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Objective

• Transfer expertise to Sandia staff on how to 
estimate uncertainty for complicated real-world 
problems addressed by Sandia, with emphasis on 
applications that involve a great deal of State of 
Knowledge (SOK) uncertainty

– Surety (safety, security, use control)

– Reliability

– Counter terrorism
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Course Structure

• Three parts

1. Classical probability and statistical inference

2. Bayesian approach

3. Belief / Plausibility measure

• Each part

– Three day in-class session

• Basics and mathematical development

• Simple examples

• Complex real-world examples (some classified)

– Homework

• Final exam

jldarby@sandia.gov
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Why The Three Parts?

• Techniques to address state of knowledge 
uncertainty build on classical probability and 
statistical inference

• For some applications we can use classical 
techniques

• Many event and fault tree tools consider 
uncertainty in the probability of basic events in a 
Bayesian context

• So we will start with Classical, move to Bayesian, 
then address Belief and Plausibility

jldarby@sandia.gov
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Miscellaneous

• NST460 “Extensions to Conventional Surety 
Analysis” desired but not required prerequisite

• Important references noted

• Numerous computer tools discussed and 
referenced

jldarby@sandia.gov
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Fidelity of Information Available
Drives Selection of Best Technique

jldarby@sandia.gov
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Progression of Course Topics

Objective

Aleatory 
Uncertainty

Classical 
Probability

Classical 
Statistics

Information Available

Quantitative Quantitative, some Qualitative Qualitative

Bayesian 
Concepts

Subjective

Epistemic 
Uncertainty 

Belief/Plausibility

Fuzzy Sets

Traditional Techniques Advanced Techniques

Lightning strikes at Pantex New strong link
Abnormal environments

Terrorist attacks
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Classical Probability 
and Statistical Inference:

Review of Important Points

• Summary of key points from part 1 pertinent to 
the Bayesian Approach

• See part 1 “Classical Probability and Statistical 
Inference” lecture notes for details

jldarby@sandia.gov
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Sample Space, Event, Random Variable

• Sample space is set of all outcomes

– Outcomes are mutually exclusive

• Event is a subset of the sample space

• Random variable is a mapping of outcomes to 
reals

jldarby@sandia.gov
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Classical Probability is Objective

• Classical probability is a specific value (one value)

– Event E, N identical trials

– Probability of Event: P(E)

• P(E) = limN->∞ (number of time E occurs / N)

• P(E) is fixed but perhaps unknown with certainty

• To know P(E) precisely requires infinite number of identical 
trials

– Classical probability is an Objective concept

• Probability is a Frequency

– Not a physical rate but a dimensionless ratio

• Can infer parameters of probability distributions 
using statistics
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Probability Measure

Probability Measure, P, for Sample Space, S:

Kolmogorov axioms

(the mathematics for probability)

1. For any event E, 0 ≤ P(E) ≤ 1

2. P(S) = 1 

3. For any set of mutually exclusive events 

{E1, E2, E3, …En} the Probability of the union 
(logical OR) of all the events is the sum of the 
probabilities of each event 

P(E1 or E2 or E3 or … or En} = P(E1) + P(E2) + P(E3) + … + P(En)

jldarby@sandia.gov
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Partition 

• Partition is a set of mutually exclusive events that 
covers the sample space

– {Ai i = 1, 2, 3, …} is a partition over S if: Uall i Ai = S 
and

P(Aj ∩ Ak) = 0 for any Aj and Ak in {Ai} 

– The set of all outcomes is one partition

– A notional partition

jldarby@sandia.gov

S

A1

A2

A3

A4
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Conditional Probability

• Probability of event A given event B: P(A|B)

P(A|B) = P(A ∩ B) / P(B) 

(if P(B) not zero)

P(B|A) = P(B ∩ A) / P(A) 

(if P(A) not zero)

Note: P(A ∩ B) = P(B ∩ A) 

jldarby@sandia.gov

If A and B are 
independent
P(A∩B) = P(A)*P(B) and

P(A|B) = P(A)
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Law of Total Probability

• S a sample space

• B any event in S

• {Ai i = 1, 2, 3, …} a partition over S

• P(B) = ∑k over all i P(B|Ak) * P(Ak) 

jldarby@sandia.gov
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Classical Statistical Inference
• Assume the population is characterized by an appropriate 

probability distribution
– Binomial
– Hypergeometric
– Exponential
– …

• The probability distribution has parameters that are inferred from 
a random sample of the population; Parameters are fixed but not 
precisely known
– Probability of failure is a parameter of the binomial distribution
– Failure rate is a parameter of the exponential distribution
– …

• Population has parameters
• Sample has statistics used to estimate parameters
• From the sample establish confidence intervals to represent 

uncertainty in the parameters of the population
– Part 1 discussed one sided upper confidence level
– Parameter is either within or not within the confidence interval with a 

certain confidence level
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Classical Statistical Inference

• Weapon Component Failures: 
SNL Point Estimates

– Sample n of N and observe 
x failures

• Estimate of expected 
value (mean) = x/n

• If x is 0 x/n is always 0 
and is a poor estimate

– Insensitive to n

• x = 0 from 2 
samples has same 
estimate as x = 0 
from 106 samples

• If x is 0 use 50% UCL for 
point estimate to consider 
that larger n provides less 
uncertainty

0

1

Prob

Defect

Point estimate prob defect 0.03

50% UCL 

90% confidence prob defect 

less than 0.1

0.1

No failures in 22 samples 

from large population

This does NOT mean that p is in [0. 0.1] with 0.9 probability.  
p is a specific value (but unknown).

This means that for 90% of repeated samples the 
calculated confidence intervals will contain p.  



17

Part #2:
Bayesian Approach

• Day 1: Basics and mathematical development

• Day 2: Simple Examples

• Day 3: Real world examples (some classified)

jldarby@sandia.gov
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Part 2 Lecture: Day 1

jldarby@sandia.gov
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Conditional Probability

• Conditional probability

– Probability of event A given event B: P(A|B)

– P(A|B) = P(A and B) / P(B)

– P(B|A) = P(B and A) / P(A)

• Since P(A and B) = P(B and A)

– P(A|B) = P(B|A) * P(A) / P(B)
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Bayes Theorem

• Bayes theorem

– S a sample space

– {A1, A2, A3, …,An} a partition over S

• The A’s are mutually exclusive and their union is S

– B any event in S with non-zero probability

• Law of total probability

P(B) = ∑k = 1 to n P(B|Ak)*P(Ak)

– Ai an event of interest in the partition

• P(Ai|B) = P(B|Ai) * P(Ai) / ∑k = 1 to n P(B|Ak)*P(Ak)
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Conditional Probability and Bayes Theorem

• Example

– Test for disease is 99% accurate given you have the disease

– Test has 10-4 false positive (falsely says you have disease) 

– 1 in 106 people have the disease

– You test positive

• Probability you have the disease is 0.99?

• NO

– P(T|D) = 0.99 is probability Test T is positive given you have the Disease D

– P(T|ND) = 10-4 is probability Test T is false positive given you do not have the 
disease ND

– P(D) = 10-6 is probability an individual selected at random has the disease

– P(D|T) is the probability you have the disease given you test positive

– P(D|T) = P(T|D) * P(D) / {P(T|D)*P(D) + P(T|ND)*P(ND)} = 

0.99 * 10-6 / {0.99 * 10-6   + 10-4  *  (1 – 10-6)} ≈ 10-6 / 10-4 = 0.01

– Probability you have the disease given you test positive is 0.01, not 0.99
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Bayesian Approach

jldarby@sandia.gov

So far we have just used the properties of
conditional probability.

The Bayesian approach is revolutionary in its 
interpretation of conditional probability.
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Bayesian Concept of Subjective Probability

• P(Ai|B) = P(B|Ai) * P(Ai) / ∑k = 1 to n P(B|Ak)*P(Ak)

• Let P(Ai) be our initial probability distribution for event Ai

– P(Ai) is our prior probability distribution for Ai before updating 
with new information

• Let event B be new information

• P(Ai|B) is our updated probability distribution for Ai given the new 
information B
– P(Ai|B) is our posterior probability distribution for Ai after 

updating with information B

• Technique to update given new information

Probability is SUBJECTIVE based on your
state of knowledge.  Totally different from
classical, objective concept of probability.
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Bayesian Approach

• You want to know the probability of event Ai

• P(Ai) is your initial estimate (the prior) before obtaining more 
information

• Event B is the new information you use to refine (update) your 
estimate of the probability of event Ai

• Your updated estimate (the posterior) of the probability of event Ai
given information B is P(Ai|B) 

• P(Ai|B) = P(B|Ai) * P(Ai) / ∑k = 1 to n P(B|Ak)*P(Ak) 
– Bayes equation for discrete events

P(Ai|B) is the probability the event of interest Ai

occurs given the event B occurred.

P(B|Ai) is the probability event B would occur given the event of interest Ai

occurred.

∑k = 1 to n P(B|Ak)*P(Ak) is P(B)

Think about this!

Normalization: Same for P(Ai|B)
for each Ai
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Simple Example

• Prize behind one of three doors A1, A2, or A3

• You guess P(A1) = P(A2) = P(A3) = 1/3 (equal probability)

• Open any one door, say A3, and prize not there

• You update your guess to P(A1) = 1/2, P(A2) = 1/2, P(A3) = 0

• Here is the Bayesian approach

• {A1, A2, A3} is a partition for “location of prize”

• Priors

– P(A1) = P(A2) = P(A3) = 1/3

• Event B is “prize is not behind door A3”

• Posteriors to be calculated:

– P(A1|B) = P(A1) * P(B|A1) / ∑k = 1 to 3 P(B|Ak)*P(Ak) 

– P(A2|B) = P(A2) * P(B|A2) / ∑k = 1 to 3 P(B|Ak)*P(Ak) 

– P(A3|B) = P(A3) * P(B|A3) / ∑k = 1 to 3 P(B|Ak)*P(Ak) 

jldarby@sandia.gov

Probability the information 
that you obtained

(event B) would have 
occurred if

event in the partition did 
occur
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Simple Example continued

• A1 is “prize is behind door A1”

• A2 is “prize is behind door A2”

• A3 is “prize is behind door A3”

• B is “prize is not behind door A3”

• P(B|A1) is P(prize is not behind door A3 given the prize is 
behind door A1) = 1.0

• P(B|A2) is P(prize is not behind door A3 given the prize is 
behind door A2) = 1.0

• P(B|A3) is P(prize is not behind door A3 given the prize is 
behind door A3) = 0.0

• ∑k = 1 to 3 P(B|Ak)*P(Ak) = 1(1/3) + 1(1/3) + 0(1/3) = 2/3

jldarby@sandia.gov

Understanding this is a key to 
understanding the

Bayesian update approach
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Simple Example continued

• P(A1|B) = P(A1) * P(B|A1) / ∑k = 1 to 3 P(B|Ak)*P(Ak)  =

(1/3) * 1 / (2/3) = 1/2 

• P(A2|B) = P(A2) * P(B|A2) / ∑k = 1 to 3 P(B|Ak)*P(Ak)  =

(1/3) * 1 / (2/3) = 1/2 

• P(A3|B) = P(A3) * P(B|A3) / ∑k = 1 to 3 P(B|Ak)*P(Ak) =

(1/3) * 0 / (2/3) = 0 

Posterior distributions:

Probability prize behind A1 = ½

Probability prize behind A2 = ½

Probability prize behind A3 = 0

jldarby@sandia.gov

We will look at this example again tomorrow 
with more definitive information B:

The “Let’s Make a Deal” situation
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Bayesian Approach for Parameter
of a Distribution: Use Continuous 

Distribution for Parameter  

• f(x) a PDF for a continuous random variable X

with parameter θ where we do not know θ

• Treat θ as a specific value of a random variable Θ

with PDF g(θ). g(θ) a continuous distribution.

• Different from Classical Probability where parameters 
are fixed but not precisely known

• Here the parameters themselves are considered to be 
random variables

jldarby@sandia.gov

�(�|�) =
� � 	�(�|θ)

∫ � � θ 	� � 	��

Two random variables: 

X the one of concern has PDF f(x) 

Θ the parameter of the probability distribution that describes X has PDF g(θ)

Our prior PDF for g is g(θ)

Given information x we update our PDF for g: g(θ|x).  This is our posterior    
PDF for g

Note: it is the parameter θ

that is not known

� � 	= 			� � � � 	� � 	��
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Bayesian Approach for Parameter
of a Distribution: Use Continuous 

Distribution for Parameter

jldarby@sandia.gov

�(�|�) =
� � 	�(�|θ)

∫ � � θ 	� � 	��

g(θ) is prior PDF you 
assume for Θ

f(x|θ) is the PDF at X 
equal to the value x 
given a specific θ.  
Called the likelihood 
function.

f(x) is a PDF you select for the random variable X.  
f(x) has a parameter θ. θ is not known and is considered 
a specific value of a random variable Θ.

x is an observed value of the 
random variable X

Understanding this is a key to 
understanding the

Bayesian update approach

Normalization: Same for g(θ|x)

for every θ
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Bayesian Approach for Parameter
of a Distribution: Use Discrete Distribution 

for Parameter

�(�|�) =
� � 	�(�|�)

∑�(�|�)	� � 	

jldarby@sandia.gov

� � = 			�� � � 	� � 	

f(x|θ) is the PDF at X 
equal to the value x 
given a specific θ.  
Called the likelihood 
function.
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Bayesian Approach Example
for Parameter

• Assume the appropriate PDF for time to failure is 
exponential distribution.  Time to failure is a 
random variable T.

– PDF is f(t) = λe-λt where parameter λ is failure rate

• Treat λ as specific value of random variable Λ

• Assume PDF for prior g(λ) is uniform over 
[0, 0.01]: g(λ) is 100 in this interval, 0 elsewhere

• Observe one failure at 0.0072 hours

jldarby@sandia.gov

� � � = �. ���� 	= 			
� �. ���� � 	�(�)

∫ � �. ���� � � � 	��
�.��

�

=
�	���.����	� ∗ 100

100	∫ �	���.����	�	��
�.��

�

for λ in [0, 0.01]

= 
�	���.����	�

�.�	�	����for λ > 0.01, g(λ) is 0; so g(λ |T) is 0
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Bayesian Approach Example
for Parameter

jldarby@sandia.gov

Prior g(λ)

Posterior 
g(λ|T = 0.0072)

Posterior mean

0.0067

Prior mean

0.005
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Bayesian Approach Example

• So far we have updated the parameter λ

• How do we use the updated parameter for the probability of 
failure of the component?

• Assume exposure time of concern is 24 hours

• Using exponential distribution Probability fail in 
24 hours is 

� 24 	= 			� �	����
��

�

��		 = 			1 − 	����	�

• λ has uncertainty 

• Treat P(24) as a function of the random variable Λ

� 24 		= 			1 −	����	�

where λ is a specific value of Λ. Λ has a PDF; prior and posterior

jldarby@sandia.gov
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Bayesian Approach Example
Solve with Sampling using Crystal Ball

using Prior for g

• g(λ) = 100 over [0, 0.01], mean 0.005

• Solve for � 24 		= 			1 −	����	�

by sampling, mean 0.11

jldarby@sandia.gov
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Bayesian Approach Example
Solve with Sampling using Crystal Ball

using Posterior for g

• is essentially linear, mean 0.0067

• Solve for � 24 		= 			1 −	����	�

by sampling, mean 0.15

jldarby@sandia.gov

g(λ|T = 0.0072) 

PDF for P fail in 24 hours using

Bayesian updated PDF for failure rate
CDF for P fail in 24 hours using

Bayesian updated PDF for failure rate
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Bayesian Approach Example
using Posterior for g

Standard Solution

• Standard solutions exist for updating parameters 
for commonly used distribution

– See Martz and Waller reference

• Exponential distribution is a commonly used 
distribution

– If prior for parameter λ is uniform over [a, b]

– Posterior for parameter λ given T = t1 is    
�	�����

∫ �	����� 	��
�
�

– For t1 of 0.0072 posterior PDF is
for parameter λ

(same as obtained earlier)

jldarby@sandia.gov
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Subjective Approach: Parameters and 
Probability Itself 

Treated as a Random Variable 
• Wish to estimate uncertainty for a probability

• Classical approach:

– Probability is fixed but not precisely known

– Produce a Confidence Interval

• Subjective approach

– Probability itself is a random variable

– Produce a PDF

– PDF for P(E) the objective probability for event E

• P(E) = limN->∞ (number of time E occurs / N)

• P(E) is a random variable with a subjective PDF

– p(E) a specific value of P(E)

jldarby@sandia.gov

p(E)

PDF for 
P(E)

0

0

1

1 Two different probabilities:

Subjective

Objective

Both obey Kolmogorov Axioms

p(E)

CDF for 
P(E)

Prob (P(E) ≤ p(E))
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Bayesian Approach is Subjective
• Probability is a state of knowledge and can be estimated even without sufficient data 

to evaluate the classical frequency
– Subjective concept of probability

• Treat probability itself as a random variable instead of a fixed, but perhaps unknown, 
frequency

• Probability of a Probability means
– Subjective probability of the objective probability (the frequency)
– Confusion is that the name Probability used to mean two different concepts

• Both concepts obey Kolmogorov axioms

• See reference: Kaplan and Garrick 1981 paper in Risk Analysis
• Update P(E) with information: P(E | Information) as discussed earlier

Probability (subjective Probability)

Frequency (objective Probability)

Probability of Probability means

Subjective Probability (state of knowledge) 
of Objective Probability 

(classical frequency)
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Propagation of Uncertainty
• “Bayesian probability distributions can be propagated through 

fault trees, event trees, and other logic models.   It is difficult or 
impossible to propagate frequency confidence intervals through 
fault and event tree models common in PRA to produce 
corresponding interval estimates on output quantities of interest”.

“Handbook of Parameter Estimation for Probabilistic Risk  
Assessment”, NUREG/CR-6823, SAND2003-3348P

• Part 1 discussed convolution and sampling for combining 
probability distributions of random variables.  Since the Bayesian 
approach treats parameters and probability as random variables, 
we can apply these techniques to random variables that are 
probabilities.

jldarby@sandia.gov
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Major Use of Bayesian Approach for Our 
Applications

• Estimate uncertainty for logical combinations of 
basic events that are failure probabilities with 
uncertainty

– Uncertainty for basic events in fault trees that are 
Failure Probabilities

• Fail on demand 

– Uncertainty in Probability parameter for binomial 
distribution

• Fail to operate for prescribed time

– Uncertainty in Frequency parameter for exponential 
distribution

• … Other types of failure

– Propagate the uncertainty per the logic in the fault 
tree to provide uncertainty for top event in tree

jldarby@sandia.gov
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Probability of Probability
• Subjective probability of objective probability (frequency)

• Treat objective probability (frequency) as a random variable

• Let P(A) be probability of event A: e.g. failure of a component

– P(A) is an objective probability, a frequency 

– P(A) = limN->∞ (number of time A occurs / N) for N trials

• We are interested in combinations of probabilities of failures in 
fault trees

– P(A ∩ B), probability A AND B fail in a fault tree

– P(A U B), probability A OR B fail in a fault tree

jldarby@sandia.gov



42

Probability of Probability
• If A and B mutually exclusive 

– P(A ∩ B) = 0     P(A U B) = P(A) + P(B)  

• If A and B independent 
• P(A ∩ B) = P(A)*P(B)        P(A U B) = P(A) + P(B) – P(A)*P(B)

• In general 
• P(A ∩ B) = P(A|B)*P(B) = P(B|A)*P(A) 

• P(A U B) = P(A) + P(B) – P(A|B)*P(B) = P(A) + P(B) – P(B|A)*P(A)

• In fault tree examples in part 1 we assumed P(A) and P(B) were 
known with no uncertainty

• To address uncertainty in P(A) consider P(A) as a random variable

– P(A) has a PDF, discrete or continuous.  Same for P(B).

• P(A U B) and P(A ∩ B) are functions of the random vector with 
random variables P(A) and P(B)

– Lecture 1 discussed function f(z) of Random Vector Z = X x Y where x 
is Cartesian product

– Here X and Y are objective probabilities, Z = logical AND, OR

– We want PDF for f(z)

jldarby@sandia.gov
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Probability for Function of
Random Vector (from part 1)

• Probability for Function of a Random Vector Z

– z = f(r, t), R and T are random variables

– For discrete case PDF(z) = ∑ PDF(r,t) | f(r, t) = z

– For continuous case, conceptually 
PDF(z) = ∫PDF(r,t) | f(r, t) = z

– If R and T are independent random variables

PDF(r, t) = PDF(r) * PDF(t)

Can be very difficult to solve analytically. 

See Meyer text in references. 
Can solve by sampling approach.  

Now, R and T are probabilities: R is P(A) and T is P(B)
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Probability of Probability

• Two probabilities: the value P(A), P(B)

– The objective probability

• The probability of the value P(P(A)), P(P(B))

– The subjective probability of the objective probability

• Probability of a function of probabilities

– For example P(A U B) is the function

• The value is P(A) + P(B) - P(A) * P(B|A)

– If P(A) and P(B) are known the value is known

• P(A) = p1 and P(B) = p2 , A and B independent 

• Value P(A U B) = p1 + p2 – p1 * p2 with no uncertainty

– If P(A) and P(B) are unknown and treated as random variables

• The value P(A) + P(B) - P(A) * P(B|A) has a PDF determined by

the PDF for the function P(A U B) 

jldarby@sandia.gov

Values for events P(A) and P(B) PDF for values P(P(A)) and P(P(B))

Values for Function P(A U B) PDF for values for function 
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Probability of Probability

• Will discuss some simple examples for discrete 
cases tomorrow where we can manually generate 
the PDF for the function 

• PDF for the function for continuous case can be 
difficult or impossible to generate analytically

– For continuous cases we use sampling to generate 
this PDF

• Examples follow

jldarby@sandia.gov
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Example
Crystal Ball

• Estimate the uncertainty for P(A U B) given A and B are independent 

– P(A U B) = P(A) + P(B) – P(A) * P(B)

– Treat P(A) and P(B) as random variables with PDFs

• Solution using sampling approach in Crystal Ball

jldarby@sandia.gov

Mean 0.025
Mean 0.345

PDF for P(A) PDF for P(B)PDF for P(A U B)
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Example:
Crystal Ball

• Estimate the uncertainty for P(A U B) given A and B have same 
failure probability, but that probability is uncertain

– P(A U B) = P(A) + P(B) – P(A ∩ B)

– Treat P(A) and P(B) as random variables with PDFs that are correlated

– P(A U B) same as 2*P(A) – P(A)2 since P(B) = P(A)

jldarby@sandia.gov
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Fail on Demand

• Concern is x (or more) of n items fail on demand

– Binomial distribution; exactly x of n fail on demand

• Parameter p: probability an item fails

• PDF = P(x of n) = n!/[x! (n – x)!] px (1-p) (n-x)  

– x or more fail

• P(x or more of n) = 1 – CDF((x - 1)) or, equivalently

• P(x or more of n) = ∑j=x to n PDF(j)

– Treat p as a random variable, assign it a PDF

jldarby@sandia.gov

Remember:  For random variable Z, 
CDF(z) is probability Z ≤ z,

CCDF(z) = 1 – CDF(z) is probability Z > z, so

CCDF(z -1) is probability Z ≥ z
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Fail to Operate

• An item fails to operate for time t

• t is time of concern, say 24 hours

– Exponential distribution

• Parameter λ: failure rate

• P(fail within time t) = 1 – e-λt

– Treat λ as a random variable, assign it a PDF

jldarby@sandia.gov
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Propagation of Uncertainty:
SAPHIRE

• Allows probability distributions to be assigned to basic events in 
fault trees where events are probabilities of failure

• Calculates probability of top event using sampling process

jldarby@sandia.gov
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Propagation of Uncertainty:
SAPHIRE (continued)

jldarby@sandia.gov
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Propagation of Uncertainty
SAPHIRE: Review from Part 1

• SAPHIRE default treats all events with different 
names as independent unless correlated

– P(A ∩ B) = P(A)*P(B)

– P(A U B) = P(A) + P(B) - P(A)*P(B) =

1 – (1 – P(A))*(1 – P(B))

– SAPHIRE default combines cut sets assuming cut 
sets are independent

• Not exactly accurate if cut sets share basic events

• Correlation in SAPHIRE requires P(A) = P(B), uses 
Same PDFs for P(A) and P(B) in a Bayesian sense,

and above become

– P(A ∩ B) = P(A)2

– P(A U B) = 2 P(A) - P(A)2

jldarby@sandia.gov
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Propagation of Uncertainty:
SAPHIRE N of M Fail

• Concern is any 2 (or more) of 4 identical components fail

• Let each component failure probability be p

• Exact probability 2 (or more) of 4 fail is 

∑j = 2 to 4 PDF[BinomialDistribution[4, p], j]

• SAPHIRE evaluates as

6*p2

jldarby@sandia.gov

Probability 2, 3, or 4 of 4 components fail

out of 4 total where each fails with probability p

6 combinations of 2 of 4 failing

Same result for small p
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Propagation of Uncertainty:
SAPHIRE

• 2 (or more) of 4 fail each with probability 

uniform [0, 0.001]

– Exact mean 1.49E-4

• SAPHIRE solution correlated: 6p2

– Point Estimate 1.50E-4

– CDF

jldarby@sandia.gov

Essentially the same solution from 
Crystal Ball for exact for small p 

SAPHIRE solution for

N of M fail is incorrect if

M > 2 and 
probability fail is not small 
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Propagation of Uncertainty:
SAPHIRE N of M Fail

• Degenerate Case
M of 2, Components A and B fail

– AND: N is 2

• One cut set A*B

– OR: N is 1

• Two cut sets A and B

– Cut sets are independent

– SAPHIRE solution same as exact solution

jldarby@sandia.gov
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Bayesian Update:
Some Special Cases

• Can use Bayesian update process to generate 
posterior PDFs for failure probabilities for basic 
events in fault trees

• Will discuss a few simple cases here

– See references for more detailed discussion

• f(x) a PDF for a continuous random variable X

with parameter θ where we do not know θ

• Treat θ as a specific value of a random variable Θ

with PDF g(θ)

jldarby@sandia.gov

�(�|�) =
� � 	�(�|θ)
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What PDF for g(θ)?
What is g(θ|x)?
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Conjugate Priors

• g(θ) is called a conjugate prior distribution for the 
parameter Θ if g(θ|x) is a posterior distribution 
that is a member of the same family of 
distributions as the prior

– For X described by the binomial distribution with 
parameter p, the beta distribution is a conjugate 

prior for p; range of beta distribution is [0, 1]

– For T described by the exponential distribution with 
parameter λ, the gamma distribution is a conjugate 
prior for λ

jldarby@sandia.gov



58

Beta and Gamma Distributions

• Versatile

– Many different shapes depending on parameters

jldarby@sandia.gov

Gamma

Beta
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Binomial Distribution:
Beta Conjugate Priors for Parameter p

• Two sets of parameters used for beta distribution

– Shape parameters (α, β)        used in this lecture

• Used in Mathematica

– Discrete parameters (x, n) for x failures in n tests

• Used in Martz and Waller reference

• Transformation: α = x     β = n – x

• If prior is beta(x0, n0 – x0)  mean is x0 / n0

• Observe x failures in n trials

• Posterior is beta(x + x0, n – x+ n0 – x0) mean is

(x + x0) / (n + n0)

jldarby@sandia.gov
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Binomial Distribution:
Beta Conjugate Priors With No Information

• With no information

– Uniform prior: beta(1,1)

mean ½ 

– Jeffreys noninformative:
beta(½, ½)  mean ½ 

jldarby@sandia.gov

Some prefer this: see NUREG/CR-6823 



61

Bayesian Update for p
• No information before doing tests:

Use Jeffreys noninformative prior

– beta[½, ½], Mean is 0.5

• Observe x failures in n demands

– beta[x + ½, n – x + ½] is posterior, Mean is (x + ½)/(n + 1)  

jldarby@sandia.gov

PDF for prior: mean 0.5 With n of 100, x of 3 PDF for posterior:
mean 0.035
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Situations where Bayesian is Not Useful

• Two examples follow

– Biased prior

– Posterior based on little information

jldarby@sandia.gov
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Bayesian: 
Biased Prior Gives Incorrect Posterior

• Archeologists in a foreign country find an unknown coin from 
ancient civilization.  What is P(Heads)?

• Since Heads and Tails are all the mutually exclusive outcomes of 
a sample space: P(Tails) = 1 – P(Heads)

• You cannot examine the coin, but based on experience with coins 
from similar civilizations you assume coin is two-tailed: prior is 
P(H) = 0 and P(T) = 1

• With these priors, update will always give P(H | tosses) = 0 
regardless of the number of tosses and results of the tosses

– Suppose you later receive the coin, 
toss it 10,000 times and observe all heads 

– Obviously coin is two-headed

– But your prior P(H) = 0 forces posterior to always be P(H | tosses) = 0 

jldarby@sandia.gov
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Bayesian: 
Prior With Little Information Gives Posterior 

that can lead to Misleading Conclusion

• Unknown coin from ancient civilization. 

• You assume any value for P(Heads) for prior 
uniform distribution over [0,1]: beta(1, 1) mean is ½ 

jldarby@sandia.gov
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Bayesian: 
Prior With Little Information Gives Posterior 

that can lead to Misleading Conclusion

• Suppose you are told the coin was tossed once 
and heads was observed; P(Heads) posterior is 
beta(2, 1) with mean 2/3

jldarby@sandia.gov



66

Bayesian: 
Prior With Little Information Gives Posterior 

that can lead to Misleading Conclusion

• Based on this small amount of Information (one 
toss) your posterior indicates heads is more 
likely than did prior

• If you cannot obtain more information this is the 
best you can do with Bayesian

• But if your prior was not accurate and you have 
little information your posterior may be 
misleading

jldarby@sandia.gov
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Bayesian: 
Prior With Little Information Gives Posterior 

that can lead to Misleading Conclusion
• Suppose that you later receive the coin and 

perform 10,000 tosses and all were heads

• Posterior is beta(10001, 1) with mean 0.9999

• The coin is biased to always be Heads!

jldarby@sandia.gov

With sufficient information 
the Bayesian update reflects 
the true situation.

But if we have little 
information the Bayesian 
update can be misleading; 
next slide 
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Bayesian: 
Prior With Little Information Gives Posterior 

that can lead to Misleading Conclusion
• Suppose the coin is two-headed but we only have the 

information that one toss gave heads. Our posterior for 
P(H) (from earlier) is beta(2, 1) with mean 2/3.   

jldarby@sandia.gov

This posterior does indicate 
a bias towards heads.

But using this posterior, the 
probability that a toss is 
heads is small.  Next slide.
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Bayesian: 
Example where Will Not Help continued

• Posterior CCDF 

jldarby@sandia.gov

Probability 
Exceed Value

Value for P(H)

Probability P(H) 
exceeds 0.9 is small: 
0.19

But the coin is two 
headed so the true 
value for P(H) is 1.0
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Bayesian: 
Example where Will Not Help continued

• A fault tree can have many cut sets and each cut 
set can have more than one basic event

– If our posterior for all basic events in the dominant 
cut sets is based on little information our answer 
can be way off

– For example, assume a cut set has two correlated 
events each with P(H): value of cut set is P(H)2

jldarby@sandia.gov
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Bayesian: 
Example where Will Not Help continued

• Probability 2 of 2 tosses are heads

– P(H)2

jldarby@sandia.gov

Value for P(H)2

Probability P(H)2

exceeds Value
Probability P(H)2 exceeds 
0.9 is small:0.1

But the coin is 
two headed so the 
true value for 
P(H)2 is 1.0
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Bayesian: 
Prior With Little Information Gives Posterior 

that can lead to Misleading Conclusion

• The prior updated with little information is 
misleading

jldarby@sandia.gov
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If Bayesian Cannot Help

• Use techniques that better capture state of 
knowledge uncertainty

• Belief/Plausibility is such a technique

– Subject of part 3 of this course

– We will address this example using 
belief/plausibility in part 3

jldarby@sandia.gov
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Bayesian Update Insights

• An inaccurate prior may be acceptable if 
extensive information is available for update to 
posterior

• A good prior is required if extensive information 
for update is not available

• A poor prior with little information for updating 
can produce a poor posterior

jldarby@sandia.gov

Bayesian approach cannot help you in this 
situation.  

Consider using a measure for uncertainty 
that is broader than probability, such as 
belief/plausibility.  Belief/plausibility 
measure of uncertainty is discussed in 
part 3 of this course.

Unless prior totally excludes values that can occur
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Bayesian and Classical Statistical Inference

• Both give essentially same answer consistent with the information 
available

• Binomial distribution, large population
sample 1000 and observe 5 failures, mean is 0.005

– Classical statistical inference 95% (0.05 α) one sided upper confidence 
level (UCL) for p is 0.010.  95% confidence P in [0, 0.010] (See part 1)

– Bayesian with Jeffrey’s noninformative prior

produces posterior beta(5.5, 995.5)

mean is 0.0055

95% percentile is about 0.010

jldarby@sandia.gov
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Bayesian with Exponential Distribution

• Time to failure T is random variable with PDF

λ e-λt where t is a specific value of T.  The parameter λ is the 
failure rate

CDF: Prob(T ≤ t) = 1 - e-λt

• Treat λ as a specific value of a random variable Λ

• The gamma distribution is a conjugate prior for Λ

– Gamma distribution has two parameters Γ(α, β)

• PDF(λ) = 1/(βα Γ(α)) * λα-1 * exp(-λ/β) 

– β has units of 1/time

– Some developments use 1/β for the second parameter 
(NUREG/CR-6823)

• PDF(λ) = βα/Γ(α) * λα-1 * exp(-λβ) 

– β has units of time

– We use β with units of 1/time, same as Mathematica

jldarby@sandia.gov
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Exponential Distribution:
Gamma Conjugate Priors for Parameter λ

• If prior is gamma(α0, β0)  mean is α0β0

• Observe total of x failures over a fixed time t

– Each item that is tested is replaced if it fails before 
time t

• See Martz and Waller section 7.1.3 Poisson Sampling

• Posterior is gamma( x + α0, β0 / (β0 t + 1) ) mean is

β0(x + α0) / (β0 t + 1) 

jldarby@sandia.gov
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Exponential Distribution:
Gamma Conjugate Prior With No Information

• Jeffreys noninformative:
gamma(½, 1/0)

jldarby@sandia.gov

Cannot plot PDF.
An improper distribution: β = ∞

see NUREG/CR-6823 
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Bayesian Update for λ
• No information before doing tests:

Use Jeffreys noninformative prior

– gamma[½, 1/0]

• Observe x failures in time t

– beta[x + ½, 1/t] is posterior, Mean is (x + ½)/t 

jldarby@sandia.gov

With x of 10, t of 9038 PDF for posterior:
mean 0.0011
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Bayesian and Classical Statistical Inference

• Both give essentially same answer consistent with the information 
available

• Exponential distribution
observe 10 failures over total time 9083, mean is 0.0011

– Classical statistical inference 95% (0.05 α) one sided upper confidence 
level (UCL) for λ is 0.0017 (95% confidence λ in [0, 0.0017] (See part 1)

– Bayesian with Jeffrey’s noninformative prior

produces posterior gamma(10.5, 1/9083)

mean is 0.0012

95% percentile is about 0.0018

jldarby@sandia.gov

UCL is NOT a percentile

λ is fixed but unknown

λ is a specific value of the 
random variable Λ
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References for Bayesian Approach

• Bayesian Reliability Analysis, H. F. Martz, R. A. Waller, Wiley, 1982

• “Handbook of Parameter Estimation for Probabilistic Risk Assessment”, 
NUREG/CR-6823, SAND2003-3348P, Sept 2003

• “On the Quantitative Definition of Risk”, S. Kaplan, B. J. Garrick, Risk 
Analysis, Vol. 1, No. 1, 1981

• “PRA Procedures Guide”, NUREG/CR-2300, US NRC, Jan 1983

• Mathematica Version 10.1, Wolfram Research, Inc.

• SAPHIRE Version 8.1, INL for US NRC

• Crystal Ball software, Version 11.1.2, Oracle.

• “Data Analysis for Scientists and Engineers”, Stuart L. Meyer, Wiley, 1975.

jldarby@sandia.gov
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Part 2 Simple Examples: Day 2

jldarby@sandia.gov
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Simple Example 2-1
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Simple Example 2-1 continued

jldarby@sandia.gov
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Example 2-2

• Consider OR logic in a fault tree for probability of 
failure of A or B: P(A U B)

• Assume independence

• P(A U B) = P(A) + P(B) – P(A)*P(B)

• In part 1 we assumed P(A) and P(B) were known

– If P(A) = 0.4 and P(B) = 0.7

– P(A U B) = 0.4 + 0.7 – 0.28 = 0.82

• Now we consider uncertainty in P(A) and P(B) 
using a subjective approach

– Treat P(A) and P(B) as random variables

• P(A) and P(B) have PDFs

• Perhaps obtained with a Bayesian update

jldarby@sandia.gov
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Example 2-2 continued
• Yesterday we applied sampling tools for 

continuous distributions

• For this example assume simple discrete PDFs 
for P(A) and P(B)

• So we can easily illustrate the process

• Assume PDF for P(A) is

– P(A) = 0.2 with probability 0.3

– P(A) = 0.5 with probability 0.6

– P(A) = 0.8 with probability 0.1

• Assume PDF for P(B) is

– P(B) = 0.2 with probability 0.7

– P(B) = 0.5 with probability 0.1

– P(B) = 0.7 with probability 0.2jldarby@sandia.gov
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Example 2-2 continued

• The value of P(A U B) is P(A) + P(B) – P(A)*P(B)

• Each value, call it z, has a probability

– P(z) = ∑ [P(P(A)) * P(P(B))] | P(A) + P(B) – P(A)*P(B) = z

jldarby@sandia.gov

Values (objective probabilities) Probabilities (subjective) of Values

P(A) P(B) P(A) + P(B) –P(A)*P(B) P(P(A)) P(P(B)) P(P(A)) *P(P(B))

0.2

0.2

0.2

0.2

0.5

0.7

0.36

0.60

0.76

0.3

0.3

0.3

0.7

0.1

0.2

0.21

0.03

0.06

0.5

0.5

0.5

0.2

0.5

0.7

0.60

0.75

0.85

0.6

0.6

0.6

0.7

0.1

0.2

0.42

0.06

0.12

0.8

0.8

0.8

0.2

0.5

0.7

0.84

0.9

0.94

0.1

0.1

0.1

0.7

0.1

0.2

0.07

0.01

0.02

Value 0.60 has probability 0.03 + 0.42 = 0.45

P(A) and P(B) are 
independent
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Example 2-2 continued

jldarby@sandia.gov

PDF

CDF
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Example 2-2 continued

• Now consider dependence

• The value of P(A U B) is P(A) + P(B) – P(A ∩ B) = 
P(A) + P(B) – P(B|A)*P(A)

• Each value, call it z, has a probability

– P(z) = ∑ [Pjoint PDF (P(A), P(B))] | P(A) + P(B) – P(B|A)*P(A) = z

jldarby@sandia.gov

P(A) and P(B) are 
dependent
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Example 2-2 continued
• Example of dependence

• P(A U B) = P(A) + P(B) – P(A ∩ B)

• As before PDF for P(A) is

– P(A) = 0.2 with probability 0.3

– P(A) = 0.5 with probability 0.6

– P(A) = 0.8 with probability 0.1

• As before PDF for P(B) is

– P(B) = 0.2 with probability 0.7

– P(B) = 0.5 with probability 0.1

– P(B) = 0.7 with probability 0.2

• Assume dependence is 

– If P(A) is 0.2, P(B) = 0.2

– If P(A) is 0.5, P(B) = 0.2

– If P(A) is 0.8, P(B) = 0.5

jldarby@sandia.gov

Values (objective probabilities) Probabilities (subjective) of Values

P(A) P(B) P(A) + P(B) –P(B|A)*P(A) P(P(A)) P(P(B)) Pjoint(P(A), P(B)) 

0.2

0.2

0.2

0.2

0.5

0.7

0.36

--- (0 joint probability)

--- (0 joint probability)

0.3

0.3

0.3

0.7

0.1

0.2

0.3

0

0

0.5

0.5

0.5

0.2

0.5

0.7

0.60

--- (0 joint probability)

--- (0 joint probability)

0.6

0.6

0.6

0.7

0.1

0.2

0.6

0

0

0.8

0.8

0.8

0.2

0.5

0.7

--- (0 joint probability)

0.9

--- (0 joint probability)

0.1

0.1

0.1

0.7

0.1

0.2

0

0.1

0

Dependence
If P(A) is 0.2, P(B) = 0.2 (with probability 1)

If P(A) is 0.5, P(B) = 0.2 (with probability 1)

If P(A) is 0.8, P(B) = 0.5 (with probability 1)

Pjoint(P(A), P(B)) = 0.3 since P(A) of 0.2 has probability 0.3

and P(B) of 0.2 occurs with probability 1 given P(A) is 0.2
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Example 2-2 continued

jldarby@sandia.gov
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Example 2-2 continued
• Dependence where probability of failure events have same probability 

– P(A) and P(B) are the same but have uncertainty

– Sampling in SAPHIRE and Crystal Ball use correlation value 1.0; see part 1 lecture

• P(A U B) = 2*P(A) – P(A)2

• Assume PDF for P(A) is

– P(A) = 0.2 with probability 0.3

– P(A) = 0.5 with probability 0.6

– P(A) = 0.8 with probability 0.1

• Same PDF for P(B)

jldarby@sandia.gov

Values (objective probabilities) Probabilities (subjective) of Values

P(A) 2*P(A) – P(A)2 P(P(A)) Pjoint(P(A), P(B))

0.2 0.36 0.3 0.3

0.5 0.75 0.6 0.6

0.8 0.96 0.1 0.1



93

Example 2-3

• The correlation we addressed assumed that the 
dependence is such that the two failure events 
have the same probability of failure, but that 
probability is unknown

• Let us also assume we have common cause 
failure

• Look at the common cause example from lecture 
1 considering uncertainty in the probabilities

– In lecture 1 we assumed the failure probabilities 
were known: no uncertainty

jldarby@sandia.gov
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Example 2-3 continued
Common Cause from Lecture 1

• Let A and B be failure events for two components

• Frequently, P(A ∩ B) > P(A) * P(B) due to dependence from common 
cause

• Let A = {Ai ,C} and B = {Bi, C} where Ai and Bi are independent failures 
and C is failure common to A and B.  Note that Ai and Bi are 
independent, Ai and C are mutually exclusive, and Bi and C are mutually 
exclusive. 

• A ∩ B = (Ai U C) ∩ (Bi U C) = (Ai ∩ Bi) U (Ai ∩ C) U (Bi ∩ C) U C = 
(Ai ∩ Bi) U C

• P(A ∩ B) =  P(Ai ∩ Bi) + P(C) – P((Ai ∩ Bi) ∩ C) =
P(Ai) * P(Bi) + P(C) 

jldarby@sandia.gov

Boolean Reduction

mutually exclusive

independent
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Example 2-3 continued
Common Cause from Lecture 1

• Prob A (or B) Fail 10-3 with 10% common to A and B

• P(Ai)= P(Bi)= 9 x10-4 

• P(C) = 10-4

• From earlier

P(A ∩ B) = P(Ai) * P(Bi) + P(C) = 

9x10-4 * 9x10-4 + 10-4 = 1.008 x 10-4 ≈ 10-4

jldarby@sandia.gov
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Boolean Reduction:

(X ∩ X) = X

Example 2-3 continued Common Cause Explicitly in Fault Tree

From Lecture 1

Now we will consider 
uncertainty
in the probabilities of 
failure
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Example 2-3 continued Common Cause with 
Uncertainty

• Assume A and B are 100% correlated

– A and B have same probability of independent 
failure

• Mean 9E-4 (lecture 1 point estimate)

• PDF uniform [0, 1.8e-3]

• C is the common cause failure
• Mean 1E-4 (lecture 1 point estimate)

• PDF triangular [0, 2e-4] mean 1e-4

jldarby@sandia.gov
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Example 2-4

• PDF for x events in time t

– Poisson distribution, discrete

– P(X = x) = e-λt (λt)x / x!

– λ is number of events per unit time

– Treat λ as value of random variable Λ

– For this example assume discrete PDF for prior for g(λ) 

• Uniform over [0, 0.5, 1.0, 1.5, … 5.5, 6]

• g(λ) = 0.077 for each value [0, 0.5. 1.0, 1.5, …5.5, 6]

jldarby@sandia.gov
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Simple Example 2-4 continued
• Observe 10 events in 6 years

• Likelihood P(10 events in 6 years | λ) = 

– e-λ*6 (λ*10)6 / 10!

– For each λ in the discrete prior

• λ = 0, λ = 0.5, λ = 1.0, λ = 1.5, λ = 2.0, λ = 2.5, λ = 3.0

λ = 3.5, λ = 4, λ = 4.5, λ = 5, λ = 5.5, λ = 6.0

• Likelihood P(10 events in 6 years | λ) = 

0, 8.10E-4, 4.12E-2, 1.19E-1, 1.05E-1, 4.86E-2, 
1.50E-2, 3.49E-3, 6.60E-4, 1.07E-4, 1.52E-5, 1.97E-6,
2.34E-7

• Prior x Likelihood for each λ
0, 6.23E-5, 3.18E-3, 9.13E-3, 8.07E-3, 3.74E-3, 1.15E-3, 2.68E-
4, 5.08E-5, 8.21E-6, 1.17E-6, 1.51E-7, 1.80E-8

– Normalization: sum all Prior x Likelihood for each λ: 0.0257

jldarby@sandia.gov
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Simple Example 2-5

• Posterior becomes prior for next update

• Assume Jeffries non-informative prior for 
parameter p for binomial distribution

– Beta(½ , ½) is prior

• Observe 2 failure in 100 trials

– Beta(2.5, 98.5) is posterior

– This is the new prior

• Observe 4 failure in 175 trials

– Update the new prior

– New posterior is Beta(6.5, 269.5)

• Same posterior as update initial prior once 
with 6 failures in 275 trials

jldarby@sandia.gov

Note: need to transform  to shape 

parameters previously discussed
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Part Two Real World Examples: Day 3

1. W87 new AFA analysis (with uncertainty) 
(classified)

2. LAC SFI (classified)

jldarby@sandia.gov
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Part 2: Homework

• See Word Document 
NST_560_Part2_Problems.docx

• Solutions will be handed out at start of part 3

jldarby@sandia.gov


