed 100 generations.

• The most effective algorithms generated were then used to
quantify the effectiveness of each GP technique.

Approach

• Results demonstrate a statistically significant benefit of using tree- or stack-
based GP.

• Stack-based GP shows potential of being a viable alternate to tree-based GP
where it has been traditionally used.

• Results show the choice of GP does have a strong impact on the quality of
algorithms produced.

• Evidence of the importance for any work with hyper-heuristics to carefully
consider which type of genetic programming is used.

Conclusion
• Greater focus on testing tree- and stack-based GP, and comparing their

performance.
• Expand testing to problem configurations ideal for an individual GP and

compare how the others GPs perform against it.
• Implement GP-specific primitives that take advantage of unique traits to

improve its performance.
• Develop system for matching the optimal GP for a given problem

configuration.

Future Work

Students: Sean N. Harris & Travis J. Bueter
Natural Computation Laboratory 
Department of Computer Science

Faculty Advisor: Dr. Daniel R. Tauritz
Natural Computation Laboratory
Department of Computer Science

Mentor: Matthew A. Martin
Natural Computation Laboratory 
Department of Computer Science

Figure 2: (Left) Top-performing program 
created by the Tree-based GP. (Below)
Top-performing program created by the 
Stack-based GP.

• Tree- and stack-based GPs not only
equivalently outperformed the other GPs, but
also evolved similar solutions.

• Tree-based GP had a greater density of good
solutions than stack-based GP.

• Tree-based GP’s genetic operators respect
locality during evolution whereas stack-based
GP’s do not.

• Stack-based GP’s structure allows for introns
whereas tree-based GP’s does not.

• Stack-based GP’s allowance of introns could
be enhancing its performance while its low-
locality could be hindering it.

Tree vs. Stack

Figure 1: Performance comparisons are of the best 
individuals generated over 30 runs per GP. 

SAND2015-2325C


