
Final Scientific Technical Report for Award DE-EE0006353.000

An Extensible Sensing and Control Platform for Building Energy Management
Principle Investigators
Anthony Rowe, Mario Bergés, Carnegie Mellon University
Christopher Martin, Research and Technology Center, Robert Bosch LLC

This document contains a review of progress made over year 1. There are no distribution limitations related
to the contents of this document.

Contents

1 Introduction 2

2 Project Overview 3

3 System Design 4
3.1 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 XMPP PubSub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Mortar.io API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 IPC Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Respawn Datastore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Event Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Quickset Plug-and-Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Auto-Discovery and Auto-Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 System Benchmarks 15
4.1 PubSub Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Respawn Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Estimated Building Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Related Work 18

6 Project Products 20

Acknowledgment: ”This material is based upon work supported by the Department of Energy under Award Number
DE-EE0006353.”

Disclaimer: ”This report was prepared as an account of work sponsored by an agency of the United States Government.

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,

express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government or any agency thereof.”

1



1 Introduction

Although there has been considerable work done on BAS, only 10% of commercial buildings utilize advanced
monitoring and controls [1]. Most of this effort has focused on large and/or new commercial facilities that are
100,000ft2 or greater in size. The vast majority of smaller buildings (food sales, food services, warehouses,
etc) perceive BAS solutions as either too expensive or too labor intensive to justify installation efforts.
Incentives are often further diminished if the owner of the complex is not the tenant and/or they are not
aware of the benefits automation systems can provide. To truly unleash the energy saving opportunities and
maintenance improvement potential that automation and monitoring systems can offer, there is a need for
a robust and scalable solution that can integrate multiple building systems in an easy-to-configure manner.
Typical building management systems could include control and monitoring of HVAC, lighting, plug-loads,
security and fire alarm systems.

The goal of this project is to develop Mortar.io, an open-source BAS platform designed to simplify data
collection, archiving, event scheduling and coordination of cross-system interactions. Mortar.io is optimized
for (1) robustness to network outages, (2) ease of installation using plug-and-play and (3) scalable support
for small to large buildings and campuses.

Most traditional BAS designs rely on dedicated wired (often proprietary) bus or network protocols.
These protocols connect general-purpose controllers to a wide variety of transducers and run customized local
control loops and schedules. All runtime data is logged at the central coordinator which is also responsible for
any global device interactions. In more recent designs, the central coordinator might expose cloud services for
remote management. In contrast, Mortar.io pushes tasks like data storage, scheduling and alarm generation
closer to the edge devices. This allows for continuous data collection and distributed operation even during
network outages.

Mortar.io uses a publish-subscribe architecture built on the XMPP protocol, originally designed for
Internet-scale real-time chat. Each transducer and its associated meta-information is stored in an event
node that contains various items of interest (data, schedule, maps, etc). Historical sensor data is stored in
a distributed multi-resolution time-series data store called Respawn [2]. Respawn has the ability to migrate
low-resolution (aggregate) data to different nodes in the system both to improve access performance through
caching and provide fault-tolerance through data replication. In order to facilitate interoperability, we define
a schema that describes properties of particular transducers (meta-data) as well as a method for capturing
their inputs/outputs (time-series data).

Our plug-and-play infrastructure called QuickSet uses short-range communication and Zeroconf network-
ing between a smartphone or tablet and a BAS device to securely register and pair new peripherals with the
system. Since many BAS components are behind firewalls or on VLANs, a lightweight Public Key Infras-
tructure (PKI) allows the mobile device to configure components wirelessly without requiring direct network
access itself. The PnP protocol, called Quickset, supports self-powered NFC communication for installing
devices in new constructions before power or networking is available. We also describe and motivate an
auto-discovery and auto-mapping service that can scan for devices on a network and utilize relationships
between sensor streams to aid placing devices on a map. It is important to note that auto-discovery is not the
same as plug-and-play. Plug-and-play is the process of securely pairing and collecting required operational
information form a device. Auto-discovery can help this process, but is not a suitable replacement for it.

To verify scalability from complex medium sized buildings down to small installations, in Section 4 we
show benchmarks that indicate that our platform can comfortably operate on low-cost embedded targets
(for example a $20 Sitara ARM Cortex-A8 processor from Texas Instruments) and accommodate substantial
amounts of traffic on set-top box and server hardware. The core components of the system are written
in ANSI standard C with hooks to languages like Python, Erlang and Javascript for higher-level tasks.
Each component has clearly defined interfaces and should be portable across platforms and compatible with
alternative frameworks.

2



2 Project Overview

During year 1, the team has developed working prototypes of all the components of Mortar.io, based on
functional requirements collected by our Bosch partners. We met all of our proposed milestones. During
the first six months, the team focused on overall architecture design and the details of each component
guided by the results of the functional requirements analysis and insight about common building operational
pain-points during our monthly conversations with DOE. After the design was finalized, the second half of
the year was spent on the implementation of the different components which are detailed in Section 3.

Many non-crictical tasks were also completed during this period, including: (a) the implementation of
a web-based project management system and code repository, with fully-linked documentation of APIs
(http://dev.mortr.io); (b) the addition of Lutron as a partner, along with the integration of their
Quantum BACnet-enabled lighting controller into our project; (c) hosted a workshop at CMU (http:
//openbasworkshop.org) dedicated to creating a forum for discussion about the different problems and
existing solutions for Building Automation Systems (BAS).

Though a detailed review of each component and design decision is presented later, we would like to
highlight three of the completed tasks, which we believe summarize the progress to date and are all currently
running on the benchtop setup (Figure 1) that will be used for the site visit in October:

Quickset: To facilitate device and network configuration in a secure manner – something that is currently
lacking on most BAS solutions in the market, even those with auto-discovery functionalites – we designed
a PnP protocol called Quickset. Quickset uses short-range communication and Zeroconf networking to
securely register new devices to Mortar.io using a smartphone or tablet as the broker. To design this piece
of technology we performed an extensive review of the existing solutions in the market, and consulted with
security experts. Details of Quickset can be found in Section 3.2.3. We continue to track how various
emerging industry standards are converging on similar approaches. As we move forward, we intend to
maintain compatibility with best-in-class approaches. The Quickset architecture is modular and can be
easily ported to vendor-specific platforms.

Respawn: To improve the reliability of historical data storage and the system’s robustness to network
outages, we integrated and adapted an existing distributed multi-resolution time-series data store called
Respawn [2]. When integrated into our PubSub framework, this solution significantly reduces query latencies
and provides replication to cope with potential network outages. We have fully integrated Respawn into
Mortar.io, and have tested its reliability and performance with our benchtop setup. More details on the
design choices and the technology can be found in Section 3.2.1.

Auto-Mapping: Although there are many ways to perform device discovery through existing protocols,
a good portion of the meta-data associated with devices in the system is either unavailable, outdated or

	
  
Figure 1: Three initial target systems on benchtop setups.

3

http://dev.mortr.io
http://openbasworkshop.org
http://openbasworkshop.org


unverifiable. To solve this problem, we have designed a preliminary solution based on statistical analysis of
historical measurements from different devices, seeking to estimate the dependence between these streams
and use this information to infer pieces of meta-data that the correlated (or dependent) devices may have in
common. This approach to auto-mapping is different from simple device-discovery, and we believe it has the
potential to significantly improve the initial configuration of Mortar.io systems by making it more efficient,
as well as to assist in the maintenance and upkeep of any installed system by keeping track of the inferred
dependencies and flagging any anomalous trends that may indicate inconsistent meta-data. More details on
our auto-mapping solution can be found in Section 3.3.2.

3 System Design

Mortar.io is built to scale from a single home or small business to large campuses. This is achieved through
the implementation of a distributed system where each component has limited scope and functionality.
Asynchronous communication via XMPP as well as an IPC Daemon provide a scalable, reliable, and easy-
to-use communication architecture.

Figure 3 depicts an example Mortar.io deployment in a small buisness. Two hardware components central
to the Mortar.io system are the controller and the gateway. The controller hosts the XMPP server which
provides asynchronous inter-device communication. The controller may also host any Mortar.io services
that may be used by multiple gateways. The use of XMPP enables the controller to be deployed on a small
embedded server or be distributed over a cluster of high-end servers, according to the requirements of the
installation.

Gateways connect Mortar.io to a building’s infrastructure. A single gateway may interface with more
than one system protocol. The software processes that bridge the different technologies are called adapters.
Similar to the XMPP server on the controller, local instances of an IPC Daemon enable the passing of
messages within a gateway’s processes. This allows adapters to achieve better performance and maintain
operation when during network failures.

Users interact with Mortar.io using either a mobile or a web interface. The mobile interface provides
a simple, easy to use plug-and-play deployment tool for assisting in the installation and configuration of
equipment, with a technique called Quickset (details in Section 3.2.3).

Figure 4 presents the software architecture of Mortar.io. The lowest Mortar.io layer is the Driver Layer,
where we find the components that adapt information about devices on a wide range of protocols to the
Mortar.io schema and then to the IPC message router. Adapters translate system specific information into
the Mortar.io schema and distribute them using the IPC Daemon interface to the XMPP server. Adapters
produce XMPP messages in response to events or readings from elements of the BAS. It is also capable
of actuating BAS elements upon receiving an XMPP message. Mortar.io currently includes adapters for
BACnetIP, ModBUS (RTU and TCP), ZigBee (for the FireFly WSN) as well as for NEST thermostats,
Phillips Hue and the Inscope Enfuse energy metering system based on RESTful API. Drivers are run on
Gateways, which may need special hardware interfaces for communication with specific building technologies.
For example a serial connection to a bus, an ethernet connection to a separate network, or an 802.15.4 radio.

The Transport Layer provides asynchronous messaging services used by all other system components.
XMPP enables inter-device communication. The IPC Daemon, run on each device, expedites communication
among intra-device components while enabling operation to continue when the XMPP server is unreachable.
It is used in gateways to allow other services to receive or intercept the messages of an adapter. Scalability is
provided by XMPP federation mechanisms, which allow the server to scale with the deployment. Inherent to
this message passing is the Mortar.io schema, detailed in Section 3.1.2, which is necessary to describe device
and system information. The schema allows for standard descriptions of schedules, device meta-information,
mapping information, actuation and data updates.

The Service Layer contains the components which build on top of the Data Layer and provide services
used by applications or for management. The Quickset plug-and-play service supports the mobile application

4



Router	
  

Electric	
  
Metering	
  
Gateway	
  

Firefly	
  
Gateway	
  

MIO	
  
Controller	
  	
  

Fan	
  Control	
  /	
  	
  
Misc	
  Plug	
  Load	
  (30)	
  

Environmental	
  Sensors	
  

	
  
	
  

Wistat	
  Thermostats	
  (60)	
  

	
  
HVAC	
  

Gateway	
  

802.15.4	
  -­‐>	
  
ModbusRTU	
  	
  

Automatrix	
  Thermostats	
  (30)	
  

Automatrix	
  PLC	
  (5)	
  

Res5ul	
  	
  
Interface	
  

Inscope	
  Enfuse	
  	
  
Breaker	
  Monitor	
  (10)	
  

Ligh;ng	
  
Gateway	
  

802.15.4	
  

Lutron	
  Quantum	
  LighLng	
  

Chilled	
  Water	
  and	
  Steam	
  Monitoring	
  

Figure 2: Scaife Hall Deployment Overview

XMPP	
  Publish	
  Subscribe	
  

Controller	
  

XMPP	
  Server	
  

Web	
  UI	
  

Respawn	
   Quickset	
  

Gateway	
  

Device	
  Driver	
  

Respawn	
  

Scheduler	
  

Quickset	
  

IP
C	
  
Da

em
on

	
  

Mobile	
  

Mobile	
  UI	
  

Quickset	
  

Gateway	
  

Browser	
  /	
  
Authoring	
  

Device	
  

Fi
el
d	
  
Bu

s	
  

Watchdog	
  

AnalyGcs	
  

PnP	
  Stub	
  

Meta	
  	
  
Data	
  

Figure 3: Mortar.io Overview

5



Mortar.io	
  So*ware	
  Stack	
  

Transport	
  Layer	
  

Driver	
  Layer	
  

XMPP	
  
MIO	
  Schema	
  

IPC	
  

Applica3ons	
  Services	
  

Quickset	
   Auto	
  Map	
  MIOFS	
  

Scheduler	
   Authoring	
   User	
  Interface	
  
	
  Quickset	
  App,	
  AnalyAc	
  View,	
  

Historical	
  View,	
  Scheduler,	
  Maps	
  
	
  

…	
  BACnet	
  
Adapter	
  

BACnet	
  
Devices	
  

ModBus	
  
Devices	
  

Wireless	
  
Sensors	
  

ModBus	
  
Adapter	
  

ZigBee	
  
Adapter	
  

X	
  Protocol	
  
Adapter	
  

Future	
  
Devices	
  

Devices	
  

Maps	
  
Respawn	
  

Time-­‐series	
  
Storage	
  

Figure 4: Mortar.io Software Architecture

during the installation of Mortar.io in a building, automating complex network and driver configuration tasks.
Support for control automation is provided by the Scheduler service. The Maps service provides mapping
information for each BAS element, giving users easy to understand logical or physical location information.
Respawn, a time-series database is used to provide access to historical data, as XMPP will only retain the
last few events for each sensor. The authoring service aids users in classifying and providing data for each
sensor in large deployments. Further services exist or may be added in the future, though they are out of
scope of this paper.

The Application Layer encapsulates userspace utilities. Applications may build only on top of the Trans-
port Layer or also make use of components from the Service Layer. A locally hosted website provides the
primary UI, described in Section 3.3.1. This provides an interface to the Schedule Editor, Analytics Engine
and allows Remote Management. The Mobile App provides the same functionality as the website, while also
providing an interface for the Quickset plug-and-play application, which enables effortless device installation
and configuration. The Auto Mapper App was developed to facilitate the configuration of large deployments,
assisting in determining the location of each device by detecting colocated devices through the correlation
of events. MIOFS provides a file system abstraction for sensors and actuators based on FUSE.

3.1 Transport Layer

All remote messaging uses XMPP. As an optimization and to support local communication during network
outages, we also have an IPC Daemon that runs on each local gateway.

3.1.1 XMPP PubSub

Mortar.io is built on a publish-subscribe messaging pattern, which runs as part of the XMPP messaging
platform [3]. Data is published to an XMPP server and then distributed to subscribed entities. Fine grained
access control is also provided by XMPP. More details about the different system entities, depicted in Figure
5, are given below.

Event Nodes: An event node is an address (or topic in similar systems) to which authorized users in

6



Collec&on	
  Tree	
  Event	
  Nodes	
  

meta	
  

storage	
  

UUID_act	
  (type=leaf)	
  

UUID	
  (type=leaf)	
  

SetValue	
  

data	
  

map	
  

schedule	
  

Actuator	
  Node	
  

Event	
  Node	
  UUID@server.domain.org/namespace	
  

Figure 5: Publish-Subscribe Architecture

the system can publish and subscribe. For example an event node representing a sensor feed from a weather
station would receive publications from the station’s adapter, to which interested users can subscribe. The
XMPP server stores and manages all existing event nodes of a given domain, receives publications and
forwards them to the appropriate subscribers. Each event node is identified by a UUID, which is generated
by Mortar.io upon creation.

Entities may organize their data in the form of items (subtopics), which can be stored and retrieved
individually from event nodes. The weather station node may, for example, contain an item for each of
its transducers one for the outside temperature, one for the outside barometric pressure, etc. Items may
also contain meta-data such as the location of the device associated with the node, its manufacturer, model
number, etc.

Mortar.io allows for the actuation of devices through actuation event nodes, which complement a device’s
standard event node. An actuation node contains an item for each actuating transducer of the associated
device, addressed using the same UUID as the devices event node with ” act” appended. This decoupling
of event and actuation nodes allows separate access control for device monitoring and actuation.

Collection Nodes: A collection node contains a list of event and/or collection nodes. It is a construct
used to hierarchically group nodes for organization and access control purposes. For example a collection
node may represent a geographical region such as a room in a building. Users may directly subscribe to
collection nodes to receive publications from all child event nodes.

Access Control: Access control is handled on a per-node basis by XMPP. Each event node may have a
list of users affiliated with it, including owners, publishers and subscribers. The node owner is the manager
of the node and can configure which users are granted publish and subscribe access to it. Users need to be
granted publish access individually by an owner, after which they can publish data (including meta-data) to
the node.

Mortar.io employs the roster-based node access model for subscription management. It allows the creation
of different user rosters (groups) to grant subscription privileges to nodes. For example a “guest” roster may
allow users of that roster to only subscribe to a few sample nodes in the system, while an “administrator”
roster allows for subscription to all nodes.

XMPP Servers: Many open-source and proprietary XMPP servers exist, varying significantly in their
supported feature set. We have internally evaluated several of them and have settled on Ejabberd [4] since it
implements all necessary XMPP features, provides good performance, is platform-agnostic and open-source.

Scalability is achieved by federating servers across domains. Server federation is an integral feature of most
XMPP servers, which allows inter-server communication for sharing nodes, publications and subscriptions
across domains.

7



3.1.2 Mortar.io API

LibMIO: Central to Mortar.io is LibMIO: A library providing the API to the Mortar.io system. LibMIO is an
open-source, multi-threaded, C library, containing an XMPP messaging engine. It implements the Mortar.io
schema, providing procedures ranging from server connection management, node creation/management,
subscription management, to publication transmission and reception are included. Easy to use command
line tools for most functions are also provided. The library can be compiled for several platforms including
Linux, Windows, OSX and iOS. Porting LibMIO to other languages is planned for the near future. LibMIO
also encapsulates the schema used to describe device and system information.

Mortar.io Schema: Mortar.io defines an XML based semantic structure for device meta-data and trans-
ducer values. The goal of this is to support the description and data associated with arbitrary device and
transducer configurations.

The schema defines a device as a physical unit housing one or more transducers, such as a thermostat.
Transducers are sensors or actuators that produce and/or consume streams of data and are associated with
a device, such as the temperature or the set-point of the thermostat.

A high-level overview of the main components of the schema describing a thermostat can be found in
Figure 6. The meta-data is stored in an event node’s item titled ’meta’ (all pre-defined items are shown in
Figure 5). Device stanzas are the highest level of abstraction in the meta item and under them there can be
any number of transducers. The name field provides human readable names and types of devices. It is also
possible to include a geolocation stanza for the device, as well as the manufacturer and serial number of the
device [5].

The Transducer item stores the human readable name of the transducer. A transducer is uniquely
identified by ”nodeid name” and name must be unique within a device. The schema also provides the
optional ability to specify the location, the manufacturer, and serial number of a transducer.

Unit provides a description of the values a transducer can publish to its ’data’ item and gives the physical
explanation of what that value represents. It requires a unit description from a list of allowed units. An
enumerated unit type is possible and the Enumerated list may be specified in the enumeration sequence of
properties. If the unit is a scalar it is also possible to specify attributes to expect from that scalar, including
min and max values along with the rated resolution, precision, and accuracy of the sensor.

Data stanzas are published to the item entitled data. These stanzas hold the transducer values for the
device. The name field identifies the transducer that generated the data, while the value attribute contains
the value of the transducer’s data stream at the time present in the timestamp. If a preprocessed value is
available it may also be included.

3.1.3 IPC Daemon

The Mortar.io IPC Daemon, illustrated in Figure 7, provides a process management interface as well as an
intra-gateway communication router. This provides the ability for services on a local gateway to continue
operating during a network outage and reduces the processing overhead of maintaining a full XMPP session
for each local component. The IPC acts as a single point of communication to the XMPP server which
reduces the parsing overhead required to route each packet to a specific component running on a local
gateway. It then provides an interface for adapters and services to listen for specific event nodes and items.

The IPC is also responsible for launching adapter, service, and application processes. A process watchdog
is spawned to routinely check for the liveliness of all these processes, restarting them if necessary. It further
manages their configuration, such as defining which processes should receive what data from what event
nodes, actuation requests, and which items are relevant. This provides a route for local communication and
therefore local communication is immune to network and internet outages.

The IPC Daemon setups and maintains NTP, firewall settings, and Zeroconf service registration for

8



Meta Item 
<Device 

 name=“WISTAT_SH214” 
 type=“Thermostat” 
 timestamp=“2014-07-15T13:13:21.318744-0400”  
 serialNumber=“071.005”> 
 <Transducer name = “Temperature”> 
  <Unit units=“Celcius”minValue=“0”maxValue=“50”/>  
 </Transducer> 
 <Transducer name=“Set Point”> 
  <Unit units=“Celcius” minValue=“10” maxValue=“25”/>  
 </Transducer> 
 <Transducer name=“Line Pressure”> 
  <Unit units=“Pascal” minValue=“0” maxValue=“30”/> 
 </Transducer> 
 <Transducer name=“Mode”> 
  <Unit units=“Enum” 
   <Map name=“Cool” val=“0” />  
   <Map name=“Hoeat” val=“1” />  
   <Map name=“Standby” val=“2” />  
  /> 

   </Transducer> 
</Device> 
 
Data Item 
<Data name=“Temperature” value=“72” timestamp=“2014-07-15T13:13:21.318744-0400” /> 
<Data name=“Set Point” value=“70” timestamp=“2014-07-15T13:13:21.318744-0400” /> 
<Data name=“Line Pressure” value=“8” timestamp=“2014-07-15T13:13:21.318744-0400” /> 
<Data name=“Mode” value=“0” name=“Cool” timestamp=“2014-07-15T13:13:21.318744-0400” /> 

Figure 6: Example Thermostat Messages

Gateway	
  

Adapter	
  

Storage	
  

SNMP	
  Monitor	
  

Scheduler	
  

IPC	
  Daemon	
  

Field	
  Bus	
  
Message	
  
Router	
  

Process	
  Watchdog	
  

…
	
  

NTP	
   Firewall	
   SSH	
  

XMPP	
  

Figure 7: Gateway IPC Architecture

9



serverless messaging [3]. It also enables SNMP and starts an SNMP adapter, which provides machine usage
statistics.

3.2 Services

Services provide functionality to the devices on the Mortar.io system. They typically subscribe to and/or
actuate devices. Many of the services run locally on the gateway to provide as continuous a service as
possible, thus relying heavily on the local IPC communication. We now describe in more detail some of the
core services in Mortar.io:

3.2.1 Respawn Datastore

Respawn is a distributed datastore capable of serving large volumes of time-series data from a continu-
ously updating datastore with access latencies low enough to support interactive real-time visualization.
Respawn targets sensing systems where resource-constrained edge devices may only have limited or inter-
mittent network connections linking them to a backend. Data is downsampled as it is ingested, creating
a multi-resolution representation capable of low-latency range-base queries. Low-resolution aggregate data
is automatically migrated for improved reliability and load management. Edge nodes automatically iden-
tify and migrate blocks of data that contain statistically interesting features. Respawn is able to run on
ARM-based edge devices connected to a cloud-backend with the ability to serve thousands of clients with
sub-second latencies.

Respawn was originally introduced in [2] along with data migration as a technique for reducing query
latencies. In contrast, Mortar.io employs Respawn migration to improve the reliability of historical data
storage and robustness to network outages. Figure 8 outlines two possible configurations for Respawn in a
Mortar.io deployment. In the first configuration (a), three gateways store raw data locally and simultaneously
act as XMPP clients, publishing down-sampled copies of their data. These aggregate copies are stored by
the building’s local XMPP server as a secondary location for servicing queries. The second configuration
(b) is identical to the first, with the exception that the XMPP data streams are stored in three locations,
yielding triple-redundancy for reliable storage.

3.2.2 Event Scheduler

The role of a scheduler is to subscribe to the schedule item of an event node and then publish actuation
commands for scheduled events. The format for these schedules is XCal, the text in the event field contains

(b)	
  

abc.org	
  

pqr.com	
  
xyz.edu	
  

(a)	
  

Building	
  A	
  

Building	
  B	
  
Building	
  C	
  

Gateway	
  One	
  
Gateway	
  Two	
   Gateway	
  Three	
  

Figure 8: Respawn Distributed Storage with a Single Replica (a) and Triple-Redundancy (b).

10



the actuation command to publish at the prescribed time. The schedules are generated at the controller
(through a web interface) or on a mobile app, but are then dispatched directly to the gateway device using
the meta pubsub node. The schedule is then run locally on the gateway so that it can continue operation
during network outages. XCal is expressive enough to capture a rich set of calendar events such as one-time
events, weekly , monthly , yearly and overide events. Each of these schedules is stored in the scheduling
item of each device’s event node. The last update to each node is what the scheduler executes at the next
time interval. For this reason, conflicts must be resolved at a higher-level. For example, in the scheduling
interface the system should alert users if they are overiding an already defined schedule. The final schedule
must be stored in each event node, so all information is available to any agent or user that has correct access
permissions. Commands available for each devices are defined in its meta node and can be easily accessed
by user interfaces.

3.2.3 Quickset Plug-and-Play

Installation accounts for a large portion of costs associated with adopting a BAS. Quickset empowers non-
technical users by facilitating device and network configuration in a secure manner. The user interface for
Quickset is provided through an App running on a mobile phone or tablet equipped with either bluetooth
or NFC. The proximity communication (being able to talk from the tablet directly to the device) relaxes
the restriction of being on the same subnet as the device being configured. This is advantageous when the
device is being installed in a private network or is not reachable via Wi-Fi.

Each Mortar.io enabled device constains what is called a stub that will be provided by the device vendor.
The stub is a visual (QR) or digital (BLE/NFC) code that contains public key information, a link to the
device’s meta data description, the UUID of the device and an extension field that provides an option for
device specific data that the manufacturer may want to include to aid in installation.

Controllers and gateways connected to the Mortar.io system are tagged with a private/public key included
in the stub. The public key is made available via a QR code and bluetooth (or NFC) are used as the local
channel. By using the device’s public key, a secure channel can be established over Bluetooth or NFC, over
which device configuration can be performed. A benefit of using NFC is that much of this configuration could
be done at once, with the NFC enabled devices powered off. We now describe the Quickset transactions for
controllers, gateways and devices.

Controller: The XMPP server resides on the controller. The configuration of the controller occurs
over a secure local channel. The controller comes with a stub containing a public key, present on the QR
code, and the public key of the installer, set upon installation of the Operating System. The controller and
the installer verify each other by encrypting their messages with the public key of the controller when the
installer sends communications, and with the shared private key when messages are sent from the controller.

It is then necessary to configure the network settings. If enabled on the network, Zeroconf provides a way
for the Controller to broadcast the XMPP service domain and port number over DNS-SD. Once the two have
verified each other it is necessary for the Controller to generate a shared private key that the installer will use
when setting up the gateway. Once a network connection is established the installer sets the XMPP server
credentials and domain. An easy to use configuration interface for the server is made available on the local
channel. The transactions for this process are detailed in Figure 9. Figure 12 shows example screenshots of
the Quickset app running on a phone.

Gateways communicate via the XMPP server on behalf of adapters and services. A local IPC Daemon
manages interactions between adapters and services running locally on the gateway. Quickset begins the
IPC Daemon once the network configuration of the Gateway is set and confirmed. A registration process
will also begin which gives Quickset an interface to register new devices and allows the installer to view what
adapters and services run on the device.

The configuration of the gateway occurs over the local channel. The network is configured as in the
controller. Once on the network, the gateway will find the XMPP server if Zeroconf networking is available.
If Zeroconf is not available its domain will also need to be configured over the local channel. The gateway

11



Proximity	
  
Comm.	
  

Connect	
  to	
  
Network	
  

Mobile	
  Device	
  Controller	
  

Public	
  Key:	
  Kc	
  
Authen5cate	
  using	
  
Public	
  Key	
  Network	
  Configura:on	
  :	
  Kc	
  

Encrypt	
  Configura5on	
  
with	
  Public	
  Key	
  

Broadcast	
  Services	
  
(dns-­‐sd)	
  

Verify	
  Setup	
  

Setup	
  Verified	
  
(op5onal)	
  

Admin	
  Account	
  :	
  Kc	
  

Public	
  Key:	
  Km	
  

Mobile	
  +	
  Controller	
  
Share	
  Public	
  Keys	
  

Kc	
  Controller	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  Public	
  Key	
  

Km	
  Controller	
  
	
  	
  	
  	
  	
  	
  	
  Public	
  Key	
  

Proximity	
  Comm.	
   Link	
  Local	
  (Zero	
  Conf.)	
   XMPP	
  

NFC	
  

+

NFC	
  

Shared	
  Key	
  verified	
  
Admin	
  Creden:als	
  set	
  

Begin	
  XMPP	
  Server	
  
Zeroconf	
  (op:onal)	
  

Figure 9: Quickset Plug-and-Play Transactions for Adding a Controller

Controller	
   Gateway	
   Mobile	
  Device	
  

NFC	
  

Controller	
  
Authen5cated	
  
(Gateway	
  implicitly	
  
Authen:cated	
  with	
  
	
  Proximity	
  Comm.)	
  

Respond	
  to	
  
Gateway	
  
Challenge	
  

Setup	
  GW	
  Network	
  

Create	
  New	
  
User	
  ID	
  

+
Kg	
  Gateway	
  
	
  	
  	
  	
  	
  Public	
  Key,	
  
	
  	
  	
  	
  	
  UUID	
  

UUID+	
  Public	
  Key	
  Kg	
  

Network	
  +	
  XMPP	
  	
  	
  

Config	
  :	
  	
  Kg	
   Gateway	
  Authen5cate	
  
Controller	
  

Challenge	
  :	
  	
  Kc	
  

Request	
  Temp	
  In-­‐Band	
  JID	
  

In-­‐Band	
  JID	
  

Challenge	
  :	
  Kc	
  

Response:	
  Km	
   Response:	
  Km	
  

Validate	
  Controller	
  
:	
  	
  Kg	
  

Zerconf	
  Discovery	
  (
opt)	
  

Mobile	
  Device	
  has	
  Gateway’s	
  
JID	
  and	
  configura:on	
  channel	
  

Begins	
  IPC	
  Process	
  User	
  Registered	
  With	
  
Services	
  and	
  XMPP	
  server	
  

NFC	
  

Proximity	
  Comm.	
   Link	
  Local	
  (Zero	
  Conf.)	
   XMPP	
  

Figure 10: QuickSet Plug-and-Play Transactions for Adding a Gateway

12



Populate	
  Meta	
  Data	
  Kd	
  

Create	
  Event	
  Node	
  
Kd	
  

Controller	
   Mobile	
  Device	
  

Kd	
  Gateway	
  
	
  	
  	
  	
  	
  Public	
  Key,	
  	
  	
  	
  
	
  	
  	
  	
  	
  UUID,	
  meta	
  

Pair	
  Device	
  	
  with	
  Meta	
  

Auto	
  Discover	
  

Mio	
  Device	
  

Create	
  Event	
  
Node	
  and	
  
Publish	
  

Crea5on	
  
Message	
  

Gateway	
  

Read	
  UUID	
  Kd	
  

Device	
  Config	
  Data	
  

+

Devices	
  Registered	
  with	
  
XMPP	
  Server	
  and	
  Services	
  

IPC	
  registers	
  
owned	
  device	
  

Connected	
  to	
  	
  
Adapter	
  

Confirm	
  Configura:on	
  
and	
  Meta-­‐Informa:on	
  

NFC	
   NFC	
  

Proximity	
  Comm.	
   Link	
  Local	
  (Zero	
  Conf.)	
   XMPP	
  

Figure 11: QuickSet Plug-and-Play Transactions for Adding a Device

(1)	
   (2)	
   (3)	
   (4)	
  

(5)	
   (6)	
  

Se#ng	
  up	
  a	
  new	
  controller	
  
1)  Select	
  “Add	
  a	
  Controller”	
  
2)  Search	
  for	
  nearby	
  using	
  local	
  communicaAon	
  

(BLE,	
  NFC,	
  etc)	
  
3)  Select	
  controller	
  from	
  discovered	
  list	
  
4)  Verify	
  with	
  physical	
  tag	
  (QR	
  code	
  or	
  pin)	
  
5)  Configure	
  network	
  sePngs	
  
6)  Configure	
  Admin	
  account	
  

Figure 12: QuickSet Plug-and-Play Mobile Application

13



will then connect to the XMPP server using its Public Key as a username. To verify the server and Quickset
registration agent, the administrator transmits a shared secret to the gateway, which the gateway transmits
to the controller. The gateway then transmits the controller’s response to the configuration device. With
this the configuration device can confirm or deny the controller. If confirmed, the gateway begins the IPC
Daemon and connects to the XMPP server. This process is illustrated in the center diagram of Figure 10.

Device Registration: It is then necessary to add end devices. If manual configuration is required for
the adapter, Quickset gives access to the adapter’s configuration. If autodiscovery is an option, the user
can direct the adapter to autodiscover devices in that network. The end devices are then tagged with a
public key, their meta-data, and their UUID. In both cases event nodes are registered with the XMPP server
through the IPC Daemon. The installer can then configure the meta-data of the device. Figure 11 includes
more information about this transaction.

3.3 Applications

In this section, we discuss a few of the built-in ”user-level” applications provided by Mortar.io. In many
cases, these are services like Auto-Mapping and Auto-Discovery that are core functions in Mortar.io, but are
defined as user-level since they are built ontop of LibMIO functions.

3.3.1 User Interface

Mortar.io features a web-based user interface for registration, management and actuation of transducers.
The interface is completely state-less, reading node configuration data directly from XMPP nodes using the
Mortar.io API. This enables the system to be highly scalable across multiple domains, allowing the user
interface to run on a local or remote web server, decoupled from the XMPP backend.

Most API calls from LibMIO are supported via the user interface, ranging from the creation of event
nodes, configuration, actuation, to placement on a map to indicate the location of the associated physical
device. Live plotting of incoming sensor data is supported using XMPP over BOSH and historical data views
are provided by Respawn.

3.3.2 Auto-Discovery and Auto-Mapping

For field-bus devices that may not support QuickSet, Mortar.io provides two types of services designed to
simplify discovery and configuration. The first is a port-scanning utility that can be used with protocols
that provide query-able device description data. One common example of this is BACnet’s Whois message
or many of the set top boxes that scan for the Philips HUE gateway. Essentially, this service allows Mor-
tar.io to discover any existing devices on known field-bus protocols present in the building. However, this
approach falls short of inferring all the necessary meta-data for effectively utilizing each device. For instance,
information about the location of each device within the building would be missing (or outdated) in most
field-bus protocols.

The second approach to simplifying configuration and setup is an Auto-Mapping service. The Auto-
Mapping service tries to logically and spatially cluster unlabeled data streams based on the historical mea-
surments alone. This service would run in the background and perform a continuous correlation analysis
between all the different streams in order to discover the statistical dependencies that exist between them
and use these dependencies to make inference about the relative (or absolute) location of the devices within
the building. For instance, sensors that are co-located would inevitably have correlated responses due to
common physical phenomena that are affecting them (e.g., temperature). Besides inferring location meta-
data, the auto-mapping service also uses the learned correlations to populate other meta-data items between
devices that have similar responses. Lastly, this service can also detect faulty situations by tracking the
correlation values over time and signaling whenever there is a significant deviation.

14



From an academic perspective, there is little past work on the problem of identifying the location of
sensors in a building directly from their measurements. Some researchers have focused on auto-generating
room connectivity graphs from sensor data [6], discovering co-located sensors using non-parametric feature
transformations and correlation analysis [7], as well as generating blueprints [8] through various heuristics.
Similarly, discovering relationships between two or more information models by analyizing the similarities
in topological relationships between components contained in them, has been a succesful approach to map
control points and building systems [9]. However, these approaches have been developed primarily for
residential buildings, which generally have simpler floorplans and less complex building systems, and it is
not yet known how well they will generalize to more complex environments, especially given some of the
assumptions that support them (e.g., single-storey buildings).

In order to test whether statistical dependence measures between sensor values can be used to identify
functional and spatial relationships, measurements obtained from the test facilities will be analyzed across
different time scales. A statistical correlation analysis framework, based on copula theory, will be developed
and tested using these datasets, and the results will be validated by comparing the inferred relationships
with those extracted from the building blueprints and interviews with facility managers.

Prior work by our team on this topic [10] suggests that a simple linear correlation measure (i.e., Pearson’s)
is not sufficient to uncover the spatial location of sensors in a building. One can extend this by using an
information-theoretic measure such as Mutual Information to estimate the dependence between the random
variables being collected. Mutual information between two random variables X and Y is defined as I(X,Y ) =∑

y∈Y

∑
x∈X p(x, y)log

(
p(x,y)

p(x)p(y)

)
where p(x, y) is the joint probability distribution of X and Y , and p(x)

and p(y) are the marginal distributions of these two variables, respectively.

A more formal and expressive framework to solve this problem is Copula Theory [11], which allows
one to separate marginal distributions of random variables from the dependence strucutre that defines
their joint-probability density. This is of particular importance in this domain, since estimating densities
directly from i.i.d. high-dimensional samples from sensors will suffer from the curse of dimensionality [12].
Identifying the marginal distributions of the components of the copula can be performed using traditional
density estimation techniques. However, for identifying the copula function, there are many different options
and this task will involve an analysis of the performance of different parametric and non-parametric copula
inference techniques. In years 2 and 3 we will investigate how this novel copula-based framework can be
applied to study the dependence between sensed stimuli in the buliding.

The final technique we plan to test for Auto-Mapping is using active control to trigger responses and
learn the dependence structure in an active way. This approach is often used in the lighting industry to
toggle overhead lights in order to verify the position of in-room light-level sensors. The same principle can
be extended to HVAC and plug-load sensors.

3.3.3 Watchdog

The watchdog is an application responsible for monitoring the liveliness of a node based on its publication
rate. When subscribed to a particular node, it will trigger an external event such as an email notification,
or XMPP publication if too few publications are being made. It can be configured to determine the average
publication rate of a particular node to set its activation threshold or a user supplied value may be used.
The watchdog provides an additional layer of monitoring on top of the process watchdog mentioned in 3.1.3.

4 System Benchmarks

The two most crucial components in Mortar.io that define its compute and memory requirements are the
underlying publish-subscribe server and the time series datastore. In this section, we benchmark both
components on a variety of representative hardware platforms.

15



4.1 PubSub Benchmarks

While XMPP Server Class clusters have been effective at handling large deployments with hundreds of
thousands of users, we are interested in what minimal requirements there are for smaller scale scenarios.
Buildings that require a larger scale deployment than discussed bellow generally have the resources to invest
in desktop class platforms and may already have some server infrastructure in place.

The benchmark setup shown in Figure 13 consists of S subscribers P publishers and a N event nodes.
The size of the message payload is also parameterized and in these experiments is approximately 1.5KB.
The publishers publish as many messages as they can and the subscribers listen for those packets. The
figures show the throughput in number of messages per second. The size of the message was also scaled
and tested but did not affect the throughput as the CPU is the bottleneck. In a small building there is
generally thermostatic and CMEL control along with environmental sensors. For these systems with less
than 500 deployed devices we propose the use of a BeagleBone Black embedded linux board from Texas
Instruments. These are low-cost, $45, embedded Linux computers with 512MB of RAM, a 1GHz ARM
Cortex-A8 processor.

The throughput is shown in Figure 14. As can be seen, the number of subscribers has much less of an
impact than the number of event nodes and number of publishers. In these small buildings it is reasonable
to assume the number of systems supported will be small and that at most around 10 publishers will be
necessary. Each of these publishers could adapt (manage) hundreds of devices. We assume a global update
rate of 1 message per minute is required on average by each event node. A throughput of 17 messages a
second are necessary to maintain this system, plus a few messages for asynchronous operations. Easily met
with 50 messages/second.

In medium sized buildings there may also be rooftop units and more complicated HVAC control. Here
building management may become more complex. Here it is reasonable to have a couple hundred users. Here
small computers can be used to run the system. We took the next set of benchmarks on an Intel NUC, this
device has a Intel i5 1.8GHz processor, 8GB of RAM, and 120GB of solid-state memory. This setup cost
around $400.

The throughput is displayed in Figure 15. As can be seen, the number of subscribers has much less
of an impact than the number of event nodes and number of publishers. In these medium buildings, it is
reasonable to assume the number of systems supported will increase from the scenario of a smaller building.
Each publisher could manage hundreds of devices. Assuming the order of devices is 10,000 and a global
update rate of 1 message/minute. This means a minimum requirement of 170 messages/second for a system
of 10,000 devices is easily met by the 300 messages/second throughput.

It is important to note the trends that exist in Figure 14, with fewer then 1,000 event nodes there is a
decrease in performance as the number of event nodes increases. In the Figure 15 the performance increases
as event nodes are added. This is due to the server being able to benefit from improved cache locality.

Publish	
  Factor	
  

P	
  Publishers	
   S	
  Subscribers	
  

Subscribe	
  Factor	
  
N	
  Event	
  Nodes	
  

M1,	
  M2,	
  …,	
  M3	
  

Messages	
  of	
  size	
  K	
  

subscribe	
  publish	
  

Figure 13: Benchmark Parameters

16



0 200 400 600 800 1000
event nodes

80

100

120

140

th
ro

ug
hp

ut
 (m

es
sa

ge
s 

/ s
ec

on
d)

pubs = 1
pubs = 10
pubs = 100

subs = 1

subs = 10

subs = 100

subs = 1

subs = 10

subs = 100subs = 1
subs = 10

subs = 100

Scaife Hall 
deployment

Figure 14: PubSub Benchmarks on TI BeagleBone Black

0 2000 4000 6000 8000 10000
event nodes

300

350

400

450

th
ro

ug
hp

ut
 (m

es
sa

ge
s 

/ s
ec

on
d)

pubs = 10
pubs = 50
pubs = 100

subs = 10
subs = 100

subs = 10
subs = 100

subs = 10
subs = 100

Scaife Hall 
deployment

Figure 15: PubSub Benchmarks on Intel NUC

17



As publishers publish close together in time, their temporal locality improves the cache performance of
each communication session. At around 1,000 nodes this effect outweighs the extra overhead associated with
storing larger datastructures on the server. Eventually at an extremely large number of event nodes (100K+)
the performance begins to decrease as expected. We omit this to more clearly highlight the difference between
the NUC and BeagleBone. The scaling trend matches well with the expected usage scenario of Mortar.io. In
general, there will be few publishers in charge of publishing transducer values for larger field-bus networks, of
which easily tens to hundreds of devices could be attached. We see that performance is not greatly affected
by the number of subscribers.

4.2 Respawn Benchmarks

Respawn has two main design features: (1) highly-efficient multi-resolution storage for timeseries data on
an embedded target and (2) the ability to migrate data to multiple locations within the system. In order to
evaluate Respawn’s performance on an embedded target, we benchmarked its ingest throughput as it varies
with data rate per stream. Ingest throughput is affected by the number of streams and their data rates
because Respawn employs a fixed size memory buffer which must be partitioned to accommodate a set of
streams. More partitioning increases the frequency at which buffered data must be flushed to non-volatile
storage, resulting in more computational overhead.

Figure 16 captures throughput performance on the BeagleBone platform by showing the relationship
between the data rate of each stream and the maximum number of streams supported. As stream rates
increase so does total throughput, however, the maximum number of streams at a desired rate drops because
more data per stream is being captured. The performance curve also represents the range of scenarios in
which Respawn could be used for historical data storage. For small scale deployments, Respawn can support
58 streams at 100Hz or 11 streams at 1000Hz, as well as a single streams at 10000Hz. Large deployments
are supported at slower speeds; 560 streams can be captured at 1Hz or 1950 streams at 0.1Hz. By leveraging
local storage, the combination of Respawn and XMPP can support on average one order of magnitude more
time-series data than XMPP without local storage.

4.3 Estimated Building Performance

We now frame these performance benchmarks in terms of a real building system. Table 1 shows a list of
each gateway, the number of devices attached and the number of transducers on each device that we will be
deploying in Scaife Hall during year 1. For example, there are 57 WiStat thermostats connected to a single
802.15.4 gateway. Each WiStat reports six different transducer values. The message rate shows how often the
device sends data. In the case of event triggered devices the rate is listed as push since they are not periodic
feeds. In total, to meet our require system load we need to be able to handle 3691 transducer feeds (443
event nodes) with a total overall message rate of 7.64 messages per second. Each message is approximately
2KB in size. These data rates are achievable with both the BeagleBone as well as the Intel NUC platform.
In practice, the system should operate well below the message per second limit to accommodate bursts of
actuate or event traffic. In Scaife Hall we estimate needing approximately 10 publishing gateway devices
with 443 event nodes. Assuming an equal number of subscribers, the system is capable of handling more
than 90 messages/second on a single BeagleBone.

5 Related Work

Multiple academic, government and industry research projects have looked at the problem of designing build-
ing automation frameworks. Commercially deployed BAS are largely purpose-built, isolated and proprietary
vertical systems from vendors like Johnson Controls, American Automatrix, Honeywell, Bosch, Lutron and
Siemens, to name a few. These systems are optimized for local building tasks such as heating and cooling,
lighting control or security. Even though many of the newer systems are Internet-connected and provide

18



0.1 1 10 100 1000 10000
stream rate (Hz)

0

500

1000

1500

2000

m
ax

im
um

 n
um

be
r o

f s
tre

am
s

Figure 16: Relationship Between Rate of Respawn Streams and Maximum Number of Streams on BeagleBone

Device Qty
# of

Trans.
Rate

(msg/min)
Total
Feeds

Msgs / Sec

FireFly Env. Sensor 115 10 1 1150 1.92
WiStat Thermostat 57 6 0.2 342 0.19
FireFly Plug Load 114 10 push 1140 n/a
Automatrix Thermostat 30 5 1 150 0.5
Chilled Water + Steam 2 2 1 4 0.03
Enfuse Panel Meter 10 3 1 600 5
Lutron Quantum Pts 115 5 push 575 n/a
Total 443 3961 7.64

Table 1: Devices and Message Rates for Scaife Hall

storage and monitoring capabilities, few enable integration with other systems.

In recent years, the research community has begun developing various systems to help improve pro-
grammability and interoperability across systems. In [13], the authors present BOSS: a set of operating
system services and API to facilitate writing applications for buildings, with a particular focus on large
facilities. BOSS is built on top of the sMAP [14] data store with readingDB at its core and is structured
around interactions using RESTful services. While quite an improvement over standard relational databases
(MySQL, etc), readingDB does not natively support data migration / replication for caching and fault tol-
erance. Along with BOSS, there are a handful of other systems like Building Depot [15] that use RESTful
architectures to manage transactions. In contrast, Mortar.io uses a push-based publish-subscribe model that
is optimized for data streams as opposed to small infrequent transactions. While BOSS and Building Depot’s
system architecture can be applied to buildings of different size, they are primarily focused on large buildings
with complex control requirements. Mortar.io provides many similar services and abstractions, but with a
focus on scaling down to small buildings powered by a handful of embedded controllers. Mortar.io also
provides plug-and-play functionality and user interfaces designed to support non-expert users as opposed to
researchers.

A variety of transactional publish-subscribe architectures have been applied to buildings as well as grid-
level management problems. Volttron [16] is an agent execution platform that was initially targeted towards
smart grid agent management. A lighter weight implementation called Volttron Lite [17] has also been used
for inter-building communication of Roof Top Units (RTUs) management. Volttron also employs sMAP

19



for data collection and then uses ZeroMQ[18] as its underlying messaging protocol. SensorAct [19], The
OGEMA [20] and Sensor Andrew [21] have similar goals to Mortar.io. The Mortar.io platform grew out of
the Sensor Andrew project and is now being used to replace its underlying backend at CMU. Mortar.io is
more specifically curtailed towards building energy systems with a more rigid schema in order to simplify
machine-to-machine communication. The interfaces is less focused on how to describe new sensors and
instead biased towards selecting an expert-defined sensor and then entering information about its use and
location. We believe in the future, experts (not average users) will be extending interfaces and defining
device semantics.

SensorAct is very similar to Sensor Andrew with the addition of a high performance time series database
and improved scheduling capabilities. Mortar.io expands upon these solutions by adding distributed multi-
resolution time series storage as well as distributed event scheduling. SensorAct supports the notion of
tasklets that are essentially LUA scripts. Though advanced users can program Mortar.io systems using
our LibMIO, the focus of Mortar.io is to allow common users to achieve customizations through scheduling
and event triggers rather than fully expressive scripting. All of these functions are accessible through the
user interface. OGEMA uses Java and OSGi to provide application developers the ability to program BAS
specific devices. It is optimized to run on embedded targets and provides similar access control capabilities
as Mortar.io. However, it does not support distributed data storage and its PnP capabilities are much more
device- and programmer-centric rather then defining how a user should register or integrate a device.

Efforts in the Internet-of-Things space include highly-scalable device messaging protocols and interaction
systems like MQTT[22], XMPP[3], CoAP[23], Alljoyn[24], HomeKit[25], HomeOS[26], The Thing System[27],
Xively[28], Sensorpedia[29], etc. Most of these systems are not optimized specifically for building tasks (e.g.
set point scheduling, trending, diurnal mode changes, etc.) and typically depend on the cloud.

6 Project Products

The main deliverable from this project is the open-source reference implementation of our architecture which
can be found at http://dev.mortr.io along with associated documentation at http://dev.mortr.io/

projects/mortar-io/wiki/Documentation. Source code can be found at http://git.mortr.io/mio/mio.

We also showed a live demonstration of the Mortar.io system at the BuildSys conference [30] and released
a technical report about the internal operations [31].

20

http://dev.mortr.io
http://dev.mortr.io/projects/mortar-io/wiki/Documentation
http://dev.mortr.io/projects/mortar-io/wiki/Documentation
http://git.mortr.io/mio/mio


References

[1] Underhill R.M. Goddard J.K. Taasevigen D. Piette M.A. Granderson J. Brown R. Lanzisera S. Kuru-
ganti T. Katipamula, S. Small- and medium-sized commercial building monitoring and controls needs:
A scoping study. Pacific Northwest National Laborator Technical Report PNNL-22169, 2012.

[2] M. Buevich, A Wright, R. Sargent, and A Rowe. Respawn: A distributed multi-resolution time-series
datastore. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pages 288–297, Dec 2013.

[3] http://www.xmpp.org/ (viewed 4/12/2008).

[4] ejabberd:. http://www.ejabberd.im/. viewed 7/15/2014.

[5] Joe Hildebrand and Peter Saint-Andre. XEP-0080: User Location. http://xmpp.org/extensions/xep-
0080.html, 7 May 2014.

[6] Carl Ellis, James Scott, Ionut Constandache, and Mike Hazas. Creating a room connectivity graph
of a building from per-room sensor units. In Proceedings of the Fourth ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings, BuildSys ’12, page 177183, New York, NY, USA,
2012. ACM.

[7] Dezhi Hong, Jorge Ortiz, Kamin Whitehouse, and David Culler. Towards automatic spatial verification
of sensor placement in buildings. In Proceedings of the 5th ACM Workshop on Embedded Systems For
Energy-Efficient Buildings, BuildSys’13, pages 13:1–13:8, New York, NY, USA, 2013. ACM.

[8] Jiakang Lu and Kamin Whitehouse. Smart blueprints: Automatically generated maps of homes and
the devices within them. In Judy Kay, Paul Lukowicz, Hideyuki Tokuda, Patrick Olivier, and Antonio
Krger, editors, Pervasive Computing, number 7319 in Lecture Notes in Computer Science, pages 125–
142. Springer Berlin Heidelberg, January 2012.

[9] Xuesong Liu, Burcu Akinci, James H. Garrett Jr, and Mario Berges. Requirements and development of a
computerized approach for analyzing functional relationships among HVAC components using building
information models. In CIB W078 - W102, France, 2011.

[10] Anthony Rowe, Mario Berges, Gaurav Bhatia, Ethan Goldman, Raj Rajkumar, James H. Garrett, Jos
M. F. Moura, and Lucio Soibelman. Sensor andrew: Large-scale campus-wide sensing and actuation.
IBM Journal of Research and Development, 55(1.2):6:1 – 6:14, January 2011.

[11] Gal Elidan. Copulas in machine learning. In Piotr Jaworski, Fabrizio Durante, and Wolfgang Karl
Hrdle, editors, Copulae in Mathematical and Quantitative Finance, Lecture Notes in Statistics, pages
39–60. Springer Berlin Heidelberg, 2013.

[12] Barnabas Poczos, Sergey Krishner, Pal David, Csaba Szepesvari, and Jeff Schneider. Robust nonpara-
metric copula based dependence estimators. NIPS 2011 Copula workshop, 2011.

[13] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe Fierro, Nikita Ki-
taev, and David Culler. Boss: Building operating system services. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pages 443–457,
Lombard, IL, 2013. USENIX.

[14] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David Culler. smap: a simple
measurement and actuation profile for physical information. In Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’10, pages 197–210, New York, NY, USA, 2010. ACM.

[15] Yuvraj Agarwal, Rajesh Gupta, Daisuke Komaki, and Thomas Weng. Buildingdepot: An extensible
and distributed architecture for building data storage, access and sharing. In Proceedings of the Fourth
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys ’12, pages
64–71, New York, NY, USA, 2012.

21



[16] Jereme Haack, Bora Akyol, Brandon Carpenter, Cody Tews, and Lance Foglesong. Volttron: An agent
platform for the smart grid. In Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS ’13, pages 1367–1368, Richland, SC, 2013. International Foundation
for Autonomous Agents and Multiagent Systems.

[17] Jereme N. Haack, Srinivas Katipamula, Bora A. Akyol, and Robert G. Lutes. VOLTTRON Lite:
Integration Platform for the Transactional Network. Oct 2013.

[18] http://zeromq.org (viewed 7/15/2014).

[19] Choi H. Singh A. Singh P. Srivastava M. Arjunan P., Batra N. Sensoract: A privacy and security
aware federated middleware for building management. In Proceedings of the Fourth ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys ’12, pages 80–87, New York,
NY, USA, 2012. ACM.

[20] Nestle D. OGEMA Technology Breif. Fraunhofer IWES Technical Report, 2012.

[21] Rowe A., Berges M., Bhatia G., Goldman E., Rajkumar R., Soibelman L., Garrett J., Moura J. Sensor
Andrew: Large-Scale Campus-Wide Sensing and Actuation. IBM Journal of Research and Development:
Special Issue on Smarter Cities and Sensed Infrastructures, 2010.

[22] Locke D. MQ Telemetry Transport (MQTT) v3.1 Specification. IBM Technical Report, August 2010.

[23] Bormann C. Shelby Z., Hartke K. The Constrained Application Protocol (CoAP). Internet Engineering
Task Force (IETF), 2014.

[24] http://www.alljoyne.org/about (viewed 7/15/2014).

[25] http://developer.apple.com/homekit/ (viewed 7/15/2014).

[26] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A.J. Brush, Bongshin Lee, Stefan Saroiu, and Paramvir
Bahl. An operating system for the home. In Presented as part of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 12), pages 337–352, San Jose, CA, 2012. USENIX.

[27] http://thethingsystem.com (viewed 7/15/2014).

[28] https://xively.com (viewed 7/15/2014).

[29] B. L. Gorman, D.R. Resseguie, and C. Tomkins-Tinch. Sensorpedia: Information sharing across in-
compatible sensor systems. In Collaborative Technologies and Systems, 2009. CTS ’09. International
Symposium on, pages 448–454, May 2009.

[30] Christopher Palmer, Patrick Lazik, Maxim Buevich, Jingkun Gao, Mario Berges, Anthony Rowe, Ri-
cardo Lopes Pereira, and Christopher Martin. Mortar.io: A concrete building automation system:
Demo abstract. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings, BuildSys ’14, pages 204–205, New York, NY, USA, 2014. ACM.

[31] Christopher Palmer, Patrick Lazik, Maxim Buevich, Jingkun Gao, Mario Berges, Anthony Rowe, Ri-
cardo Lopes Pereira, and Christopher Martin. Mortar.io: A concrete building automation system. In
Carnegie Mellon University Technical Report, 2015.

22


	Introduction
	Project Overview
	System Design
	Transport Layer
	XMPP PubSub
	Mortar.io API
	IPC Daemon

	Services
	Respawn Datastore
	Event Scheduler
	Quickset Plug-and-Play

	Applications
	User Interface
	Auto-Discovery and Auto-Mapping
	Watchdog


	System Benchmarks
	PubSub Benchmarks
	Respawn Benchmarks
	Estimated Building Performance

	Related Work
	Project Products

