

# Hyper-Heuristics: A Study On Increasing Primitive-Space

Matthew A. Martin

Natural Computation Laboratory

Department of Computer Science

Missouri University of Science and Technology

Rolla, Missouri, U.S.A.

mam446@mst.edu

Daniel R. Tauritz

Natural Computation Laboratory

Department of Computer Science

Missouri University of Science and Technology

Rolla, Missouri, U.S.A.

dtauritz@acm.org

## ABSTRACT

Practitioners often need to solve real world problems for which no custom search algorithms exist. In these cases they often use general-purpose solvers that have no guarantee to perform well on their specific problem. The relatively new field of hyper-heuristics provides an alternative to the potential pit-falls of general-purpose solvers by allowing practitioners to generate a custom algorithm optimized for their problem of interest. Hyper-heuristics are meta-heuristics operating on algorithm space employing targeted primitives to compose algorithms from.

This paper explores the advantages and disadvantages caused by expanding a hyper-heuristics's primitive-space with additional primitives. This should allow for an increase in quality of evolved algorithms. However, increasing the search space of a meta-heuristic almost always results in longer time to convergence and lower quality results for the same amount of computational time, but also all too often lower quality results at convergence, potentially making a problem impractical to solve for a practitioner. This paper explores the scalability of hyper-heuristics as the primitive-space is increased, demonstrating significantly increased quality solutions at convergence with a corresponding increase in time to convergence. Additionally, this paper explores the impact that the nature of the added primitives have on the performance of the hyper-heuristic.

## Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search; I.2.2 [Artificial Intelligence]: Automatic Programming—*program modification, program synthesis*

## General Terms

Algorithms, Design

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO '15, July 11-15, 2015, Madrid, Spain.

Copyright 2015 ACM TBA ...\$15.00.

## Keywords

Hyper-Heuristics, Black-Box Search Algorithms, Evolutionary Algorithms, Genetic Programming, Scalability

## 1. INTRODUCTION

Practitioners are frequently faced with increasingly complex problems for which no polynomial, guaranteed optimal solution exists and for which off-the-shelf general-purpose solvers, whether they be deterministic or stochastic, do not provide satisfactory performance. When these problems need to be repeatedly solved, it may be cost-effective to create a custom algorithm which, unlike general-purpose solvers, do not trade off performance on specific problems for generality. Hyper-heuristics are meta-heuristic algorithms which search algorithm-space employing primitives typically derived from existing algorithms, automating the creation of custom algorithms. The highest level primitives are complete algorithms, while the lowest level are a Turing-complete set of primitives. The former translates into automated algorithm selection, while the latter results in an intractable search of complete algorithm space (which grows exponentially with the number of operations). In order to minimize the search space, the highest primitive level which is sufficient to represent the optimal custom algorithm is ideal. However, determining that level is an open problem in hyper-heuristics. Additionally, adding primitives to an existing level increases the search space, thus increasing coverage at the expense of computational time.

This paper explores the advantages and disadvantages of increasing the search space of a hyper-heuristic by expanding its primitive space. The study reported here analyzes the performance of a hyper-heuristic, which has been previously demonstrated to produce high-quality Black-Box Search Algorithms (BBSAs) for the Deceptive Trap Problem [10, 12], on a more complex benchmark which has the necessary characteristics in order to reveal nuances in the trade-off between search space size (smaller is preferable) and coverage (larger is preferable).

This paper also examines how the nature of the added primitives may impact the performance of the evolved BBSAs. Two distinct sets of primitives are added to the previously employed set of primitives. One set comprises low-level “statement primitives” in the form of a set of “auxiliary” nodes that control program flow, such as loops and branching statements. The second set comprises “dervised primitives” extracted from existing algorithms such as Simulated Annealing (SA) and the Steepest Ascent Hill-Climber. This paper explores how the nature of the primitives affects the

trade-off between increased search space and higher quality BBSAs.

The goal of this research is to demonstrate that while adding primitives to a hyper-heuristic's primitive space increases the search space which requires additional time to convergence, it also increases the total number of high-quality algorithms produced, as well as increasing the quality of the best evolvable algorithms.

## 2. RELATED WORK

Recent efforts have applied hyper-heuristics to problems such as the Timetabling Problem [18], bio-informatics [19], and multi-objective optimization [9]. Much of the previous work on employing evolutionary computing to create improved BBSAs has focused on tuning parameters [17] or adaptively selecting which of a pre-defined set of primitives to use and in which order [16]. The latter employed Multi Expression Programming to evolve how, and in what order, the Evolutionary Algorithm (EA) used selection, mutation, and recombination. This approach used four high level primitives: Initialize, Select, Crossover, and Mutate. These primitives were combined in various ways to evolve a better performing EA. Later this approach was also attempted employing Linear Genetic Programming [2, 3, 15]. While this allowed the EA to identify the best combination of available selection, recombination, and mutation primitives to use for a given problem, it was limited to a predefined structure.

A more recent approach to evolving BBSAs employed Grammatical Evolution (GE) [7] which uses a grammar to describe structure, but is constrained to the canonical EA model. In later work [8], due to the computational load necessary for evaluating algorithms, a study was presented on how restricting the computational time for evaluating the evolved algorithms affects the structure.

Burke et al. described a high-level approach to evolving heuristics [1]. That approach was extended to evolve entire BBSAs of indiscriminate type [10, 11]. The research in this paper builds upon this work by analyzing the advantages and disadvantages of increasing the primitive-space the hyper-heuristic has access to. This paper will also look at how the nature of the added primitives affects the performance of the hyper-heuristic. This analysis is similar to an effort to determine the effect of varying primitive sets has on the performance of selection hyper-heuristics [14], though expanded to a generic hyper-heuristic.

## 3. METHODOLOGY

The focus of the research reported in this paper is to demonstrate the ability for hyper-heuristics to scale as the number of primitives available is increased. Increasing the number of primitives available to a hyper-heuristic potentially allows it to create higher quality algorithms and tackle more difficult problems. This section will discuss the base hyper-heuristic employed in the reported experiments along with the expanded set of primitives given to the hyper-heuristic to show its scalability.

### 3.1 Parse Tree

In order to condense the quantity of code needed to be evolved, the common iterative nature of BBSAs is exploited by representing a single iteration of a BBSA rather than the entirety of the algorithm. A parse tree is used to represent

the iteration for the evolutionary process such that standard Genetic Programming (GP) primitives will work effectively.

Each non-terminal node will take one or more sets of solutions (including the empty set or a singleton set) from its child node(s), perform an primitive on the sets(s) and then return a single set of solutions. The parse tree is evaluated in a post-order fashion and the set that the root node returns will be stored as the 'Last' set which can be accessed in future iterations to facilitate population-based BBSAs. The terminal nodes can either be sets of previous solutions or a set of randomly generated solutions. The sets include the 'Last' set as well as auxiliary sets which will be explained in Section 3.2.6. An example of a BBSA represented as a parse tree and related code representation are shown in Figure 1 and Figure 2.

### 3.2 Nodes

The trees' non-terminal nodes are primitives extracted from pre-existing algorithms such as Evolutionary Algorithms, Simulated Annealing, and Steepest Ascent Hill-Climbing. The nodes are broken down into selection, variation, set-manipulation, terminal, and utility nodes. The following subsections describe the primitives employed of each type for the experiments reported in this paper.

#### 3.2.1 Typing

Many BBSA primitives were designed to performed on a specified number of solutions. Typically in EAs, only two solutions are used for recombination. To allow for nodes to have requirements on the number of solutions that are passed, typing was added into the GP. In addition to the regular sets that have been used up until now, a singleton set type has been added. While the regular set type may be a singleton in some cases, the singleton set type must be a singleton set. Thus if a node needed two solutions it would have two children nodes that each have the requirement to return the singleton set type. Some nodes can return either the regular set type or the singleton set type depending on which is needed. These situations are described in Section 3.3.

In addition to the added flexibility that typing allows, it can also be used to limit the size that the sets of solutions are allowed to be. Certain primitives such as the 'Generate Neighborhood' can cause the size of the sets to increase exponentially if it were applied to a non-singleton set. If multiple 'Generate Neighborhood' were chained together without a selection primitive between them, the resulting set would grow exponentially with how the 'Generate Neighborhood' works. By forcing the 'Generate Neighborhood' node to take a singleton set, the size of the resulting set is limited.

#### 3.2.2 Selection Nodes

Three principal selection primitives were employed in the experiments. The first of these is  $k$ -tournament selection with replacement. This node has two parameters, namely  $k$  and  $count$  which designates the number of solutions passed to the next node. The second selection primitive employed is truncation selection. This primitive takes the  $count$  best solutions from the set passed to it,  $count$  being one of its parameters. The third selection primitive employed is the random subset primitive. The random subset takes  $count$  random solutions from the set passed to it,  $count$  being one of its parameters. All of the selection nodes take the regular

set type and can either return the singleton set type or the regular set type.

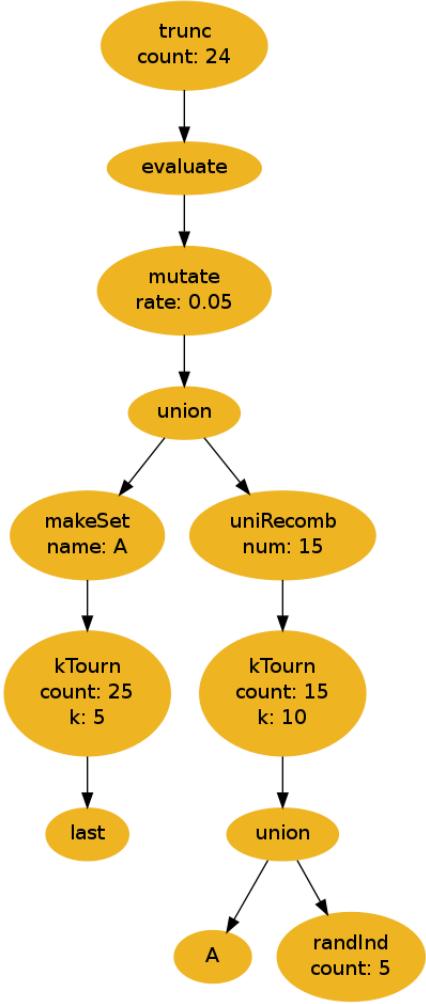


Figure 1: Example Parse Tree

```

Last = [initialize population]
evaluate(Last)
A = []
while termination condition not met do
  X = kTournament(Last, k = 5, count = 25)
  A = X
  Y = randInd(count = 5)
  Y = A + Y
  Y = kTournament(Y, k = 10, count = 15)
  Y = uniformRecombination(Y, count = 15)
  Z = X+Y
  Z = mutate(Z, rate = 5%)
  evaluate(Z)
  Last = truncate(Z, 24)
end while
evaluate(Last)
  
```

Figure 2: Example Parse Tree Generated Code

### 3.2.3 Variation Nodes

The original hyper-heuristic used only three types of variation primitives. The first of which is standard bit-flip mutation. This primitive has a single argument, *rate*, which is the probability that a given bit is flipped. The second original variation primitive is diagonal crossover [4] which returns the same number of solutions as are passed in. This variation node has one parameter, *n*, which determines the number of points used by the crossover primitive. The third and fourth primitives are version of the uniform recombination primitive. The first uniform recombination primitive has one child node and requires that it return a regular set type. It has a single argument, *count*, which is the number of solutions that it creates. This primitive creates *count* new solutions by randomly selecting a parent's gene for each position in the bit-string. The second uniform recombination primitive has two children nodes and requires that each of them return a singleton set type. This primitive creates two new solutions using the standard two parent uniform recombination. Both uniform recombination primitives return a regular set type. The second uniform recombination primitive was added to determine if a typed variation primitive would be more useful than a generic variation primitive.

The following primitives are added to the set of primitives to analyze how increasing the number of primitives from existing search algorithms would affect the performance of the hyper-heuristic. Primitives from SA and the steepest ascent hill-climber were added to the hyper-heuristic. From the SA algorithm two primitives were taken. The first is the 'tempChange' primitive. This primitive modifies the temperature parameter for the SA algorithm. The temperature parameter is stored at the global level such that all nodes have access to the same temperature. This primitive has a single parameter, *change*, which dictates how the temperature is changed when the node is called. This parameter is a floating point number which is added to or decremented from the current temperature. The initial temperature is set to a constant value for each run of the BBSA. The second primitive from the SA algorithm is named 'tempFlip' which performs the SA variation primitive based on the current global temperature. Both of these nodes can take either a singleton or regular set and return the same set that they are passed. There were also two primitives taken from the steepest ascent hill-climber. The first is the 'greedyFlip' primitive. This primitive takes a singleton set and performs one step of the steepest ascent hill-climber by generating the neighborhood of the solution passed in and selecting the best solution from the neighborhood or the original individual and returns it as a singleton set. The second primitive taken from the steepest hill-climber is the 'Generate Neighborhood' function. This function takes a singleton set and generates the neighborhood of that individual and then returns the neighborhood and the original solution as a regular set. The neighborhood is defined by all solutions that vary by exactly one bit.

### 3.2.4 Utility Nodes

The original hyper-heuristic used only one utility primitive. This was the evaluation node which evaluates all of the solutions that are passed into it. This node can take either

a singleton set type or a regular set type and returns the same type that was passed to it.

The following primitives are added to the set of primitives to analyze how increasing the number of utility primitives affects the performance of the hyper-heuristic. The first is the ‘for’ loop which runs its sub-tree  $n$  times,  $n$  being one of its parameters, and returns the combination of the results from those iterations. This node requires that its sub-tree return a singleton set type and it returns a regular set type. The second utility primitive is a conditional node called “if converged”. If the current run of the BBSA has not found a better solution in  $conv$  iterations,  $conv$  being one of its parameters, it will run its right sub-tree, else it will run its left sub-tree. This node also has the option to reset the convergence counter to zero giving it the option to be run a single time at convergence. This node can take either the regular set type or the singleton set type and returns a regular set type. The final utility primitive is another conditional node that runs its right sub-tree  $chance$  percent of the time,  $chance$  being one of its parameters, and its left sub-tree  $1 - chance$  percent of the time. This node can take either the regular set type or the singleton set type and returns a regular set type.

### 3.2.5 Set-Manipulation Nodes

The experiments reported in this paper employ two distinct set primitives. The first is the union primitive. This node combines the two sets of solutions passed into it returns it. This node can take either the regular set type or the singleton set type. It always returns a regular set type. The other primitive is the save primitive called “Make Set”. This primitives saves either copies or pointers to the solutions passed into it. This set can be used elsewhere in the algorithm as explained in Section 3.2.6. This node can take either the regular set type or the singleton set type and returns the same type that it was passed.

### 3.2.6 Terminal Nodes

The terminal nodes in this representation are sets of solutions. They can either be the ‘Last’ set returned by the previous iteration, a set that was created by the save primitive, or a set of randomly created solutions. The saved sets persist from iteration to iteration such that if a set is referenced before it has been saved in a given iteration, it will use the save from the previous iteration. At the beginning of each run, the saved sets are set to the empty set and the ‘Last’ set is set to a randomly generated population of solutions. Both of these terminal nodes return a regular set type. The randomly generated set of solutions terminal node creates a set of  $n$  solutions,  $n$  being one of its parameters, and returns that to its parent node. This terminal node can return either a singleton set type or a regular set type.

## 3.3 Meta-Algorithm

GP is employed to meta-evolve the BBSAs. The two primary variation primitives employed are the sub-tree crossover and mutation, altered to make the maximum number of nodes being added a user defined value. Both of these primitives had to be modified to account for the typing that was introduced into the GP. The sub-tree crossover was modified to ensure that the two sub-trees that were crossed over both returned the same type of set. In the rare situation that one tree used only the singleton set type and the other

tree used only the regular set type, the alternate described below on one of the trees chosen randomly. The sub-tree mutation was altered to ensure that when a node was added that it was guaranteed to have the return type that its parent node needed. Another mutation primitive was added to this algorithm that with equal chance randomizes the size of the initial ‘Last’ set or selects a random node from the parse-tree and randomizes the parameters if it has any; if the node does not have any parameters, the mutation is executed again. The alternate mutation primitive is guaranteed not to change the type of a node that returns a singleton set type.

The evaluation time of the evolved BBSAs is tied to the certainty in the fitness of the BBSA as well as how general the BBSA can be. To increase the certainty in the fitness of the BBSA the number of runs must be increased. To reduce the probability of a BBSA over-fitting during evolution, the BBSA must be trained using multiple problem configurations. Thus, to create a better BBSA, more time must be invested in the evaluation of the BBSAs.

This large evaluation time can cause the hyper-heuristic to run extremely slow. To remedy this problem, a Parallel Evolutionary Algorithm (PEA) strategy was adopted to allow for the evaluations to be distributed across multiple machines. To ensure the most efficient use of the computing resources, an Asynchronous PEA was used [13]. The Asynchronous PEA uses a master-slave model in which the master node generates new BBSAs to be evaluated and the slave nodes evaluate those BBSAs. Using this Asynchronous PEA the speed-up granted from the additional CPUs is near linear [13].

### 3.3.1 Black-Box Search Algorithm

Each individual in the GP population encodes a BBSA. To evaluate the fitness of an individual, its encoded BBSA is run for a user-defined number of times on each of a set of problem configurations. Each run of the BBSA begins with population initialization, followed by the parse-tree being repeatedly evaluated until one of the termination criteria is met. Once a run of the BBSA is completed, the ‘Last’ set and all saved sets are evaluated to ensure that the final fitness value is representative of the final population. Logging is performed during these runs to track when the BBSA converges and what the average solution quality and best current solution is. The fitness of a BBSA is estimated by computing the fitness function that it employs on the solutions it evolves averaged over all of the runs.

Learning conditions were added to terminate poor solutions before they are fully evaluated in order to ameliorate the very computationally intensive nature of hyper-heuristics. This is accomplished by applying four limiting factors. First of all, if a BBSA exceeds the maximum number of evaluations, then it will automatically be terminated mid-run. Secondly, there is a maximum number of iterations that the BBSA may perform before it will halt. If this iteration limit were not put in place, it would take BBSAs with very low evaluations per iteration much longer to be evaluated. The third method terminates algorithms which have converged based on not having improved in  $i$  iterations. Finally, if the algorithm requires more than  $t$  seconds it is terminated and given no fitness. This is done to help ensure that algorithms evolved complete their execution in a reasonable amount of time.

**Table 1: Primitive Breakdown**

| Base Primitives              | +Algorithms           | +Utility        | Full            |
|------------------------------|-----------------------|-----------------|-----------------|
| Base Primitives              | Base Primitives       | Base Primitives | Base Primitives |
| Bit-Flip Mutation            | Base Primitives       | Base Primitives | +Algorithms     |
| Uniform Recombination        | Change Temperature    | For Loop        | +Utility        |
| Uniform Recombination(Typed) | SA Variation          | If Converge     |                 |
| Diagonal Recombination       | Greedy Flip           | Left or Right   |                 |
| Union                        | Generate Neighborhood |                 |                 |
| Make Set                     |                       |                 |                 |
| k-Tournament Selection       |                       |                 |                 |
| Truncation Selection         |                       |                 |                 |
| Random Subset                |                       |                 |                 |
| Evaluation Node              |                       |                 |                 |
| Random Individual Terminal   |                       |                 |                 |
| ‘Last’ set Terminal          |                       |                 |                 |
| Persistent set Terminal      |                       |                 |                 |

**Table 2: Problem Configurations**

| Problem Set | N  | K |
|-------------|----|---|
| Set 1       | 30 | 5 |
| Set 2       | 40 | 5 |
| Set 3       | 50 | 5 |

### 3.4 External Verification

To ensure that the performance of the evolved BBSA is consistent with its performance reported during evolution, executable code is generated to represent the parse tree as a stand-alone BBSA. This is done to externally verify that the performance that the GP reports for a given BBSA is accurate. The generated code is used in all of the experiments to ensure unbiased execution of the BBSAs. An example of a parse tree and pseudo-code generated can be found in Figure 1 and Figure 2 respectively. This verification was employed for the testing of the BBSAs in all experiments.

## 4. EXPERIMENTS

To analyze how the addition of more primitives affects the performance of the hyper-heuristic, four sets of experiments were performed. The first ran the base hyper-heuristic without the addition of any primitives. The second ran the hyper-heuristic with the addition of the nodes extracted from the SA algorithm and the steepest ascent hill-climber algorithm. The third ran the hyper-heuristic with the addition of the utility primitives. The fourth ran the hyper-heuristic with the addition of all of the new primitives. A summary of the primitives that are included in each of the experiments can be seen in Table 1

The data used to determine the presence of these characteristics was gathered from running the single and multi-objective algorithms 30 times each. All four sets of experiments were run using three different sets of three instances of the NK-Landscapes benchmark problem [6] each. The parameters of these three sets can be seen in Table 2. These parameters were chosen to be consistent with a recent publication using NK-Landscapes [5]. The data used to analyze the scalability of this hyper-heuristic was gathered by running each problem configuration 10 times each. Once all 10 runs were completed, external verification was run on the

**Table 3: GP Configurations**

| Parameter                      | Value   |
|--------------------------------|---------|
| Evaluations                    | 5000    |
| Runs per Problem Instance      | 5       |
| Initial Population             | 100     |
| Children per Generation        | 50      |
| k-Tournament                   | 8       |
| Sub-Tree Crossover Probability | 47.5%   |
| Sub-Tree Mutation Probability  | 47.5%   |
| Alternate Mutation Probability | 5%      |
| Alternate Mutation Depth       | 5       |
| Maximum Time(sec)              | 90      |
| Maximum Iterations             | 10,000  |
| Maximum Evaluations in BBSA    | 100,000 |

best BBSA produced by each run. During the external verification, each BBSA was run 30 times for 100,000 evaluations or until convergence.

All of the experiments were conducted under the same settings. The meta-algorithm was run for 5000 evaluations. The initial population was 100 individuals and each generation 50 new individuals were created.  $k$ -tournament selection with replacement and  $k = 8$  was employed for parent selection. The sub-tree crossover and mutation primitives had 30% chance of being used while the alternate mutation had a probability of 40%. The maximum time for the evaluation of a BBSA was 90 seconds, the maximum number of iterations was 10,000, and the maximum number of evaluations in the BBSA was 100,000. All the parameter settings for the meta-algorithm are summarized in Table 3. Due to the high computational cost of running hyper-heuristics, only minimal tuning of the meta-algorithm is feasible.

The BBSAs had certain parameters that related to the ranges of the parameters that some nodes have. For each of the integer parameters the ranges could go from 1 to 25, except for the convergence conditional node which ranges from 5 to 25. The bit-flip mutation nodes parameter *rate* can go from 0 to 1.0. The floating point parameter on the ‘tempChange’ node can range from -3.0 to 3.0. The initial population could range from 1 to 50 solutions. A more de-

**Table 4: Black-Box Search Algorithm Settings**

| Node                   | Parameter          | Range   |
|------------------------|--------------------|---------|
| N/A                    | Initial Population | [1,50]  |
| k-Tournament           | $k$                | [1,25]  |
| *                      | $count$            | [1,25]  |
| Random Subset          | $count$            | [1,25]  |
| Truncation             | $count$            | [1,25]  |
| Bit-Flip               | $rate$             | [0,1]   |
| Uniform Recombination  | $count$            | [1,25]  |
| Diagonal Recombination | points             | [1,25]  |
| Change Temperature     | $change$           | [-3,3]  |
| If Converge            | $conv$             | [25,50] |
| Left or Right          | $rate$             | [0,1]   |
| For loop               | $iterations$       | [1,25]  |
| Random Individuals     | $count$            | [1,25]  |

**Table 5: Rank-Sum Results**

|            | Base    | +Utility | +Algorithm |
|------------|---------|----------|------------|
| +Utility   | (~,~,+) | X        | X          |
| +Algorithm | (+,+,~) | (+,+,~)  | X          |
| +Full      | (+,+,+) | (+,+,~)  | (+,~,~)    |

tailed list of all of the parameter ranges can be found in Table 4.

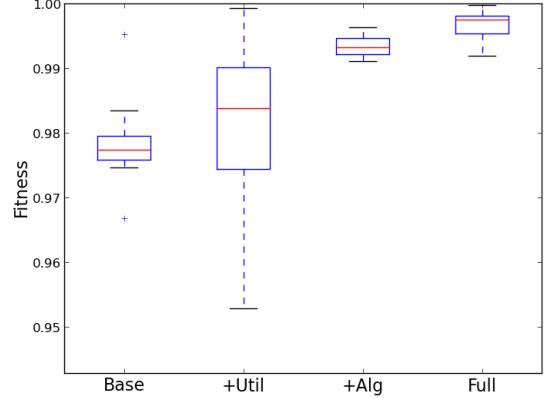
## 5. RESULTS

The first results gathered were to determine if there was a significant improvement in fitness of the BBSAs when additional operations were added to the hyper-heuristic. To determine this, the Wilcoxon signed-rank test was performed to determine if a statistical difference existed. In all of these tests  $\alpha$  was set to be 0.05. The results of these tests can be seen in Table 5. This table shows how a given set of primitives compared to another. Each entry is a tuple of symbols that convey the relationship between the performance of the experiments on the three problem configurations ( $N = 30$ ,  $N = 40$ ,  $N = 50$ ). A + symbol indicates that the experiment on the row performed statistically better than the experiment in the column on a given problem configuration. A - symbol indicates that the experiment on the row performed statistically worse than the experiment in the column on a given problem configuration. A  $\sim$  symbol indicates that there was no statistical difference between how the two experiments performed. A X indicates that this entry is duplicate information found elsewhere on the table.

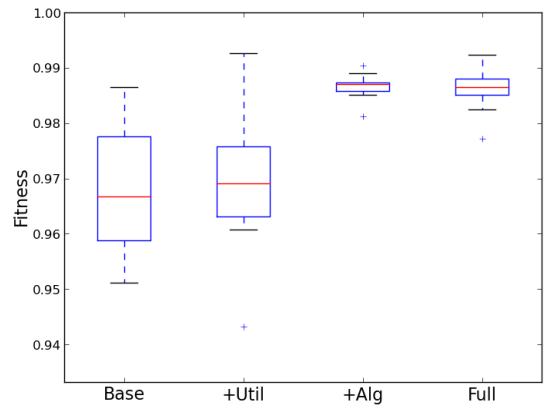
The box-plots in figures 3 through 5 provide a visual comparison of the experiments. The impact of the difficulty of the problem configuration on the different experiments is visualized in Figure 6. The performance of the hyper-heuristic decreases as  $N$  is increased, which is to be expected as increasing  $N$  increases the difficulty of the problem configuration.

## 6. DISCUSSION

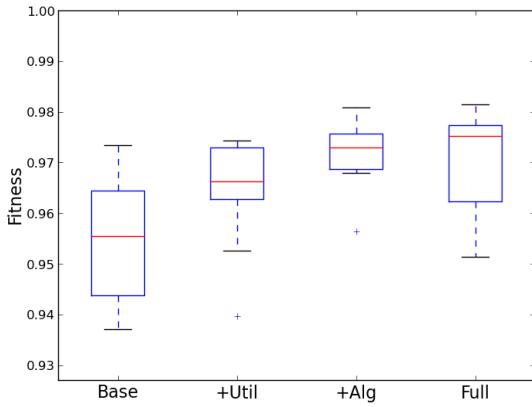
A trade-off that is seen to be important when analyzing how the increase in genetic material of a hyper-heuristic is that between the increase in performance of the best



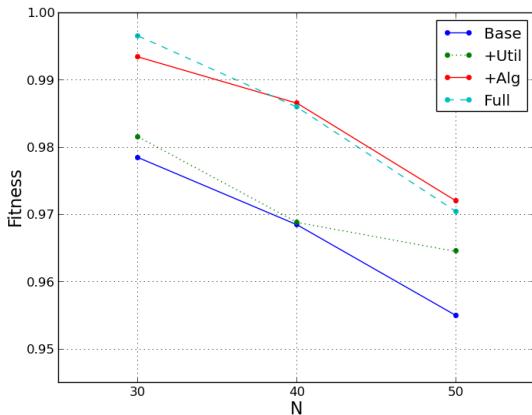
**Figure 3:** This figure shows a box-plot of four the four experiments with  $n = 30$ , where the labels along the  $x$  axis correspond to the experiments show in 1



**Figure 4:** This figure shows a box-plot of four the four experiments with  $n = 40$ , where the labels along the  $x$  axis correspond to the experiments show in 1



**Figure 5:** This figure shows a box-plot of four the four experiments with  $n = 50$ , where the labels along the  $x$  axis correspond to the experiments show in 1



**Figure 6:** Graph of the trend of the four experiments as the problem configurations increases in difficulty

found BBSAs and the likely-hood that those solutions can be found. This can be approximated by comparing the fitness of the best found BBSA in an experiment and the fitness of the worst BBSA found. Obviously, the larger the fitness of the best BBSA, the better the hyper-heuristic can perform; however, if the distance between the best and worst found BBSA is large, this indicates that search space may be much too large to easily traverse.

This assumption can be reinforced by analyzing the differing results between adding utility primitives versus algorithmic primitives. The algorithmic primitives that were included were all unary primitives, and two of the three utility primitives were binary primitives. This means that the increase in search space caused by adding the utility primitives was much more significant than the increased caused by adding the algorithmic primitives. This is supported when analyzing the results of the experiments in figures 3-5. The best BBSA found in the ‘+Utility’ experiments were on par with the best BBSAs found in the ‘+Algorithm’ experiments. However the difference between best and worst BBSAs is much larger in the ‘+Utility’ experiments likely due to the greater increase in search space. This is reinforced when including the ‘Full’ experiments in this analysis. The ‘Full’ experiments had a larger difference between best and worst BBSAs

While the increase in search space caused by the increase in genetic material does make increase the difficulty in finding good BBSAs, the quality of the best BBSA found does increase when using more genetic material compared to the ‘Base’ experiment. In all problem configurations, the best BBSA found in experiments ran with more genetic material performed better than the best BBSA found in the ‘Base’ experiment. This helps the argument that increasing the genetic material does indeed allow for the hyper-heuristic to find better BBSAs.

The difficulty of the problem configuration did not uniformly affect the performance of the hyper-heuristic. As can be seen in Figure 6, as the difficulty of the problem configuration was increased, the performance of each experiment decreased which was expected. However, the performance of the ‘+Util’ experiment did drastically increase in relationship to the other three experiments. This result however could not be explained and may be cause solely by the inherent randomness in hyper-heuristics.

## 7. CONCLUSIONS

This paper demonstrates the effects that the amount and nature of genetic material has on the performance of hyper-heuristics. It has been shown that increasing the amount of genetic material in general increases best possible performance of the hyper-heuristic. However, this increase in performance comes at a cost of an increased search space. The larger the search space, the more difficult it is to find those good solutions. It was found that the parity of the genetic material can have a large impact on the increase in search space. It was seen that when primitives with a parity of two were added, they had a much larger increase in search space compared to primitives with a parity of one.

The research reported in this paper shows that the hyper-heuristic has problems with the scalability of the genetic material. However, these experiments were run with only 5,000 evaluations which is extremely small when comparing to other algorithms in the Evolutionary Computing field.

This restriction is driven by the long evaluation time of a single BBSA. With the use of parallel evolutionary algorithms, the total run time of the algorithms can be drastically reduced which can allow for experimentation with larger numbers of evaluations.

## 8. FUTURE WORK

This paper has demonstrated the limitations of scaling the genetic material in hyper-heuristics. Next steps to better analyze these limitations would be to do an in depth study on how much longer hyper-heuristics need to be run to yield converging results. However, if the results converge on non-optimal solutions, then the focus should shift to increasing diversity.

## Acknowledgment

This work was generously supported by Sandia National Laboratories.

## 9. REFERENCES

[1] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. Woodward. Exploring Hyper-heuristic Methodologies with Genetic Programming. In C. Mumford and L. Jain, editors, *Computational Intelligence*, volume 1 of *Intelligent Systems Reference Library*, pages 177–201. Springer, 2009.

[2] L. Dioşan and M. Oltean. Evolutionary Design of Evolutionary Algorithms. *Genetic Programming and Evolvable Machines*, 10(3):263–306, Sept. 2009.

[3] L. S. Diosan and M. Oltean. Evolving Evolutionary Algorithms Using Evolutionary Algorithms. In *Proceedings of GECCO 2007 - Genetic And Evolutionary Computation Conference*, GECCO '07, pages 2442–2449, New York, NY, USA, 2007. ACM.

[4] A. E. Eiben and C. H. van Kemenade. Diagonal Crossover in Genetic Algorithms for Numerical Optimization. *Journal of Control and Cybernetics*, 26(3):447–465, 1997.

[5] B. W. Goldman and D. R. Tauritz. Supportive Coevolution. In *Proceedings of GECCO 2012 Companion - Genetic And Evolutionary Computation Conference*, GECCO Companion '12, pages 59–66, New York, NY, USA, 2012. ACM.

[6] S. A. Kauffman and E. D. Weinberger. The NK model of rugged fitness landscapes and its application to maturation of the immune response. *Journal of theoretical biology*, 141(2):211–245, 1989.

[7] N. Lourenço, F. Pereira, and E. Costa. Evolving Evolutionary Algorithms. In *Proceedings of GECCO 2012 - Genetic And Evolutionary Computation Conference*, GECCO Companion '12, pages 51–58, New York, NY, USA, 2012. ACM.

[8] N. Lourenço, F. B. Pereira, and E. Costa. The Importance of the Learning Conditions in Hyper-heuristics. In *Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference*, GECCO '13, pages 1525–1532, New York, NY, USA, 2013. ACM.

[9] M. Maashi, G. Kendall, and E. Özcan. Choice function based hyper-heuristics for multi-objective optimization. *Applied Soft Computing*, 28:312–326, 2015.

[10] M. A. Martin and D. R. Tauritz. Evolving Black-box Search Algorithms Employing Genetic Programming. In *Proceeding of the Fifteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion*, GECCO '13 Companion, pages 1497–1504, New York, NY, USA, 2013. ACM.

[11] M. A. Martin and D. R. Tauritz. A Problem Configuration Study of the Robustness of a Black-box Search Algorithm Hyper-heuristic. In *Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation*, GECCO Comp '14, pages 1389–1396, New York, NY, USA, 2014. ACM.

[12] M. A. Martin and D. R. Tauritz. Multi-Sample Evolution of Robust Black-Box Search Algorithms. In *Proceeding of the Sixteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion*, GECCO '14 Companion, New York, NY, USA, 2014. ACM.

[13] A. R. B. Matthew A. Martin and D. R. Tauritz. Asynchronous Parallel Evolutionary Algorithms: Leveraging Heterogeneous Fitness Evaluation Times for Scalability and Elitist Parsimony Pressure. In *Proceeding of the Seventeenth Annual Conference Companion on Genetic and Evolutionary Computation*, GECCO '14 Companion, New York, NY, USA, 2015. ACM.

[14] M. Misir, K. Verbeeck, P. De Causmaecker, and G. V. Berghe. The effect of the set of low-level heuristics on the performance of selection hyper-heuristics. In *Parallel Problem Solving from Nature-PPSN XII*, pages 408–417. Springer, 2012.

[15] M. Oltean. Evolving Evolutionary Algorithms Using Linear Genetic Programming. *Evol. Comput.*, 13(3):387–410, Sept. 2005.

[16] M. Oltean and C. Grosan. Evolving Evolutionary Algorithms Using Multi Expression Programming. In *Proceedings of The 7th European Conference on Artificial Life*, pages 651–658. Springer-Verlag, 2003.

[17] S. Smit and A. Eiben. Comparing Parameter Tuning Methods for Evolutionary Algorithms. In *IEEE Congress on Evolutionary Computation, 2009. CEC '09*, pages 399–406, May 2009.

[18] J. A. Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio, H. Puga, and E. K. Burke. Effective learning hyper-heuristics for the course timetabling problem. *European Journal of Operational Research*, 238(1):77–86, 2014.

[19] A. Swiercz, E. K. Burke, M. Cichenski, G. Pawlak, S. Petrovic, T. Zurkowski, and J. Blazewicz. Unified encoding for hyper-heuristics with application to bioinformatics. *Central European Journal of Operations Research*, 22(3):567–589, 2014.