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Multi-Scale Modeling of BCC Plasticity
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Nano: Atomic Properties of Dislocations in BCC Metals

Screw dislocations in BCC metals have complex atomic structures ...
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... and this leads to various non-ideal behaviors and properties.
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Dislocation Kink-Pair Theory

Dislocation motion occurs by the formation and propagation of atomic-scale kinks

along the dislocation line. Dislocation
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The atomic-scale properties of BCC screw dislocations guide the development of a
dislocation kink-pair model for how the temperature and strain-rate affect a BCC

metal’s yield stress.

Seeger, Z. Metallk. 1981

Seeger, Mater. Sci. Eng. A, 2001

Butt, Phil. Mag. 2007

Argon, Strengthening mechanisms in crystal plasticity 2008
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Confirming the form of the “Kink-Pair” Model and calibrating to
single crystal data
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Our dislocation kink-pair model accurately reproduces experimental data for the yield
stress over a range of BCC metals, temperatures, and strain rates.
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Crystal Plasticity Modeling discretely models each grain in
the material with its elastic and plastic anisotropy.

m Crystal plasticity = Grain-level (mesoscale) approach to materials modeling
using multiscale strategies

m Explicitly model discrete grains and slip systems (anisotropy, texture

evolution,...) Single crystal
Atomic phenomenology: plast.icity: Polycrystal plasticity:
Fundamental deformation Deformation of one, Assemble single crystals into
mechanisms isolated crystal polycrystalline ensemble
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Micro: Implementation into Single-Crystal Plast|C|ty
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Moving up in scale and implementing the theory into a crystal plasticity finite element
model (CP-FEM) for single-crystal BCC plasticity, the quality of validation is retained.
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Meso: Up-Scaling into Polycrystal Plast|C|ty
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The next length scale is the polycrystal, where CP-FEM simulations agree very well
with experiments, even when calibrated only to independent, single-crystal tests.
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Meso: Up Scalmg into Polycrystal Plasticity
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Moving up again in scale, CP-FEM simulations agree very well with experiments, even
when using only calibrations to independent, single-crystal tests.
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Macro: Classical Continuum Models

« Johnson and Cook (JC) model (Johnson and Cook, 1983, 1985)
o =A(1+Cng)(1-T™")

y

« Zerili-Armstrong (ZA) model (Zerilli and Armstrong, 1987)
6 #=C,+C exp(-C,T +C,T Iné)

« Mechanical Threshold Stress (MTS) model (Follansbee, 1988)
MTS ( (k T ¢ \l/q\ =
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Sandia’s macro-scale engineering analysis codes use conventional constitutive models
to describe temperature and strain-rate effects.
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Macro: Interfacmg CP-FEM into Contmuum Models
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Our CP-FEM simulations, derived from atomic-scale considerations of BCC dislocations,
provide a direct link to these continuum models’ parameters.
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Macro: Interfacmg CP FEM into Contlnuum Models
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Our CP-FEM simulations, derived from atomic-scale considerations of BCC dislocations,
provide a direct link to these continuum models’ parameters.
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What’s next: From Atomic-Scale Dislocation Theory
into Alegra (Sandia parallelized continuum dynamics code)

Johnson-Cook
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Summary

1. Existing dislocation kink-pair theory forms a basis for understanding how the
peierls barrier manifests in temperature and rate-dependence

2. This theory provides single crystal flow rules that are now embedded in a
polycrystal plasticity framework

3. The single crystal flow rules can be calibrated on existing single crystal
literature data; the 4-parameter model form fits exceptionally well.

4. Within the crystal plasticity model, the form of the temperature and rate
dependence matches experimental polycrystal data.

5. At the macro-scale, this kink-pair based crystal plasticity model compares very
favorably with the MTS model for temperature strain-rate dependence.

Lim, Battaile, Carroll, Weinberger, Boyce, “A physically based temperature and
strain rate dependent crystal plasticity model for BCC metals,” J. Mechanics and
Physics of Solids, 2014.
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