SAND2015-2289C

Hyper-Heuristics: A Study On Increasing Primitive-Space

Matthew A. Martin
Natural Computation Laboratory
Department of Computer Science
Missouri University of Science and Technology
Rolla, Missouri, U.S.A.
mam446@mst.edu

ABSTRACT

Practitioners often need to solve real world problems for
which no custom search algorithms exist. In these cases
they often use general-purpose solvers that have no guar-
antee to perform well on their specific problem. The rela-
tively new field of hyper-heuristics provides an alternative
to the potential pit-falls of general-purpose solvers by allow-
ing practitioners to generate a custom algorithm optimized
for their problem of interest. Hyper-heuristics are meta-
heuristics operating on algorithm space employing targeted
primitives to compose algorithms from.

This paper explores the advantages and disadvantages
caused by expanding a hyper-heuristics’s primitive-space with
additional primitives. This should allow for an increase
in quality of evolved algorithms. However, increasing the
search space of a meta-heuristic almost always results in
longer time to convergence and lower quality results for the
same amount of computational time, but also all too often
lower quality results at convergence, potentially making a
problem impractical to solve for a practitioner. This paper
explores the scalability of hyper-heuristics as the primitive-
space is increased, demonstrating significantly increased qual-
ity solutions at convergence with a corresponding increase in
time to convergence. Additionally, this paper explores the
impact that the nature of the added primitives have on the
performance of the hyper-heuristic.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; 1.2.2 [Artificial Intelligence]: Au-
tomatic Programming—program modification, program syn-
thesis

General Terms
Algorithms, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’15, July 11-15, 2015, Madrid, Spain.

Copyright 2015 ACM TBA ...$15.00.

Daniel R. Tauritz
Natural Computation Laboratory
Department of Computer Science
Missouri University of Science and Technology
Rolla, Missouri, U.S.A.
dtauritz@acm.org

Keywords

Hyper-Heuristics, Black-Box Search Algorithms, Evolution-
ary Algorithms, Genetic Programming, Scalability

1. INTRODUCTION

Practitioners are frequently faced with increasingly com-
plex problems for which no polynomial, guaranteed optimal
solution exists and for which off-the-shelf general-purpose
solvers, whether they be deterministic or stochastic, do not
provide satisfactory performance. When these problems need
to be repeatedly solved, it may be cost-effective to create a
custom algorithm which, unlike general-purpose solvers, do
not trade off performance on specific problems for generality.
Hyper-heuristics are meta-heuristic algorithms which search
algorithm-space employing primitives typically derived from
existing algorithms, automating the creation of custom al-
gorithms. The highest level primitives are complete algo-
rithms, while the lowest level are a Turing-complete set of
primitives. The former translates into automated algorithm
selection, while the latter results in an intractable search of
complete algorithm space (which grows exponentially with
the number of operations). In order to minimize the search
space, the highest primitive level which is sufficient to rep-
resent the optimal custom algorithm is ideal. However, de-
termining that level is an open problem in hyper-heuristics.
Additionally, adding primitives to an existing level increases
the search space, thus increasing coverage at the expense of
computational time.

This paper explores the advantages and disadvantages of
increasing the search space of a hyper-heuristic by expand-
ing its primitive space. The study reported here analyzes the
performance of a hyper-heuristic, which has been previously
demonstrated to produce high-quality Black-Box Search Al-
gorithms (BBSAs) for the Deceptive Trap Problem [10, 12],
on a more complex benchmark which has the necessary char-
acteristics in order to reveal nuances in the trade-off between
search space size (smaller is preferable) and coverage (larger
is preferable).

This paper also examines how the nature of the added
primitives may impact the performance of the evolved BB-
SAs. Two distinct sets of primitives are added to the pre-
viously employed set of primitives. One set comprises low-
level “statement primitives” in the form of a set of “auxiliary”
nodes that control program flow, such as loops and branch-
ing statements. The second set comprises “dervised primi-
tives” extracted from existing algorithms such as Simulated
Annealing (SA) and the Steepest Ascent Hill-Climber. This
paper explores how the nature of the primitives affects the

trade-off between increased search space and higher quality
BBSAs.

The goal of this research is to demonstrate that while
adding primitives to a hyper-heuristic’s primitive space in-
creases the search space which requires additional time to
convergence, it also increases the total number of high-quality
algorithms produced, as well as increasing the quality of the
best evolvable algorithms.

2. RELATED WORK

Recent efforts have applied hyper-heuristics to problems
such as the Timetabling Problem [18], bio-informatics [19],
and multi-objective optimization [9]. Much of the previ-
ous work on employing evolutionary computing to create
improved BBSAs has focused on tuning parameters [17] or
adaptively selecting which of a pre-defined set of primitives
to use and in which order [16]. The latter employed Multi
Expression Programming to evolve how, and in what or-
der, the Evolutionary Algorithm (EA) used selection, muta-
tion, and recombination. This approach used four high level
primitives: Initialize, Select, Crossover, and Mutate. These
primitives were combined in various ways to evolve a better
performing EA. Later this approach was also attempted em-
ploying Linear Genetic Programming [2, 3, 15]. While this
allowed the EA to identify the best combination of available
selection, recombination, and mutation primitives to use for
a given problem, it was limited to a predefined structure.

A more recent approach to evolving BBSAs employed
Grammatical Evolution (GE) [7] which uses a grammar to
describe structure, but is constrained to the canonical EA
model. In later work [8], due to the computational load nec-
essary for evaluating algorithms, a study was presented on
how restricting the computational time for evaluating the
evolved algorithms affects the structure.

Burke et al. described a high-level approach to evolving
heuristics [1]. That approach was extended to evolve en-
tire BBSAs of indiscriminate type [10, 11]. The research in
this paper builds upon this work by analyzing the advan-
tages and disadvantages of increasing the primitive-space
the hyper-heuristic has access to. This paper will also look
at how the nature of the added primitives affects the perfor-
mance of the hyper-heuristic. This analysis is similar to an
effort to determine the effect of varying primitive sets has
on the performance of selection hyper-heuristics [14], though
expanded to a generic hyper-heuristic.

3. METHODOLOGY

The focus of the research reported in this paper is to
demonstrate the ability for hyper-heuristics to scale as the
number of primitives available is increased. Increasing the
number of primitives available to a hyper-heuristic poten-
tially allows it to create higher quality algorithms and tackle
more difficult problems. This section will discuss the base
hyper-heuristic employed in the reported experiments along
with the expanded set of primitives given to the hyper-
heuristic to show its scalability.

3.1 Parse Tree

In order to condense the quantity of code needed to be
evolved, the common iterative nature of BBSAs is exploited
by representing a single iteration of a BBSA rather than the
entirety of the algorithm. A parse tree is used to represent

the iteration for the evolutionary process such that standard
Genetic Programming (GP) primitives will work effectively.

Each non-terminal node will take one or more sets of so-
lutions (including the empty set or a singleton set) from its
child node(s), perform an primitive on the sets(s) and then
return a single set of solutions. The parse tree is evaluated
in a post-order fashion and the set that the root node re-
turns will be stored as the ‘Last’ set which can be accessed in
future iterations to facilitate population-based BBSAs. The
terminal nodes can either be sets of previous solutions or a
set of randomly generated solutions. The sets include the
‘Last’ set as well as auxiliary sets which will be explained in
Section 3.2.6. An example of a BBSA represented as a parse
tree and related code representation are shown in Figure 1
and Figure 2.

3.2 Nodes

The trees’ non-terminal nodes are primitives extracted
from pre-existing algorithms such as Evolutionary Algorithms,
Simulated Annealing, and Steepest Assent Hill-Climbing.
The nodes are broken down into selection, variation, set-
manipulation, terminal, and utility nodes. The following
subsections describe the primitives employed of each type
for the experiments reported in this paper.

3.2.1 Typing

Many BBSA primitives were designed to performed on a
specified number of solutions. Typically in EAs, only two
solutions are used for recombination. To allow for nodes
to have requirements on the number of solutions that are
passed, typing was added into the GP. In addition to the
regular sets that have been used up until now, a singleton
set type has been added. While the regular set type may be
a singleton in some cases, the singleton set type must be a
singleton set. Thus if a node needed two solutions it would
have two children nodes that each have the requirement to
return the singleton set type. Some nodes can return ei-
ther the regular set type or the singleton set type depending
on which is needed. These situations are described in Sec-
tion 3.3.

In addition to the added flexibility that typing allows, it
can also be used to limit the size that the sets of solutions
are allowed to be. Certain primitives such as the ‘Generate
Neighborhood’ can cause the size of the sets to increase ex-
ponentially if it were applied to a non-singleton set. If multi-
ple ‘Generate Neighborhood’ were chained together without
a selection primitive between them, the resulting set would
grow exponentially with how the ‘Generate Neighborhood’
works. By forcing the ‘Generate Neighborhood’ node to take
a singleton set, the size of the resulting set is limited.

3.2.2 Selection Nodes

Three principal selection primitives were employed in the
experiments. The first of these is k-tournament selection
with replacement. This node has two parameters, namely k
and count which designates the number of solutions passed
to the next node. The second selection primitive employed
is truncation selection. This primitive takes the count best
solutions from the set passed to it, count being one of its
parameters. The third selection primitive employed is the
random subset primitive. The random subset takes count
random solutions from the set passed to it, count being one
of its parameters. All of the selection nodes take the regular

trunc
count: 24

l

evaluate

i

mutate
rate: 0.05

l

union

"

makeSet uniRecomb
name: A num: 15

l i

kTourn kTourn
count: 25 count: 15
k: 5 k: 10

i i

last union

\

randind
count: 5

Figure 1: Example Parse Tree

Last = [initialize population]
evaluate(Last)
A=T]

while termination condition not met do
X = kTournament(Last, k = 5,count =25)

A=X
Y = randInd(count = 5)
Y=A+Y

Y = kTournament(Y,k = 10, count = 15)
Y = uniformRecombination(Y, count = 15)

7Z =X+Y
Z = mutate(Z, rate = 5%)
evaluate(Z)
Last = truncate(Z, 24)
end while
evaluate(Last)

Figure 2: Example Parse Tree Generated Code

set type and can either return the singleton set type or the
regular set type.

3.2.3 Variation Nodes

The original hyper-heuristic used only three types of vari-
ation primitives. The first of which is standard bit-flip mu-
tation. This primitive has a single argument, rate, which
is the probability that a given bit is flipped. The second
original variation primitive is diagonal crossover [4] which
returns the same number of solutions as are passed in. This
variation node has one parameter, n, which determines the
number of points used by the crossover primitive. The third
and fourth primitives are version of the uniform recombi-
nation primitive. The first uniform recombination primitive
has one child node and requires that it return a regular set
type. It has a single argument, count, which is the number
of solutions that it creates. This primitive creates count new
solutions by randomly selecting a parent’s gene for each po-
sition in the bit-string. The second uniform recombination
primitive has two children nodes and requires that each of
them return a singleton set type. This primitive creates two
new solutions using the standard two parent uniform recom-
bination. Both uniform recombination primitives return a
regular set type. The second uniform recombination prim-
itive was added to determine if a typed variation primitive
would be more useful than a generic variation primitive.

The following primitives are added to the set of primitives
to analyze how increasing the number of primitives from ex-
isting search algorithms would affect the performance of the
hyper-heuristic. Primitives from SA and the steepest ascent
hill-climber were added to the hyper-heuristic. From the
SA algorithm two primitives were taken. The first is the
‘tempChange’ primitive. This primitive modifies the tem-
perature parameter for the SA algorithm. The temperature
parameter is stored at the global level such that all nodes
have access to the same temperature. This primitive has a
single parameter,change, which dictates how the tempera-
ture is changed when the node is called. This parameter is
a floating point number which is added to or decremented
from the current temperature. The initial temperature is set
to a constant value for each run of the BBSA. The second
primitive from the SA algorithm is named ‘tempFlip’ which
performs the SA variation primitive based on the current
global temperature. Both of these nodes can take either a
singleton or regular set and return the same set that they
are passed. There were also two primitives taken from the
steepest ascent hill-climber. The first is the ‘greedyFlip’
primitive. This primitive takes a singleton set and performs
one step of the steepest ascent hill-climber by generating
the neighborhood of the solution passed in and selecting the
best solution from the neighborhood or the original individ-
ual and returns it as a singleton set. The second primitive
taken from the steepest hill-climber is the ‘Generate Neigh-
borhood’ function. This function takes a singleton set and
generates the neighborhood of that individual and then re-
turns the neighborhood and the original solution as a regular
set. The neighborhood is defined by all solutions that vary
by exactly one bit.

3.2.4 Utility Nodes

The original hyper-heuristic used only one utility primi-
tive. This was the evaluation node which evaluates all of the
solutions that are passed into it. This node can take either

a singleton set type or a regular set type and returns the
same type that was passed to it.

The following primitives are added to the set of primitives
to analyze how increasing the number of utility primitives
affects the performance of the hyper-heuristic. The first is
the ‘for’ loop which runs its sub-tree n times, n being one of
its parameters, and returns the combination of the results
from those iterations. This node requires that its sub-tree
return a singleton set type and it returns a regular set type.
The second utility primitive is a conditional node called “if
converged”. If the current run of the BBSA has not found
a better solution in conv iterations, conv being one of its
parameters, it will run its right sub-tree, else it will run its
left sub-tree. This node also has the option to reset the
convergence counter to zero giving it the option to be run
a single time at convergence. This node can take either
the regular set type or the singleton set type and returns
a regular set type. The final utility primitive is another
conditional node that runs its right sub-tree chance percent
of the time, chance being one of its parameters, and its left
sub-tree 1 — chance percent of the time. This node can
take either the regular set type or the singleton set type and
returns a regular set type.

3.2.5 Set-Manipulation Nodes

The experiments reported in this paper employ two dis-
tinct set primitives. The first is the union primitive. This
node combines the two sets of solutions passed into it re-
turns it. This node can take either the regular set type
or the singleton set type. It always returns a regular set
type. The other primitive is the save primitive called “Make
Set”. This primitives saves either copies or pointers to the
solutions passed into it. This set can be used elsewhere in
the algorithm as explained in Section 3.2.6. This node can
take either the regular set type or the singleton set type and
returns the same type that it was passed.

3.2.6 Terminal Nodes

The terminal nodes in this representation are sets of so-
lutions. They can either be the ‘Last’ set returned by the
previous iteration, a set that was created by the save primi-
tive, or a set of randomly created solutions. The saved sets
persist from iteration to iteration such that if a set is refer-
enced before it has been saved in a given iteration, it will
use the save from the previous iteration. At the beginning
of each run, the saved sets are set to the empty set and the
‘Last’ set is set to a randomly generated population of so-
lutions. Both of these terminal nodes return a regular set
type. The randomly generated set of solutions terminal node
creates a set of n solutions, n being one of its parameters,
and returns that to its parent node. This terminal node can
return either a singleton set type or a regular set type.

3.3 Meta-Algorithm

GP is employed to meta-evolve the BBSAs. The two pri-
mary variation primitives employed are the sub-tree crossover
and mutation, altered to make the maximum number of
nodes being added a user defined value. Both of these prim-
itives had to be modified to account for the typing that was
introduced into the GP. The sub-tree crossover was modi-
fied to ensure that the two sub-trees that were crossed over
both returned the same type of set. In the rare situation
that one tree used only the singleton set type and the other

tree used only the regular set type, the alternate described
below on one of the trees chosen randomly. The sub-tree
mutation was altered to ensure that when a node was added
that it was guaranteed to have the return type that its par-
ent node needed. Another mutation primitive was added to
this algorithm that with equal chance randomizes the size
of the initial ‘Last’ set or selects a random node from the
parse-tree and randomizes the parameters if it has any; if
the node does not have any parameters, the mutation is exe-
cuted again. The alternate mutation primitive is guaranteed
not to change the type of a node that returns a singleton set
type.

The evaluation time of the evolved BBSAs is tied to the
certainty in the fitness of the BBSA as well as how general
the BBSA can be. To increase the certainty in the fitness of
the BBSA the number of runs must be increased. To reduce
the probability of a BBSA over-fitting during evolution, the
BBSA must be trained using multiple problem configura-
tions. Thus, to create a better BBSA, more time must be
invested in the evaluation of the BBSAs.

This large evaluation time can cause the hyper-heuristic
to run extremely slow. To remedy this problem, a Paral-
lel Evolutionary Algorithm (PEA) strategy was adopted to
allow for the evaluations to be distributed across multiple
machines. To ensure the most efficient use of the comput-
ing resources, an Asynchronous PEA was used [13]. The
Asynchronous PEA uses a master-slave model in which the
master node generates new BBSAs to be evaluated and the
slave nodes evaluate those BBSAs. Using this Asynchronous
PEA the speed-up granted from the additional CPUs is near
linear [13].

3.3.1 Black-Box Search Algorithm

Each individual in the GP population encodes a BBSA.
To evaluate the fitness of an individual, its encoded BBSA
is run for a user-defined number of times on each of a set of
problem configurations. Each run of the BBSA begins with
population initialization, followed by the parse-tree being
repeatedly evaluated until one of the termination criteria
is met. Once a run of the BBSA is completed, the ‘Last’
set and all saved sets are evaluated to ensure that the fi-
nal fitness value is representative of the final population.
Logging is performed during these runs to track when the
BBSA converges and what the average solution quality and
best current solution is. The fitness of a BBSA is estimated
by computing the fitness function that it employs on the
solutions it evolves averaged over all of the runs.

Learning conditions were added to terminate poor solu-
tions before they are fully evaluated in order to amelio-
rate the very computationally intensive nature of hyper-
heuristics. This is accomplished by applying four limiting
factors. First of all, if a BBSA exceeds the maximum num-
ber of evaluations, then it will automatically be terminated
mid-run. Secondly, there is a maximum number of itera-
tions that the BBSA may perform before it will halt. If this
iteration limit were not put in place, it would take BBSAs
with very low evaluations per iteration much longer to be
evaluated. The third method terminates algorithms which
have converged based on not having improved in ¢ iterations.
Finally, if the algorithm requires more than t seconds it is
terminated and given no fitness. This is done to help en-
sure that algorithms evolved complete their execution in a
reasonable amount of time.

Table 1: Primitive Breakdown

Base Primitives +Algorithms +Utility Full
Bit-Flip Mutation Base Primitives Base Primitives | Base Primitives
Uniform Recombination Change Temperature For Loop +Algorithms

Uniform Recombination(Typed)

SA Variation

If Converge +Utility

Diagonal Recombination

Greedy Flip

Left or Right

Union Generate Neighborhood

Make Set

k-Tournament Selection

Truncation Selection

Random Subset

Evaluation Node

Random Individual Terminal

‘Last’ set Terminal

Persistent set Terminal

Table 2: Problem Configurations

Problem Set | N | K
Set 1 30| 5
Set 2 40 | 5
Set 3 50| 5

3.4 External Verification

To ensure that the performance of the evolved BBSA is
consistent with its performance reported during evolution,
executable code is generated to represent the parse tree as a
stand-alone BBSA. This is done to externally verify that the
performance that the GP reports for a given BBSA is accu-
rate. The generated code is used in all of the experiments
to ensure unbiased execution of the BBSAs. An example
of a parse tree and pseudo-code generated can be found in
Figure 1 and Figure 2 respectively. This verification was
employed for the testing of the BBSAs in all experiments.

4. EXPERIMENTS

To analyze how the addition of more primitives affects the
performance of the hyper-heuristic, four sets of experiments
were performed. The first ran the base hyper-heuristic with-
out the addition of any primitives. The second ran the
hyper-heuristic with the addition of the nodes extracted
from the SA algorithm and the steepest ascent hill-climber
algorithm. The third ran the hyper-heuristic with the ad-
dition of the utility primitives. The fourth ran the hyper-
heuristic with the addition of all of the new primitives. A
summary of the primitives that are included in each of the
experiments can be seen in Table 1

The data used to determine the presence of these char-
acteristics was gathered from running the single and multi-
objective algorithms 30 times each. All four sets of experi-
ments were run using three different sets of three instances
of the NK-Landscapes benchmark problem [6] each. The
parameters of these three sets can be seen in Table 2. These
parameters were chosen to be consistent with a recent pub-
lication using NK-Landscapes [5]. The data used to analyze
the scalability of this hyper-heuristic was gathered by run-
ning each problem configuration 10 times each. Once all 10
runs were completed, external verification was run on the

Table 3: GP Configurations

Parameter Value
Evaluations 5000
Runs per Problem Instance 5
Initial Population 100
Children per Generation 50
k-Tournament 8

Sub-Tree Crossover Probability | 47.5%
Sub-Tree Mutation Probability | 47.5%
Alternate Mutation Probability 5%
Alternate Mutation Depth 5
Maximum Time(sec) 90
Maximum Iterations 10,000
Maximum Evaluations in BBSA | 100,000

best BBSA produced by each run. During the external veri-
fication, each BBSA was run 30 times for 100,000 evaluations
or until convergence.

All of the experiments were conducted under the same
settings. The meta-algorithm was run for 5000 evaluations.
The initial population was 100 individuals and each gener-
ation 50 new individuals were created. k-tournament selec-
tion with replacement and k& = 8 was employed for parent
selection. The sub-tree crossover and mutation primitives
had 30% chance of being used while the alternate mutation
had a probability of 40%.The maximum time for the evalu-
ation of a BBSA was 90 seconds, the maximum number of
iterations was 10,000, and the maximum number of evalua-
tions in the BBSA was 100,000. All the parameter settings
for the meta-algorithm are summarized in Table 3. Due
to the high computational cost of running hyper-heuristics,
only minimal tuning of the meta-algorithm is feasible.

The BBSAs had certain parameters that related to the
ranges of the parameters that some nodes have. For each
of the integer parameters the ranges could go from 1 to 25,
except for the convergence conditional node which ranges
from 5 to 25. The bit-flip mutation nodes parameter rate
can go from 0 to 1.0. The floating point parameter on the
‘tempChange’ node can range from -3.0 to 3.0. The initial
population could range from 1 to 50 solutions. A more de-

Table 4: Black-Box Search Algorithm Settings

Node Parameter Range
N/A Initial Population 1,50
k-Tournament k 1,25
* count 1,25
Random Subset count 1,25
Truncation count 1,25
Bit-Flip rate [0,1]
Uniform Recombination count 1,25
Diagonal Recombination points 1,25
Change Temperature change [-3,3
If Converge conv [25,50]
Left or Right rate [0,1]
For loop iterations 1,25
Random Individuals count 1,25

Table 5: Rank-Sum Results

Base +Utility | +Algorithm
FUtility (~ymy) X X
+Algorithm | (+,+,4) | (+,+,~) X
+Full (+++) | (++~) (F,~,)

tailed list of all of the parameter ranges can be found in
Table 4.

S. RESULTS

The first results gathered were to determine if there was a
significant improvement in fitness of the BBSAs when addi-
tional operations were added to the hyper-heuristic. To de-
termine this, the Wilcoxon signed-rank test was performed
to determine if a statistical difference existed. In all of these
tests « was set to be 0.05. The results of these tests can
be seen in Table 5. This table shows how a given set of
primitives compared to another. Each entry is a tuple of
symbols that convey the relationship between the perfor-
mance of the experiments on the three problem configura-
tions (N = 30, N = 40, N = 50). A + symbol indicates
that the experiment on the row performed statistically bet-
ter than the experiment in the column on a given problem
configuration. A — symbol indicates that the experiment on
the row performed statistically worse than the experiment
in the column on a given problem configuration. A ~ sym-
bol indicates that there was no statistical difference between
how the two experiments performed. A X indicates that this
entry is duplicate information found elsewhere on the table.

The box-plots in figures 3 through 5 provide a visual com-
parion of the experiments. The impact of the difficulty of
the problem configuration on the different experiments is vi-
sualized in Figure 6. The performance of the hyper-heuristic
decreases as N is increased, which is to be expected as in-
creasing N increases the difficulty of the problem configura-
tion.

6. DISCUSSION

A trade-off that is seen to be important when analyzing
how the increase in genetic material of a hyper-heuristic
is that between the increase in performance of the best

0.99r-

Base +Util +Alg Full

Figure 3: This figure shows a box-plot of four the
four experiments with n = 30, where the labels along
the x axis correspond to the experiments show in 1

1.00

0.99

0.98

Fitness

0.96 -

0.95r

0.94

Base +Util +Alg Full

Figure 4: This figure shows a box-plot of four the
four experiments with n = 40, where the labels along
the z axis correspond to the experiments show in 1

1.00

0.99
098 - 1
— —
0 097F !
g L
= T T
£ 0.96 1
1 + 1
I I
0951
T
0.94 1 +
093
Base +Util +Alg Full

Figure 5: This figure shows a box-plot of four the
four experiments with n = 50, where the labels along
the z axis correspond to the experiments show in 1

1.00

+—= Base
+Uti
—e +Alg
Full

0.06

0.95

30 40 50

Figure 6: Graph of the trend of the four experiments
as the problem configurations increases in difficulty

found BBSAs and the likely-hood that those solutions can be
found. This can be approximated by comparing the fitness
of the best found BBSA in an experiment and the fitness of
the worst BBSA found. Obviously, the larger the fitness of
the best BBSA, the better the hyper-heuristic can perform;
however, if the distance between the best and worst found
BBSA is large, this indicates that search space may be much
too large to easily traverse.

This assumption can be reinforced by analyzing the dif-
fering results between adding utility primitives versus al-
gorithmic primitives. The algorithmic primitives that were
included were all unary primitives, and two of the three util-
ity primitives were binary primitives. This means that the
increase in search space caused by adding the utility prim-
itives was much more significant than the increased caused
by adding the algorithmic primitives. This is supported
when analyzing the results of the experiments in figures 3-5.
The best BBSA found in the ‘+Utility’ experiments were on
par with the best BBSAs found in the ‘+Algorithm’ experi-
ments. However the difference between best and worst BB-
SAs is much larger in the ‘4+Utility’ experiments likely due
to the greater increase in search space. This is reinforced
when including the ‘Full’ experiments in this analysis. The
‘Full’ experiments had a larger difference between best and
worst BBSAs

While the increase in search space caused by the increase
in genetic material does make increase the difficulty in find-
ing good BBSAs, the quality of the best BBSA found does
increase when using more genetic material compared to the
‘Base’ experiment. In all problem configurations, the best
BBSA found in experiments ran with more genetic material
performed better than the best BBSA found in the ‘Base’
experiment. This helps the argument that increasing the
genetic material does indeed allow for the hyper-heuristic to
find better BBSAs.

The difficulty of the problem configuration did not uni-
formly affect the performance of the hyper-heuristic. As can
be seen in Figure 6, as the difficulty of the problem config-
uration was increased, the performance of each experiment
decreased which was expected. However, the performance of
the ‘+Util’ experiment did drastically increase in relation-
ship to the other three experiments. This result however
could not be explained and may be cause solely by the in-
herent randomness in hyper-heuristics.

7. CONCLUSIONS

This paper demonstrates the effects that the amount and
nature of genetic material has on the performance of hyper-
heuristics. It has been shown that increasing the amount
of genetic material in general increases best possible per-
formance of the hyper-heuristic. However, this increase in
performance comes at a cost of an increased search space.
The larger the search space, the more difficult it is to find
those good solutions. It was found that the parity of the
genetic material can have a large impact on the increase in
search space. It was seen that when primitives with a parity
of two were added, they had a much larger increase in search
space compared to primitives with a parity of one.

The research reported in this paper shows that the hyper-
heuristic has problems with the scalability of the genetic
material. However, these experiments were run with only
5,000 evaluations which is extremely small when comparing
to other algorithms in the Evolutionary Computing field.

This restriction is driven by the long evaluation time of a
single BBSA. With the use of parallel evolutionary algo-
rithms, the total run time of the algorithms can be dras-
tically reduced which can allow for experimentation with
larger numbers of evaluations.

8. FUTURE WORK

This paper has demonstrated the limitations of scaling the
genetic material in hyper-heuristics. Next steps to better
analyze these limitations would be to do an in depth study
on how much longer hyper-heuristics need to be run to yield
converging results. However, if the results converge on non-
optimal solutions, then the focus should shift to increasing
diversity.

Acknowledgment

This work was generously supported by Sandia National
Laboratories.

9. REFERENCES

[1] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa,

E. Ozcan, and J. R. Woodward. Exploring
Hyper-heuristic Methodologies with Genetic
Programming. In C. Mumford and L. Jain, editors,
Computational Intelligence, volume 1 of Intelligent
Systems Reference Library, pages 177-201. Springer,
2009.

[2] L. Diogsan and M. Oltean. Evolutionary Design of
Evolutionary Algorithms. Genetic Programming and
Evolvable Machines, 10(3):263-306, Sept. 2009.

[3] L. S. Diosan and M. Oltean. Evolving Evolutionary
Algorithms Using Evolutionary Algorithms. In
Proceedings of GECCO 2007 - Genetic And
FEvolutionary Computation Conference, GECCO 07,
pages 2442-2449, New York, NY, USA, 2007. ACM.

[4] A. E. Eiben and C. H. van Kemenade. Diagonal
Crossover in Genetic Algorithms for Numerical
Optimization. Journal of Control and Cybernetics,
26(3):447-465, 1997.

[5] B. W. Goldman and D. R. Tauritz. Supportive
Coevolution. In Proceedings of GECCO 2012
Companion - Genetic And Evolutionary Computation
Conference, GECCO Companion 12, pages 5966,
New York, NY, USA, 2012. ACM.

[6] S. A. Kauffman and E. D. Weinberger. The NK model
of rugged fitness landscapes and its application to
maturation of the immune response. Journal of
theoretical biology, 141(2):211-245, 1989.

[7] N. Lourengo, F. Pereira, and E. Costa. Evolving
Evolutionary Algorithms. In Proceedings of GECCO
2012 - Genetic And Evolutionary Computation
Conference, GECCO Companion ’12, pages 51-58,
New York, NY, USA, 2012. ACM.

[8] N. Lourengo, F. B. Pereira, and E. Costa. The
Importance of the Learning Conditions in
Hyper-heuristics. In Proceeding of the Fifteenth
Annual Conference on Genetic and FEvolutionary
Computation Conference, GECCO ’13, pages
1525-1532, New York, NY, USA, 2013. ACM.

[9] M. Maashi, G. Kendall, and E. Ozcan. Choice
function based hyper-heuristics for multi-objective

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

optimization. Applied Soft Computing, 28:312-326,
2015.

M. A. Martin and D. R. Tauritz. Evolving Black-box
Search Algorithms Employing Genetic Programming.
In Proceeding of the Fifteenth Annual Conference
Companion on Genetic and Evolutionary Computation
Conference Companion, GECCO 13 Companion,
pages 1497-1504, New York, NY, USA, 2013. ACM.
M. A. Martin and D. R. Tauritz. A Problem
Configuration Study of the Robustness of a Black-box
Search Algorithm Hyper-heuristic. In Proceedings of
the 2014 Conference Companion on Genetic and
Evolutionary Computation, GECCO Comp ’14, pages
1389-1396, New York, NY, USA, 2014. ACM.

M. A. Martin and D. R. Tauritz. Multi-Sample
Evolution of Robust Black-Box Search Algorithms. In
Proceeding of the Sizteenth Annual Conference
Companion on Genetic and Fvolutionary Computation
Conference Companion, GECCO ’14 Companion, New
York, NY, USA, 2014. ACM.

A. R. B. Matthew A. Martin and D. R. Tauritz.
Asynchronous Parallel Evolutionary Algorithms:
Leveraging Heterogeneous Fitness Evaluation Times
for Scalability and Elitist Parsimony Pressure. In
Proceeding of the Seventeenth Annual Conference
Companion on Genetic and Evolutionary
Computation, GECCO 14 Companion, New York,
NY, USA, 2015. ACM.

M. Misir, K. Verbeeck, P. De Causmaecker, and G. V.
Berghe. The effect of the set of low-level heuristics on
the performance of selection hyper-heuristics. In
Parallel Problem Solving from Nature-PPSN XII,
pages 408-417. Springer, 2012.

M. Oltean. Evolving Evolutionary Algorithms Using
Linear Genetic Programming. Evol. Comput.,
13(3):387-410, Sept. 2005.

M. Oltean and C. Grosan. Evolving Evolutionary
Algorithms Using Multi Expression Programming. In
Proceedings of The Tth European Conference on
Artificial Life, pages 651-658. Springer-Verlag, 2003.
S. Smit and A. Eiben. Comparing Parameter Tuning
Methods for Evolutionary Algorithms. In IEEE
Congress on Fvolutionary Computation, 2009. CEC
09, pages 399-406, May 2009.

J. A. Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio,
H. Puga, and E. K. Burke. Effective learning
hyper-heuristics for the course timetabling problem.
European Journal of Operational Research,
238(1):77-86, 2014.

A. Swiercz, E. K. Burke, M. Cichenski, G. Pawlak,

S. Petrovic, T. Zurkowski, and J. Blazewicz. Unified
encoding for hyper-heuristics with application to
bioinformatics. Central FEuropean Journal of
Operations Research, 22(3):567-589, 2014.

