\

SAND2015- 2279PE

NST 560:
Surety and Reliability Analysis

Techniques that Estimate Uncertainty
Part 2: Bayesian Approach
John Darby

Sandia National Laboratories
February 1, 2015

SANDXXXX-XXXX

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration

under contract DE-AC04-94AL85000.

jldarby@sandia.gov Laal}:?rg'?oﬁes



>~

* Transfer expertise to Sandia staff on how to
estimate uncertainty for complicated real-world
problems addressed by Sandia, with emphasis on

applications that involve a great deal of State of
Knowledge (SOK) uncertainty

— Surety (safety, security, use control)
— Reliability
— Counter terrorism

Objective
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* Three parts
1. Classical probability and statistical inference
2. Bayesian approach
3. Belief/ Plausibility measure

e Each part

— Three day in-class session
- Basics and mathematical development
» Simple examples
« Complex real-world examples (some classified)

— Homework
 Final exam

Course Structure
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* Techniques to address state of knowledge
uncertainty build on classical probability and
statistical inference

* For some applications we can use classical
techniques

 Many event and fault tree tools consider
uncertainty in the probability of basic events in a
Bayesian context

« So we will start with Classical, move to Bayesian,
then address Belief and Plausibility

Why The Three Parts?

; )
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* NST460 “Extensions to Conventional Surety
Analysis” desired but not required prerequisite

* Important references noted

 Numerous computer tools discussed and
referenced

Miscellaneous
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ﬂidelity of Information Available
Drives Selection of Best Technique

How to Treat Uncertainty

6 ﬁandia
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Information Available

Quantitative Quantitative, some Qualitative Qualitative
Lightning strikes at Pantex New strong link Abnormal.enwronments
Terrorist attacks
Objective Bayesian Subjective
Aleatory Concepts Epistemic
Uncertainty Uncertainty
Classical Belief/Plausibility
Probability Fuzzy Sets
Classical Progression of Course Topics
L L (o, >

Traditional Techniquesg Advanced Techniques

Sandia
7 National
Laboratories



Classical Probability
and Statistical Inference:
Review of Important Points

>~

« Summary of key points from part 1 pertinent to
the Bayesian Approach

» See part 1 “Classical Probability and Statistical
Inference” lecture notes for details
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Sample Space, Event, Random Variable

« Sample space is set of all outcomes
— Outcomes are mutually exclusive

* Event is a subset of the sample space

« Random variable is a mapping of outcomes to
reals
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# Classical Probability is Objective

» Classical probability is a specific value (one value)
— Event E, N identical trials

— Probability of Event: P(E)
* P(E) = limy._... (number of time E occurs / N)
» P(E) is fixed but perhaps unknown with certainty

 To know P(E) precisely requires infinite number of identical
trials

— Classical probability is an Objective concept
* Probability is a Frequency
— Not a physical rate but a dimensionless ratio

« Can infer parameters of probability distributions
using statistics

10 Natonl
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- A
Probability Measure, P, for Sample Space, S:

Kolmogorov axioms
(the mathematics for probability)

Probability Measure

1. ForanyeventE,0<P(E)=<1
2. P(S)=1
3. For any set of mutually exclusive events

{E,, E,, E;, ...E_} the Probability of the union
(logical OR) of all the events is the sum of the
probabilities of each event

P(E,or E,or E;or...or E } =P(E,) + P(E,) + P(E;) +... + P(E,)

I [.1:1] Nanonal
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Partition

 Partition is a set of mutually exclusive events that
covers the sample space

—{A;i=1,2,3, ...} is a partition over S if: U
and

P(A; N Ay) =0 for any A, and A, in {A}}
— The set of all outcomes is one partition
— A notional partition

A=S

all i

12 ﬁa;!dia I
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* Probability of event A given event B: P(A|B)

Conditional Probability

P(A|B) = P(A N B) / P(B)
(if P(B) not zero)

If Aand B are

I independent A)
P(ANB) = P(A)*P(B) and
P(A|B) = P(A)

Note: P(A N B) = P(B N A)
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S a sample space
B any eventin S
«{Ai=1,2,3, ...} apartition over S

Law of Total Probability

*P(B) = 2k overani P(BIAy) * P(Ay)

14 ﬁa;!dia I
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Classical Statistical Inference

« Assume the population is characterized by an appropriate
probability distribution

— Binomial
— Hypergeometric
— Exponential

« The probability distribution has parameters that are inferred from
a random sample of the population; Parameters are fixed but not
precisely known

— Probability of failure is a parameter of the binomial distribution
— Failure rate is a parameter of the exponential distribution

* Population has parameters

« Sample has statistics used to estimate parameters

* From the sample establish confidence intervals to represent
uncertainty in the parameters of the population
— Part 1 discussed one sided upper confidence level

— Parameter is either within or not within the confidence interval with a
certain confidence level

Is [.1:1] Nanonal
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Classical Statistical Inference

« Weapon Component Failures:

SNL Point Estimates .
— Sample n of N and observe No failures in 22 samples
X failures / | from large population

* This does NOT mean that p is in [0. 0.1] with 0.9 probability. —
p is a specific value (but unknown).

" This means that for 90% of repeated samples the
calculated confidence intervals will contain p.
*x =0 from 2 ’

samples has same 0.1 90% confidence prob defect
estimate as x=0 less than 0.1
from 108 samples
* If x is 0 use 50% UCL for
point estimate to consider
that larger n provides less 'Point estimate prob defect 0.03
uncertainty 0 50% UCL

16 Natorl
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} Part #2:
Bayesian Approach

- Day 1: Basics and mathematical development
* Day 2: Simple Examples
* Day 3: Real world examples (some classified)

17 ﬁa;!dia I
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Part 2 Lecture: Day 1

jldarby@sandia.gov La?:honrra]\?oﬁes



;,_'

« Conditional probability
— Probability of event A given event B: P(A|B)
— P(A|B) = P(A and B) / P(B)
— P(B|A) = P(B and A) / P(A)

Conditional Probability

- Since P(A and B) = P(B and A)
— P(A|B) = P(BJA) * P(A) / P(B)
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} Bayes Theorem

- Bayes theorem
— S a sample space
—{A,, A,, A;, ...,A } a partition over S
* The A’s are mutually exclusive and their union is S

— B any event in S with non-zero probability

- Law of total probability
P(B) = 2 k=110 P(BIA)™P(A)

— A, an event of interest in the partition

* P(A|B) = P(B|A)) * P(A)) | 2k =11ton P(BJAL)*P(Ay)

2 Natonl
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Conditional Probability and Bayes Theorem

+ Example
— Test for disease is 99% accurate given you have the disease
— Test has 10 false positive (falsely says you have disease)
— 1in 10 people have the disease

— You test positive
* Probability you have the disease is 0.99?
« NO

— P(T|D) = 0.99 is probability Test T is positive given you have the Disease D

— P(T|ND) = 10-4is probability Test T is false positive given you do not have the
disease ND

— P(D) = 10 is probability an individual selected at random has the disease

— P(DJT) is the probability you have the disease given you test positive
— P(D|T) = P(T|D) * P(D) / {P(T|D)*P(D) + P(T|ND)*P(ND)} =
0.99 *106/{0.99 *10€¢ + 10+ * (1-10%)}=10€/10“=0.01

— Probability you have the disease given you test positive is 0.01, not 0.99

21 ﬁa;!dia I
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So far we have just used the properties of
conditional probability.

Bayesian Approach

The Bayesian approach is revolutionary in its
interpretation of conditional probability.

22 ﬁa;!dia I
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- A
Bayesian Concept of Subjective Probability
* P(A|B) = P(B|A;) * P(A)) ] 2« =110 n P(BIAK)*P(Ay)

Let P(A,) be our initial probability distribution for event A,

— P(A,) is our prior probability distribution for A, before updating
with new information

Let event B be new information

P(A;|B) is our updated probability distribution for A, given the new
information B
— P(A;|B) is our posterior probability distribution for A, after
updating with information B

Technique to update given new information

Probability is SUBJECTIVE based on your
state of knowledge. Totally different from
classical, objective concept of probability.

2 Natonl
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# Bayesian Approach

* You want to know the probability of event A,
* P(A)) is your initial estimate (the prior) before obtaining more
information

- Event B is the new information you use to refine (update) your
estimate of the probability of event A,

* Your updated estimate (the posterior) of the probability of event A,
given information B is P(A;|B)
* P(A|B) = P(B|A;) * P(A)) ] 2« =110 n P(BIA)*P(A)
— Bayes equation for discrete events

P(A;|B) is the probability the event of interest A,

occurs given the event B occurred. Think about this!

P(B|A)) is the probability event B would occur given the event of interest A,
occurred.

_ Normalization: Same for P(A;|B)
2k=1ton P(BIAY)*P(A) is P(B)«— for each A,

JIVUI Uy (W OUl WU YUV | Lﬂl]l][a'[[]ries
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* Prize behind one of three doors A, A,, or A,
* You guess P(A,) = P(A,) = P(A;) = 1/3 (equal probability)

« Open any one door, say A;, and prize not there
* You update your guess to P(A,) = 1/2, P(A,) =1/2, P(A;) =0

Simple Example

* Here is the Bayesian approach
- {A,, A,, A;} is a partition for “location of prize”
* Priors
— P(A)) =P(A,) =P(A;) =1/3 Probability the information
- Event B is “prize is not behind door A,” that you obtained
* Posteriors to be calculat;% (event B) would have
~ P(A/IB) = P(A,) %P(BIA)T 5, - 1105 P(BIA,) OCCUrred if
~ P(A,|B) = P(A,) { P(BIA;) L5, . 1., P(BIA)* €vent in the partition did
— P(A4|B) = P(A,) ‘P(BIAa):l Si=1t03 P(BIA)* OCCUT

25 ﬁa;!dia I
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« A, is “prize is behind door A,”
* A, is “prize is behind door A,” Understanding this is a key to
« A; is “prize is behind door A;” understanding the
* B is “prize is not behind door A;” Bayesian update approach

v

* P(B|A,) is P(prize is not behind door A; given the prize is
behind door A;) =1.0

* P(B|A,) is P(prize is not behind door A; given the prize is
behind door A,) =1.0

* P(B|A;) is P(prize is not behind door A; given the prize is
behind door A;) = 0.0

Simple Example continued

*dk=1t03 P(BJA)*P(A,) =1(1/3) + 1(1/3) + 0(1/3) = 2/3

% Natonl
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Simple Example continued

* P(A4]B) =P(A,) * P(B|A1) | 2x=113P(BIAJ*P(Ay) =
(1/3) * 1/ (2/3) = 1/2

* P(A;|B) =P(Ay) * P(B|Ay) | 2 k=113 P(BIA)P(Ay) =
(1/3) * 1/ (2/3) = 1/2

* P(A3|B) = P(A;) " P(B|A3) / 2k = 1103 P(BIAY)™P(Ay) =

(1/3) 70/ (2/3) =0 We will look at this example again tomorrow

with more definitive information B:
Posterior distril The “Let’s Make a Deal” situation

Probability prize behind A, =
Probability prize behind A, =%
Probability prize behind A;=0

27 ﬁa;!dia I
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yesian Approach for Parameter
% of a Distribution: Use Continuous
Distribution for Parameter

randonm\variables

* Here \gq‘oarameters themselves are considered to be

9(0) f(x|8)
| f(x|6) g(6) d6

g0|x) =
) = j £(x16) g(6) do

Note: it is the parameter 0

" that is not known @ Sandia

jldarby@sandia.gov ?'aﬂ"r';?ém



ayesian Approach for Parameter
of a Distribution: Use Continuous
Distribution for Parameter

9@ fEe)
[ £(x18) g(6) dO :

;,_

g0|x) =

f(x) has a parameter 6. 8 is not knownand is considered
a specific value of a random variable 0O.

g(8) is prior PDF you Normalization: Same for g(0]x)
assume for ©
for every 0

X is an observed value of the

random variable X f(x|8) is the PDF at X
equal to the value x

_ o given a specific 6.
Understanding this is akeyto _~» c1ed the likelihood
understanding the function.

B;agyesmn update approach St
jldarby@sandia.gov La?,('f,g?mes



Bayesian Approach for Parameter

} ‘ of a Distribution: Use Discrete Distribution

for Parameter

30

g(0) f(x|0)

901 =55 x10) 9(®)

FE)= > f(x16) g(6)

f(x|0) is the PDF at X
equal to the value x
given a specific 6.
Called the likelihood
function.

ﬁandia I
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Bayesian Approach Example
for Parameter

F

 Assume the appropriate PDF for time to failure is
exponential distribution. Time to failure is a
random variable T.

— PDF is f(t) = Ae’*where parameter A is failure rate
* Treat A as specific value of random variable A

« Assume PDF for prior g(A) is uniform over
[0, 0.01]: g(A) is 100 in this interval, 0 elsewhere

 Observe one failure at 0.0072 hours
for Ain [0, 0.01]

—0.00724
£(0.0072(2) g(A) = __ € + 100
g(ﬂ.lT = O 0072) — 001 100 f0'01/1e‘°-°072/1 dl
f, " f(0.0072]|2)g(4) d 0

Ae_0'0072’1

for A>0.01,g(A) is0;sog(A|T)is 0 = 5 0x10-5 @ Sandia

. . National
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‘ Bayesian Approach Example
for Parameter

prior PDF glA) price COF gld)
za:u:- 1.:1:-
Prior g(A)
i :I.f-
100 |- i .
: 0] Prior mean
ECI? :J.Ei 0.005
- 9002 0004 0005 0008 aoto” 000z 0004  oooe 0008 0010
posterior CDF glA|T = 0.0072)
posterior PDF glA|T = 0.0072) "
1.0 F
00| C
08l Posterior
150 ] I
100
0.4
sof Posterior mean
0.2
0.0067
0.002 0.004 0.008 0.008  0.010

3 Natorl
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Bayesian Approach Example

» So far we have updated the parameter A

 How do we use the updated parameter for the probability of
failure of the component?

 Assume exposure time of concern is 24 hours

« Using exponential distribution Probability fail in
24 hours is

24
P(24) = J le Mdt = 1— e™244
0

* A has uncertainty

* Treat P(24) as a function of the random variable A
P(24) = 1— e™244
where A is a specific value of A. A has a PDF; prior and posterior

33 ﬁa;!dia I
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Bayesian Approach Example
olve with Sampling using Crystal Ball
using Prior for g

. g()\) = 100 over [0, 0.01], mean 0.005

( Define Assumption: Cell = |2
View
Name: E7| ¥
m bution

Gallery | [ Copelate.. | [ Hela |

Lok | [ Coneal | [LE

« Solve for P(24)
by sampling, mean 0.11

1 — 6—247\

O Forecast (=S e 5|
Edit View Forecast Preferences Help
100,000 Trials Frequency View 100,000 Displayed
P Fail 24 hours
e °o
= @
2 o 000 2
=} @
E 3
o 800 Q
00
oofp} ' ' ' ' ' ' ' ' ' ' q o
0.00 002 004 006 0.08 010 012 014 016 018 020
3
.
National
Laboratories

34
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| ; I' Bayesian Approach Example

Solve with Sampling using Crystal Ball
using Posterior for g

* g(MNT=0.0072) is essentially linear, mean 0.0067

(O Assumption: lambda linear fit =8 R ===
Edit View Preferences Hel
100,000 Trals Trianguiar Distribtion 100,000 Displzyed

(O Forecast: P Fail 24 hours (B2) = Ech

_ _ _ _ _ Edit View Forecast Preferences | Help
Minimam [T Likeliest 0.01 Maximum 0.01 100,000 Trials Cumulative Frequency View 99,852 Displayed

)\ P Fail 24 hours (B2)
*Solve for P(24) = 1— e~ %4 - woo _
by sampling, mean 0.15 3" oo 3
& 060 60,000 g
‘_é 0.2'3'_ 2c1|.c1u:nung
O e
CDF for P fail in 24 hours using P L :

Bayesian updated PDF for failure rate S j— v d

35
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Bayesian Approach Example
using Posterior for g
Standard Solution

'
\;
« Standard solutions exist for updating parameters
for commonly used distribution

— See Martz and Waller reference

* Exponential distribution is a commonly used
distribution

— If prior for parameter A is uniform over [a, b]

2 e—/1t1
2 Ae2t1 daa
— For t, of 0.0072 posterior PDF is ~
for parameter A
(same as obtained earlier)

— Posterior for parameter A given T = t, is

36 0 cls: 0 3|3c 0 slss 0 cls-s 0 sl'c ﬁandla |
. . 'I' ationa
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bjective Approach: Parameters and
Probability Itself

_
s#
Treated as a Random Variable

» Wish to estimate uncertainty for a probability
» Classical approach:

— Probability is fixed but not pi CDF for

— Produce a Confidence Interv P(E)

« Subjective approach Prob (P(E) = p(E))
— Probability itself is a random variable
— Produce a PDF p(E)

— PDF for P(E) the objective probability for event E
* P(E) = limy._... (number of time E occurs / N)

* P(E) is a random variable with a subjective PDF

— p(E) a specific value o* =" o
1 Two different probabilities:

€=r=f-\———=—=--- Subjective
_-~Objective
<" Both obey Kolmogorov Axioms

17 p(E) Sandia
jldarby@sandia.gov @ 'L“aalnt:xorg?rlmes

PDF for
P(E)

0




Bayesian Approach is Subjective

* Probability is a state of knowledge and can be estimated even without sufficient data
to evaluate the classical frequency

— Subjective concept of probability

* Treat probability itself as a random variable instead of a fixed, but perhaps unknown,
frequency

» Probability of a Probability means
— Subjective probability of the objective probability (the frequency)
— Confusion is that the name Probability used to mean two different concepts
+ Both concepts obey Kolmogorov axioms
+ See reference: Kaplan and Garrick 1981 paper in Risk Analysis
+ Update P(E) with information: P(E | Information) as discussed earlier

Probability (subjective Probability)

Probability of Probability means

Subjective Probability (state of knowledge)
of Objective Probability

(classical frequency)

Frequency (objective Probability) Sandia
38 . . National
jldarby@sandia.gov Laboratories
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- “Bayesian probability distributions can be propagated through

Propagation of Uncertainty

fault trees, event trees, and other logic models. It is difficult or
impossible to propagate frequency confidence intervals through
fault and event tree models common in PRA to produce

corresponding interval estimates on output quantities of interest”.

“Handbook of Parameter Estimation for Probabilistic Risk
Assessment”’, NUREG/CR-6823, SAND2003-3348P

Part 1 discussed convolution and sampling for combining
probability distributions of random variables. Since the Bayesian
approach treats parameters and probability as random variables,
we can apply these techniques to random variables that are
probabilities.

39
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#Major Use of Bayesian Approach for Our

Applications

- Estimate uncertainty for logical combinations of
basic events that are failure probabilities with
uncertainty

— Uncertainty for basic events in fault trees that are
Failure Probabilities
 Fail on demand

— Uncertainty in Probability parameter for binomial
distribution

* Fail to operate for prescribed time

— Uncertainty in Frequency parameter for exponential
distribution

* ... Other types of failure

— Propagate the uncertainty per the logic in the fault
tree to provide uncertainty for top event in tree

o )
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Probability of Probability

» Subjective probability of objective probability (frequency)
» Treat objective probability (frequency) as a random variable
» Let P(A) be probability of event A: e.g. failure of a component
— P(A) is an objective probability, a frequency
— P(A) = limy_,.. (number of time A occurs / N) for N trials
« We are interested in combinations of probabilities of failures in
fault trees
— P(A N B), probability A AND B fail in a fault tree
— P(A U B), probability A OR B fail in a fault tree

41 ﬁa;!dia I
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Probability of Probability

* If A and B mutually exclusive
- PANB)=0 P(AUB)=P(A) +P(B)
 If A and B independent
- P(ANB)=P(A)*P(B)  P(A UB)=P(A) + P(B) - P(A)*P(B)
* In general
«_P(A N B) = P(A|B)*P(B) = P(B|A)*P(A)
= P(A) + P(B) - P(A|B)*P(B) = P(A) + P(B) — P(B|A)*P(A)
* In fault tree € les in part 1 we assumed P(A) and P(B) were
known with no u inty
» To address uncertaintyN A) consider P(A) as a random variable
— P(A) has a PDF, discrete or iquous. Same for P(B).
 P(A U B) and P(A N B) are functi the random vector with
random variables P(A) and P(B)

— Lecture 1 discussed function f(z) of Rando
is Cartesian product

— Here X and Y are objective probabilities, Z = logical AND, OR
— We want PDF for f(z)

42 ﬁa;!dia I
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} Probability for Function of

Random Vector (from part 1)

* Probability for Function of a Random Vector Z
—z=1(r, t), Rand T are random variables
— For discrete case PDF(z) = > PDF(r,t) | f(r, t) =2
— For continuous case, conceptually
PDF(z) = |PDF(r,t) | f(r, t) = z
— If R and re independent random variables
PDFE(r;t) = PDF(r) * PDF(t)
Can be very difficult to solve analytically.

See Meyer text in references.
Can solve by sampling approach.

Now, R and T are probabilities: R is P(A) and T is P(B)

jldarby@sandia.gov La%g:g?nﬁes
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Probability of Probability

* Two probabilities: the value P(A), P(B)
— The objective probability
* The probability of the value P(P(A)), P(P(B))
— The subjective probability of the objective probability
* Probability of a function of probabilities
— For example P(A U B) is the function
« The value is P(A) + P(B) - P(A) * P(B|A)
— If P(A) and P(B) are known the value is known
* P(A) = p, and P(B) = p,, A and B independent
* Value P(A U B) = p, + p, — p4 * p, with no uncertainty
— If P(A) and P(B) are unknown and treated as random variables
« The value P(A) + P(B) - P(A) * P(B|A) has a PDF determined by
the PDF for the function P(A U B)
Values for events P(A) and P(B) PDF for values P(P(A)) and P(P(B))

Values for Function P(A U B) PDF for values for function

i )
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* Will discuss some simple examples for discrete
cases tomorrow where we can manually generate
the PDF for the function

* PDF for the function for continuous case can be
difficult or impossible to generate analytically

— For continuous cases we use sampling to generate
this PDF

 Examples follow

Probability of Probability

i )
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' Example

Crystal Ball

- Estimate the uncertainty for P(A U B) given A and B are independent
— P(AUB)=P(A) + P(B) - P(A) * P(B)
— Treat P(A) and P(B) as random variables with PDFs

» Solution using sampling approach in Crystal Ball

(O Forecast: P(A OR B) PDF for P(A U B) 3| | (O Forecast: P(4 ORB) = =h ==
Edit View Forecast Preferc.... op Edit View Forecast Preferences Help
100,000 Trials Frequency View 55,997 Displayed 100,000 Trials Statistics View Sheet1!B4
P(A OR B) Statistic Forecast values
(Y| Trials| 100,000
3,200 Base Caze 357E-1
0.03 - Mean 361E-1
2,800 Median 3.22E-1
2 400 Mode
= T Standard Deviation 2. 26E-1
= s =il 2 Variance 5.10E-2
% 1,600 E Skewness 0.5665
i 1200 Q Kurtosis 240
0.01 - Coeff. of Vanation 0.6250
800 Mirimum 223E-2
Maximum 9.598E-1
400 Mezn Std. Error 7.14E-4
0.odp : ! ! 0
0.00E+D 3.00E-1 6.00E-1 0.00E-1
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Exambple:

jldarby@sandia.gov

O Define Correlations - List View =1 IEI
Q© Assumption: P(a) Edit View Help f=lie =
Eell_olon soiidias b Show correlations for assumption: [P{B] v] in matrix "Matrix 1"
100,000 Trials Tl 100,000 Displayed
Comelated Assumption Coefficient Correlation Chart (Example)
1,600
i £ 9
=
a 1,400
=B
i za
Lk 1,200
| ER
é g = 1,000 g
5 L= e
m s
@ s00 G
o 020 040 060 080 <
P(B) 600
Triangular Distribution
T ADD
Coefficient: U
1 10 00 10 20
! - " " 1 o
0.00 Y [ Ldd Assumptions. .. ] [ Bemove ] [ Calculate ... ] [ oK ] [ Cancel ] [ Help. ] 070 0.80 0.90
Minimum | EI Likel\eslﬂrm Maamum 1.00 J ‘ [inimum | K0 Tikeliest 0.30 Maximum 1.00
(O Forecast: P(A U B) = P(A) + P(B) - P(A)"P(B) A and B carrelated === O Forecast: P(AUB) = P(A) + P(B) - P(A)*P(B) A and B uncorrelated = e <
Edit View Forecast Preferences Help Edit View Forecast Preferences Help
100,000 Trials Frequency View 100,000 Displayed 100,000 Trials Frequency View et s "--.,.... 99,678 Displayec
P(A U B) = P(A) + P(B) - P(A)*P(B) A and B correlated P(AUB)=P(A) + P(B)- P(A)*P(BJ A and B uncorrelaied
L
2.400 k. ol
e 2,700
2,200
2,400
0.02 2,000
2,100
{800 0.02 '
1,600 1,600
2 1400 & = . E
5 -t = 1,500 2
% 1200 &5 Z ]
2 T 1,200
X 001 1,000 2 i 20 2
0.01
800 200
600 600
400
300
- b q
0. " I 1 " i I o
oodp ' ' ' ' ' ' ' ' —4 o 020 030 0.40 0.50 0.60 0.70 0.80 0.80 1.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
e B -Infinity Certainty: | [0 % q Infinity
P Arfinity Certainty: | [ % 4 nfinity
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Fail on Demand

e Concern is x (or more) of n items fail on demand

— Binomial distribution; exactly x of n fail on demand
 Parameter p: probability an item fails

.
.
.
.
.
®
®

*
.
.
.
.®
.®

Remember: For random variable Z,

CDF(z) is probability Z < z,

CCDF(z) =1 - CDF(z) is probability Z > z, so
CCDF(z 1) is probability Z = z

i )
jldarby@sandia.gov La%g:g?nﬁes
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* An item fails to operate for time t

* t is time of concern, say 24 hours

— Exponential distribution
 Parameter A: failure rate

Fail to Operate

T
s
s
s
s ®
s
T
s
-----
s
s
s
1)
s
Y
L)
s
)

— Treat A as a random variable, assign it a PDF
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y ;"Propagat

ion of Uncertainty:
SAPHIRE

%% SAPHIRE Fault Tree Editor UNCERTAINTY (ET Edit)
File Edit Insert View Help

Zoom % Model Type / Phase
BRI 2 (9288 A1 o

A and B Fail

UNCERTAINTY

Probability A fails on Demand robability B Fails to Continue
Operating for 24 Hours

UNCERTAINTYOD UNCERTAINTY1

5.000E-0 [1.131E-0

= e )

1s to be assigned to basic events in
robabilities of failure

i'vent using sampling process

4% Edit Basic Event - UNCERTAINTYO
- r y: - T

- Name UNCERTAINTYD
: s
‘Description P‘r’ubabil'rtyAfails on Demand

Probability = 5.000E-02

# i
iy ! Template Event - Default Template [NDtAss\gned

Failure Model |Attribut_es | Appl?cabiliiy | Nntesl Summary|

v]

=

= Eon

1.131E-

<8¢ Edit Basic Event - UNCERTAINTY1
. F e el

© Name UNCERTAINTY1 Probability =

Ay =
/Description Probabilty B Fails to Continue Operating for 24 Hours

- Default Template

Failure Model |Attributes | Applicability | Motes | Summary|

7 -
+ . [ Template Event -

Process Flag Faiure=> System Logic | Success== Delete Term

Item Value
S Phase e
Uses Template Mot Assigned
Description
Calculated Probability 5 E-02

Ttem Value
= Modellype

=t

Phase

Uses Template Mot Assigned
Description
Calculated Probability

Process Flag

1.131E-01

Failure== System Logic | Success=> Delste Term

=} Failure Model Failure Probability (1) [=}- Failure Model Fails to operate (without repair) (3}
=} Probability S.000E-02 =}~ Lambda S.000E-03
= Uncerianty Distuton - S Uncertainty Distributon -

Mode 0.000E+00 S5% Error Factor 3.000E+00

Upper End 1.000E-01 =+ Mission Time 2.400E-01

Correlation Class Uncertainty Distribution Point Value

Correlation Class
U

jldarby@sandia.gov

ational _
Laboratories



Propagation of Uncertainty:
SAPHIRE (continued)

%8 Uncertainty for: UNCERTAINTY (FT) o =] -
Un = PR
| yne ERTAINTY -Aand B Fail
O b= =7, -~ .
Calculation Parameters Uncertainty Resulis
Cumulative Distribution
Number of Samples 40000 Sample Size 40000 !
Nu m I:IE i b B T T Fe======" | e i
Random # Seed 0 Random# Seed 10467 : f 0 0 0
Rang U8 4------ R P FTTTTTTT Tt I
. Events 2 o : : : : :
e Uncertainty Method Cut Sets 1 @ D-E : : : : :
© Latin Hypercube Point Est. 5 654E-03 = 0.5 ; ' ] : k
- m & [= S —— - - - - [ o = om o= = om=- - -
. Mean Val 5 790E-03 = : I I I l
= E04y----f- it Dl Fo====os9 "TTmoe 1"
Intermediate Values | None - Sth % Val. 1.412E-03 oad /. LI I Lo . i
Inter] Median Val. 4 550E-03 = 5 ; 0 0 ‘
95th % Val 1.436E-02 ' : ! ! : :
A o e goomooeae Foom=e=eog it 3o
Min Sample Val. 1.818E-04 ! ! ! ! !
| | R | S
Max Sample Val.  5.852E-02 5.0E-3 1.0E-2  1.8E-2  20E2 2582
Standard Dev.  4.445E-03 Probability Frequency
| Skewness 2. 252E+00 _ . L i
— V’ Calculate (@ Cumulative [ Logarithmic ¥ axis
Kurtosis 1.145E+01 _ . Ny .
() Density [ Logarithmic X axis
| e
Resu
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# Propagation of Uncertainty

SAPHIRE: Review from Part 1

« SAPHIRE default treats all events with different
names as independent unless correlated

- P(A N B) =P(A)*P(B)

— P(A U B) =P(A) + P(B) - P(A)*P(B) =
1-(1-P(A))*(1-P(B))

— SAPHIRE default combines cut sets assuming cut
sets are independent

* Not exactly accurate if cut sets share basic events

« Correlation in SAPHIRE requires P(A) = P(B), uses
Same PDFs for P(A) and P(B) in a Bayesian sense,

and above become
— P(A N B) = P(A)2
— Ps(zA U B) = 2 P(A) - P(A)2 @ Sandia

. . National
jldarby@sandia.gov lab:lratnn'es
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SAPHIRE N of M Fail

Propagation of Uncertainty:

« Concern is any 2 (or more) of 4 identical components fail
- Let each component failure probability be p
- Exact probability 2 (or more) of 4 fail is

5= ¢

« SAPHIRE evaluates as

6*p?

6 combinati

Same result for small p

212!

53

t

—O—

31!

410!

— (1 —p)*+ o PPA-p)' + — P* -p)°)

Probability 2, 3, or 4 of 4 components fail
out of 4 total where each fails with probability p

ns of 2 of 4 failing

jldarby@ .

4§% SAPHIRE Fault Tree Editor
=

TWOOFFOUR (FT Edit)

=

ile Edit Insert View Help
bt Zoom % P Model Type | Phase
@\qm - V% Q % % $‘$|¥mv«’m (€ search
ooooooooooooo
TWOOFFOUR
Twa of Four Identical
Components Fail; Correlated
TWOOFFOURD
2f—
! I ! |
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
TWOOFFOURDD [5.000E-02 TWOOFFOURD1 B TWOOFFOURDZ [5.000E-03 TWOOFFOURD3 [5.000E-03
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Propagation of Uncertainty:
SAPHIRE

« 2 (or more) of 4 fail each with probability

uniform [0, 0.001]
— Exact mean 1.49E-4

Essentially the same solution from
Crystal Ball for exact for small p

« SAPHIRE solution correlated: 6p?

— Point Estimate 1.50E-4
— CDF —
SAPHIRE solution for c

Number of

N of M fail is incorrect if
M > 2 and .
probability fail is not small

Intermediat]

54

Results Tal

o Forecast: P2 or more of 4 fail EI@
Edit View Forecast Preferences Help
100,000 Trials Split View 99,248 Displayed
P2 or more of 4 fail Statistic Forecast values
Trials 100,000
1.00 100,000 Base Case 0.00E+0
ean 1.74E-4
X 000 | hedian 14964
00 gogop _ [Mede
:—":\ Q Standard Deviation 1.25E-4
T 070 70,000 5 | |Variance 1.55E-8
3 S |skenness 07993
E 0.60 60,000 g Kurtosis 101
@ i 717
g 050 50,000 T Coeﬁ of Yariation 0.7176
= 2 | [Minimu m 6.30E-9
S 040 40,0002 | |Maximum 5.88E-4
E 2 |Mean Sid. Error IMET
O 0.30 30,000 \2
0.20 20,000
0.10 10,000

o.odp-
0.00E+0

T
1.00E-4

'
400E-4

]

D Infirity

i Irfinity




Propagation of Uncertainty:
SAPHIRE N of M Fail

>~

* Degenerate Case
M of 2, Components A and B fail
— AND: N is 2
* One cut set A*B
—OR: Nis 1
« Two cut sets A and B
— Cut sets are independent

— SAPHIRE solution same as exact solution

55 ﬁa;!dia I
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Bayesian Update:
Some Special Cases

>

« Can use Bayesian update process to generate
posterior PDFs for failure probabilities for basic
events in fault trees

* Will discuss a few simple cases here
— See references for more detailed discussion

* f(x) a PDF for a continuous random variable X
with parameter 6 where we do not know 6
* Treat 0 as a specific value of a random variable ©

with PDF g(0) What PDF for g(6)?
What is g(0|x)?
g6l = IO F(x10
[ f(xl6) g(0) d6

s )
jldarby@sandia.gov la%g:g?nﬁes
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* g(0) is called a conjugate prior distribution for the
parameter O if g(0|x) is a posterior distribution
that is a member of the same family of
distributions as the prior

Conjugate Priors

— For X described by the binomial distribution with
parameter p, the beta distribution is a conjugate

prior for p; range of beta distribution is [0, 1]

— For T described by the exponential distribution with
parameter A, the gamma distribution is a conjugate
prior for A

57 ﬁa;!dia I
jldarby@sandia.gov La%:lorg'?nﬁes



\

Beta and Gamma Distributions

ozof

0.15f

Gamma

005

— Sandia
=0 National
Laboratories
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1’.‘ Binomial Distribution:

Beta Conjugate Priors for Parameter p

* Two sets of parameters used for beta distribution

— Shape parameters (a, ) «— used in this lecture
* Used in Mathematica

— Discrete parameters (x, n) for x failures in n tests
» Used in Martz and Waller reference
 Transformation:a=x f=n-x

* If prior is beta(x,, n, — X,) meanis x,/ n,

* Observe x failures in n trials

* Posterior is beta(x + Xy, n — x+ n, — X;) mean is
(x + %) / (n + ny)

59 [.1:1] Nanonal
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Binomial Distribution:
Beta Conjugate Priors With No Information

 With no information
— Uniform prior: beta(1,1)
mean -

Some prefer this: see NUREG/CR-6823 B
— Jeffreys noninformative: ., r

beta('z, 72) mean % o} | /

pel /

0.2 0.4 0.8 ] ‘.IS : Sandia
60 .
jldarby@sandia.gov l!‘] ﬂaﬁéﬂg?énes
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Bayesian Update for p

* No information before doing tests:
Use Jeffreys noninformative prior

— beta['~, 2], Mean is 0.5
* Observe x failures in n demands
— beta[x + 2, n — x + %] is posterior, Mean is (x + 2)/(n + 1)

TR
Fa

18 i
[ a0 L
16k -
1.4 15 [
12} [
; 10 |
1.0fF i
[ 5|
0.8l .
0.2 0.4 0.8 0.8 !

PDF for prior: mean 0.5 With n of 100, x of 3 PDF for posterior:

61 mean 0.035 S
jldarby@sandia.gov Laboratories
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Situations where Bayesian is Not Useful

 Two examples follow
— Biased prior
— Posterior based on little information

jldarby@sandia.gov I.aabtlllnrg?oﬁes
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- ' Bayesian:
Biased Prior Gives Incorrect Posterior

« Archeologists in a foreign country find an unknown coin from
ancient civilization. What is P(Heads)?

« Since Heads and Tails are all the mutually exclusive outcomes of
a sample space: P(Tails) =1 — P(Heads)

 You cannot examine the coin, but based on experience with coins
from similar civilizations you assume coin is two-tailed: prior is
P(H)=0and P(T) =1

« With these priors, update will always give P(H | tosses) =0
regardless of the number of tosses and results of the tosses

— Suppose you later receive the coin,
toss it 10,000 times and observe all heads

— Obviously coin is two-headed
— But your prior P(H) = 0 forces posterior to always be P(H | tosses) =0

63 [.1:1] Nanonal
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Y - ' Bayesian:
#or With Little Information Gives Posterior
that can lead to Misleading Conclusion

« Unknown coin from ancient civilization.

* You assume any value for P(Heads) for prior
uniform distribution over [0,1]: beta(1, 1) mean is -

PDF prior for P(H)
2.0¢

1.5]

1.0

0.5

02 04 06 o8 10PH

jldarby@sandia.gov La%:lorg'?nﬁes



2 Bayesian:

#or With Little Information Gives Posterior
that can lead to Misleading Conclusion

* Suppose you are told the coin was tossed once

and heads was observed; P(Heads) posterior is
beta(2, 1) with mean 2/3

65 Natonl
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> Bayesian:
rior With Little Information Gives Posterior
that can lead to Misleading Conclusion

- Based on this small amount of Information (one
toss) your posterior indicates heads is more
likely than did prior

* If you cannot obtain more information this is the
best you can do with Bayesian

« But if your prior was not accurate and you have
little information your posterior may be
misleading

66 [.1:1] Nanonal
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P Bayesian:
#ﬁor With Little Information Gives Posterior

that can lead to Misleading Conclusion
« Suppose that you later receive the coin and

perform 10,000 tosses and all were heads
* Posterior is beta(10001, 1) with mean 0.9999
* The coin is biased to always be Heads!

PDF posterior for P(H)

1000 With sufficient information

the Bayesian update reflects

800 the true situation.

600
But if we have little

400 information the Bayesian
update can be misleading;

200 next slide

0 p(H)

y 0.2 04 06 08 1. Santia
jldarby@sandia.gov L boracories



5 Bayesian:
rior With Little Information Gives Posterior
that can lead to Misleading Conclusion

* Suppose the coin is two-headed but we only have the
information that one toss gave heads. Our posterior for
P(H) (from earlier) is beta(2, 1) with mean 2/3.

_ This posterior does indicate
=0T a bias towards heads. -

But using this posterior, the
probability that a toss is
heads is small. Next slide.

o

[

o
I
o
[
o
o
]
o

68 ﬁa;!dia I
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}- Bayesian:
Example where Will Not Help continued

* Posterior CCDF
T But the coin is two
Probability SEr headed so the true
Exceed Value ot value for P(H) is 1.0
j Probability P(H)
041 exceeds 0.9 is small:
: 0.19
0.2 ( h‘
: I I S.I: T "'I-’- ll "I' I l S.IS I 1.0

Value for P(H)

69 ﬁa;!dia I
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# Bayesian:

Example where Will Not Help continued

* A fault tree can have many cut sets and each cut
set can have more than one basic event

— If our posterior for all basic events in the dominant
cut sets is based on little information our answer
can be way off

— For example, assume a cut set has two correlated
events each with P(H): value of cut set is P(H)?

70 [.1:1] Nanonal
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} Bayesian:
Example where Will Not Help continued

* Probability 2 of 2 tosses are heads
— P(H)?

fo e =S

O Forecast: prob 2 of 2 heads
cast Preferences Help

true value for
P(H)? is 1.0

Edit View Fore
120008 ek . But the coin is
two headed so the

100,000 Displayed

100,000

00,000

— ' 80,000

Probability P(H)?

exceeds Value

(LT T
0.20 -

0.10 -

1 1
4 O0E-1 6 O0E-1

Value for P(H)?

c.odp

1 1
0.D0E+D 2 D0E-1

b -irfinity

Probability P(H)? exceeds
0.9 is small:0.1

1
8 00E-1

20,000
10,000
o

1
1.00E+D

7 jldarby@sandia.gov
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5 Bayesian:
rior With Little Information Gives Posterior
that can lead to Misleading Conclusion

* The prior updated with little information is
misleading

72 ﬁa{!dia I
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» Use techniques that better capture state of
knowledge uncertainty

 Belief/Plausibility is such a technique
— Subject of part 3 of this course

— We will address this example using
belief/plausibility in part 3

If Bayesian Cannot Help

73 Natonl
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« An inaccurate prior may be acceptable if

extensive information is available for update to
posterior — Unless prior totally excludes values that can occur

Bayesian Update Insights

* A good prior is required if extensive information
for update is not available

‘A poor prior\ Bayesian approach cannot help you in this
can prodfsc\e . situation.

Consider using a measure for uncertainty
that is broader than probability, such as
belief/plausibility. Belief/plausibility
measure of uncertainty is discussed in

5 part 3 of this course. LIE Sandia
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Bayesian and Classical Statistical Inference

« Both give essentially same answer consistent with the information
available

- Binomial distribution, large population
sample 1000 and observe 5 failures, mean is 0.005

— Classical statistical inference 95% (0.05 a) one sided upper confidence
level (UCL) for p is 0.010. 95% confidence P in [0, 0.010] (See part 1)

(x+1)F_, (2x+2,2n—2x) UCL is NOT a percentile
(n—x)+(x+DF_,(2x+2,2n-2x) p is fixed but unknown

UCL(x) =

— Bayesian with Jeffrey’s noninformative pg’ior

CDF for

produces posterior beta(5.5, 925.5) _

mean is 0.0055 Fundamental
95% percentile is about0.010 difference between

Classical and
Bayesian

" l/ PRI |
[ P
e WA WA

p is a specific value of the
random variable P

75
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Bayesian with Exponential Distribution

 Time to failure T is random variable with PDF

A eMwhere t is a specific value of T. The parameter A is the
failure rate

CDF: Prob(T<st)=1-eM
* Treat A as a specific value of a random variable A
« The gamma distribution is a conjugate prior for A
— Gamma distribution has two parameters I'(a, 8)
« PDF(A) = 1/(B® '(a)) * A*1* exp(-A/B)
— B has units of 1/time

— Some developments use 1/B for the second parameter
(NUREG/CR-6823)

« PDF(A) = BT (a) * A*1* exp(-AB)
— B has units of time
— We use B with units of 1/time, same as Mathematica

76 Natonl
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\#j Exponential Distribution:
G

amma Conjugate Priors for Parameter A

* If prior is gamma(a,, B,) mean is a,f,

* Observe total of x failures over a fixed time t

— Each item that is tested is replaced if it fails before
time t

* See Martz and Waller section 7.1.3 Poisson Sampling

* Posterior is gamma( x + oy, Bo/ (Bt + 1) ) mean is
Bo(x + 0p) / (Bt + 1)

7 [.1:1] Nanonal
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Exponential Distribution:
Gamma Conjugate Prior With No Information

 Jeffreys noninformative:
gamma(’z, 1/0)

Cannot plot PDF.
An improper distribution: § = «
see NUREG/CR-6823

jldarby@sandia.gov Laal}:?rg?oﬁes
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Bayesian Update for A

* No information before doing tests:
Use Jeffreys noninformative prior

— gamma['a, 1/0]
* Observe x failures in time t
— beta[x + "2, 1/t] is posterior, Mean is (x + ')/t

1200
1333;
933;
200 [
=33}

200

0.0005 0.0010 0.0015 0.00:20

With x of 10, t of 9038 PDF for posterior:

79 mean 0.0011 Sanda
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Bayesian and Classical Statistical Inference

« Both give essentially same answer consistent with the information
available

« Exponential distribution
observe 10 failures over total time 9083, mean is 0.0011

— Classical statistical inference 95% (0.05 a) one sided upper confidence
level (UCL) for A is 0.0017 (95% confidence A in [0, 0.0017] (See part 1)

UCL(A) _ X -a(2n) UCL is NOT a percentile
% A is fixed but unknown

— Bayesian with Jeffrey’s noninformative prior
produces posterior gamma(10.5, 119083)
mean is 0.0012 B :
95% percentile is about 0.0018 osf 5

A is a specific value of the
random variable A

Sandia
020} | National
Laboratories
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References for Bayesian Approach

- Bayesian Reliability Analysis, H. F. Martz, R. A. Waller, Wiley, 1982

« “Handbook of Parameter Estimation for Probabilistic Risk Assessment”,
NUREG/CR-6823, SAND2003-3348P, Sept 2003

* “On the Quantitative Definition of Risk”, S. Kaplan, B. J. Garrick, Risk
Analysis, Vol. 1, No. 1, 1981

* “PRA Procedures Guide”, NUREG/CR-2300, US NRC, Jan 1983
 Mathematica Version 10.1, Wolfram Research, Inc.

« SAPHIRE Version 8.1, INL for US NRC

» Crystal Ball software, Version 11.1.2, Oracle.

- “Data Analysis for Scientists and Engineers”, Stuart L. Meyer, Wiley, 1975.
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Part 2 Simple Examples: Day 2
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Simple Example 2-1 continued
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A
Example 2-2

« Consider OR logic in a fault tree for probability of
failure of A or B: P(A U B)

« Assume independence

P(A UB)=P(A) + P(B) - P(A)*P(B)

* In part 1 we assumed P(A) and P(B) were known
—If P(A) = 0.4 and P(B) = 0.7
—~P(AUB)=0.4+0.7-—0.28 = 0.82

* Now we consider uncertainty in P(A) and P(B)

using a subjective approach

— Treat P(A) and P(B) as random variables
* P(A) and P(B) have PDFs
* Perhaps obtained with a Bayesian update

85 [.1:1] Nanonal
jldarby@sandia.gov La%g:g?nﬁes




% FOF Prob PA)
A

* Yester« :'
contint *|
+For this " |
for P(A 31
*So we :

or

ate PDFs

e Assumeo-r=:rie
~P(A) "
—P(A): .-f

— P(A) :.

« Assum

AE ™
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Example 2-2 continued

P(A) and P(B) are
independent
N\

* The value of P(A U B) is P(A)y+ P(B) — P(A)*P(B)
- Each value, call it z, a probability
—P(z) = > [P(P(A)) * P(P(B))] | P(A) + P(B) — P(A)*P(B) = z

Values (objective probabilities) Probabilities (subjective) of Values

P(A) P(B) P(A) + P(B) -P(A)*P(B) P(P(A)) P(P(B)) P(P(A)) *P(P(B))
0.2 0.2 0.36 0.3 0.7 0.21
0.2 0.5 0.60 0.3 0.1 0.03
0.2 0.7 0.76 0.3 0.2 0.06
0.5 0.2 0.60 0.6 0.7 0.42
0.5 0.5 0.75 0.6 0.1 0.06
0.5 0.7 0.85 0.6 0.2 0.12
0.8 0.2 0.84 0.1 0.7 0.07
0.8 0.5 0.9 0.1 0.1 0.01
0.8 0.7 0.94 0.1 0.2 0.02

Value 0.60 has probability 0.03 + 0.42 = 0.45

87 ﬁa"'dia |
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Example 2-2 continued

PDF

01k

0.0k

0.4 0.5 0.8 0.7 0.8 0.9
CDF for Prob P[A U B)
1.0F .

aal . CDF

F{A U B)
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 Now consider dependence

* The value of P(A U B) i
P(A) + P(B) — P(B|A)*P(A)
« Each value, call it z, h probability
—P(z) = 2 [Pjointror (P(A), P(B))] | P(A) + P(B) — P(B|A)*P(A) =z

. T2 R P-Ye
Example 2-2 contlr‘P(A) and P(B) are

dependent

~-P(ANB)=

89 ﬁa"'dia |
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Example 2-2 continued

Example of dependence
P(A UB)=P(A) + P(B) - P(A N B)
As before PDF for P(A) is Dependence
— P(A) = 0.2 with probability 0.3 if P(A) is 0.2, P(B) = 0.2 (with probability 1)
— P(A) = 0.5 with probability 0.6 If P(A)is 0.5, P(B) = 0.2 (with probability 1)
— P(A) = 0.8 with probability 0.1 fP(A)is 0.8, P(B) = Q.5 (with probability 1)
As before PDF for P(B) is
— P(B) = 0.2 with probability 0.7

Values (objective probabilities) Probabilities (subjective) of Values
P(A) P(B) P(A) + P(B) -P(BIA)*P(A) P(P(A)) P(P(B))  Pun(P(A), P(B))
0.2 0.2 0.36 0.3 0.7 0.3
0.2 0.5 - (0 joint probability) 0.3 0.1 oT
0.2 0.7 --- (0 joint probability) 0.3 0.2 0
O

Point(P(A), P(B)) = 0.3 since P(A) of 0.2 has probability 0.3
0 and P(B) of 0. 2 occurs with probablllty 1 given P(A) is 0 2

0.0 v.£ - U JOINIL propdoiiy)
0.8 0.5 0.9 0 1 O 1 0.1
0.8 0.7 --- (0 joint probability) 0.1 0.2 0

Sandia
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Exambple 2-2 continued

FDF for Prob P{A U E)

0.8 -
0.5
0.4
0.3 e
0.2
01 ™
"""'""""""""""'F:-.':"\.L!E)
0.4 0.5 0.6 0.7 0.8 08
CDF for Prob FlA U B)
1.0 | -
[ ]

0.8

0.8

0.4

o
0.2
- 1 F(AUB)
0.4 0.5 0.6 0.7 0.8 0.8
Sandia
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Example 2-2 continued

Dependence where nrobhahilitv of failure events have same probability
PLF for Prob PlA U B) Same Prob

0.6} .

- ¢ 05 f value 1.0; see part 1 lecture
° P(A 0.4t

3 H

* Assi -

- I J1F .

— | 0.0 ks A P{A U B) Same Prob

o4 085 08 07 08 0.5

— P(A) = 0.8 with probability 0.1
Same PDF for P(B)

CDOF for Prob P& U B) Same Prob

1.0 | .
05| )
Values (objecti el .
P(A)  2*P(A) .4t
02|
02 036 :I :I , . L, R — L F-'.l. |__ E'I i - FH-I-
0.5 0.75 “"04 05 08 07 08 09 e R mETmE TR
0.8 0.96 0.1 0.1
Sandia
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* The correlation we addressed assumed that the
dependence is such that the two failure events
have the same probability of failure, but that
probability is unknown

 Let us also assume we have common cause
failure

* Look at the common cause example from lecture
1 considering uncertainty in the probabilities

— In lecture 1 we assumed the failure probabilities
were known: no uncertainty

Example 2-3
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}i Example 2-3 continued

Common Cause from Lecture 1

* Let A and B be failure events for two components

* Frequently, P(A N B) > P(A) * P(B) due to dependence from common
cause

 Let A={A, ,C} and B = {B,, C} where A, and B, are independent failures
and C is failure common to A and B. Note that A, and B, are
independent, A, and C are mutually exclusive, and B; and C are mutually
exclusive.

-ANB=(AUC)N(B.UC)=(ANB)U(ANC)U(B,NC)UC =
(A;NB)UC €

Boolean Reduction -

mutually exclusive

. P(ANB) = P(A,N B)+P(C) - PW C) =
P(A,) * P(B;) + P(C)
independent

jldarby@sandia.gov La%g:g?nﬁes
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}.‘ Example 2-3 continued

Common Cause from Lecture 1

* Prob A (or B) Fail 10-3 with 10% common to A and B
« P(A)=P(B;)=9 x10+4
« P(C) =104

* From earlier
P(A N B)=P(A)*P(B)+P(C) =
I9x104*9x104+ 104 =1.008 x 104= 104

05 Natonl
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le 2-3 continued Common Cause Explicitly in Fault Tree

File Edit Insert View Help

- Zoom % Model Type | Phase

Both Switches Fail

BOTHFAIL

I |
Switch A Fails Switch B Fails

BOTHFAILY

BOTHFAILD

|
itch A Fails Independent

THFAILOD [9.0000

Note: Cut sets that contribute
FAULT TREE/CS#

BOTHFAIL
1 1.000E-4 BOTHFAILO1 Common 1.000E-4
Cause Failure
2 8.100E-7 0.80% BEOTHFAILOO Switch A Fails 9.000E-4
Independent
BOTHFAIL10 Switch B Fails 9.000E-4
Independent
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O Forecast: Fail correlated
Edit View Forecast Preferences Help

~“=on Cause with

100,000 Trials Split View 100,000 Displayed
Fail correlated Statistic Forecast values
Triails| 100,000
1.00 100,000 Base Casze 0.00E+0
Mean 1.01E4
DED 80.000 | Median 1.01E-4
0.80 80,000 Mode o
}“::\ Q Standard Deviation 4 08E-5
T 070 70,000 5 |Variance 167E-9
3 C |Skewness 79161E-06
2 oat B0.000 = |Kurtosis 240
@ | Coeff. of Variation 0.4040
@
0.50 50,000
E 90 I inimum 12766
S 040 40,000 2 |Maximum 2.02E-4
E S |Mean Std. Error 12867
jun |
O 030 30:000.2
0.20 20,000
0.10 10,000
0.00p ' T u
0.00E+0 1.00E-4 2.00E-4
P ifinity Certainty: 100.000 % 4 irfinity

ted
ndependent

e

o

4§ Uncertainty for : BOTHFAIL (FT)
BOTHFAIL - Both Switches Fail

Calculation Parameters

Number of Samples

Random # Seed

Uncertainty Method

() Latin Hypercube

(@) Monte Carlo

Intermediate Values

100000

0

Nene -

Calculate

Results Table

Uncertainty Results

Sample Size
Randam # Seed
Events

Cut Sets

Point Est.

Mean Wal.

ath % Val
Median Val.
95th % Val.

Min Sample Val.

Max Sample Val

Standard Dev.
Skewness

Kurtosis

100000
44077

3

2
1.008E-04
1.011E-04
3.265E-05
1.010E-04
1.696E-04
3.429E-07
2.023E-04
4.091E-05
3.447E-03
2.384E+00

Cumulative Distribution

=

oo e

5.0E-5

(@) Cumulative

(7) Density

[ Logarithmic ¥ axis
[ Logarithmic X axis

1.0E-4

1.5E-4
Probability Frequency
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Example 2-4

Prior Prob{A)

0.15

0.10 |-

0.05
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I I
i i Posterior POF for A given 10 events in G yrs

0.25f v
n.ané
0.25f
0.20f
0.15F .
0.10f
0.05f .

99
jldarby@sandia.gov



A

FOF for p

40
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0.02 0.04 0.06 d.08 0.10
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Part Two Real World Examples: Day 3

1. W87 new AFA analysis (with uncertainty)
(classified)

2. LAC SFI (classified)
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« See Word Document
NST 560 Part2_Problems.docx

» Solutions will be handed out at start of part 3

Part 2: Homework
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