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Introduction rih) s

= Aim: Develop a predictive RANS model for transonic jet-in-
crossflow simulations

= A strongly vortical flow, often with weak shocks

= Drawback: RANS simulations are simply not predictive
= They have “model-form” error i.e., missing physics

= The numerical constants/parameters in the k-€¢ model are usually
derived from canonical flows

= Motivation
= RANS simulations are still the workhorse for most design activities
= Jet-in-crossflow is a canonical flow for many maneuvers involving spin
rockets and finned aerodynamics bodies
= Hypotheses
= H1: Source of errors are the unsuitable values used for {Cy, C,, C;}
= H2: Model form error in RANS mostly due to the eddy-viscosity model




Technical approach ) i,

= H1 - Obtain better values of C={Cy, C,, C,} by calibrating to an
incompressible flow over square cylinder

= Strongly vortical, but has little else in common with transonic jet-in-crossflow.
= H2 - Quantify model-form errors by calibrating RANS to transonic jet-in-
crossflow measurements
= Also check robustness of calibration (compare predictive skill at off-calibration
points
= Estimate k-€ parameters by posing it as a Bayesian inverse problem

= Estimate {Cy, C,, C,} as a 3-dimension joint PDF (JPDF) by solving the inverse
using Markov chain Monte Carlo (MCMC)

= Capture uncertainty due to (1) limited measurements (2) model limitations
= Post-calibration, draw 100 samples from the JPDF and probabilistically predict
the flow field (develop an ensemble of 100 predictions)
= MCMC will require O(10%) invocations of the flow solver (to link proposed
{Cy, C,, C;} with calibration / experimentally observed variable)

= Develop a surrogate/proxy/statistical response function representation of the
RANS simulator 3




Sections of the talk rih) e

= Section 1

= Show that C={Cp, C,, C;} obtained by calibrating to flow-over-square-
cylinder observations are better than the nominal values C_ ., = {0.09,
1.42,1.92)

= Section 2

= Quantify the improvement in predictions if {Cu, C,, C;} are calibrated
to a transonic jet-in-crossflow experiment (M = 0.8, J = 10.2)

) at other M and J?
= How big is the disagreement cause by the model-form error on RANS?

= Are they still more predictive (versus C

nom

" Where can we isolate the model-form error and how big is it (in that
particular variable of interest)?




Section 1

CALIBRATING TO FLOW OVER
SQUARE CYLINDER EXPERIMENT
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Introduction rh)

= Aim: Develop a predictive RANS model for transonic jet-in-
crossflow (JinC) simulations
= A strongly vortical flow, often with weak shocks

= Approach:

= Estimate C={Cy, C,, C;} from experimental measurements of
Reynolds stresses from a flow-over-square-cylinder experiment

= Check predictive skill versus C_,, in a JinC interaction

= Numerical considerations

= Describe how one makes a surrogate model for Reynolds stresses
generated by a 2D RANS simulator

= Set up the Bayesian inverse problem, and describe how it’s solved
using MCMC; describe the estimation error
= Check predictive skill by developing an ensemble of 100 JinC
predictions, post-calibration
6




The problem

"  The model

= Devising a method to calibrate 3 k-¢ parameters C = {C, C,, C;} from expt. data
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= Calibration parameters
= C,: affects turbulent viscosity; C; & C,: affect dissipation of TKE

=  Calibration method

= Pose a statistical
cylinder

inverse problem using experimental data for flow-over-a-square-

= Estimate parameters using Markov chain Monte Carlo

= Construct a polynomial surrogate for square-cylinder RANS simulations
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Target problem - jet-in-crossflow ) .

= A canonical problem for spin-

_ , 1 — B
rocket maneuvering, fuel-air pr 240 250 260 270 280
.. - u (m/s)
mixing etc. = =
= We have experimental data (PIV | %594
measurements) and o -
corresponding RANS simulations 100F
£
=  The RANS simulations have 4 N §

stability problems

jet exit shock

counter-rotating
vortex pair



RANS (k-m) simulations - crossplane results

= Crossplane results for stream
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= Computational results (SST) are too round; Kw98 doesn’t have

the mushroom shape; non-symmetric!
= Less intense regions; boundary layer too weak
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RANS (k-®) simulations — midplane results

L R -
w w - = = = ¥

i | I LI il il L

U-defect | V - velocity
= Experimental results in black

= All models are pretty inaccurate (blue and red lines are the non-
symmetric results)



The desired outcome rih) s

= Summary

= The velocity distribution from RANS at the crossplane is sub-optimal
= At the mid-plane, the jet sits too high; the vertical velocity is too high
indicating a very strong vortex
= Aims of the calibration
= Get the crossplane vorticity distribution right
= Correct circulation, position and size of the CVP

= Match the midplane velocity profiles

= Procedure
= Use experimental data from a flow-over-square-cylinder experiment
= Observations of Reynolds stress in the wake behind the cylinder

= Construct a computationally inexpensive surrogate for the RANS
model / predictions of Reynolds stress

= Use the surrogate for Bayesian calibration of the 3 parameters



Flow over a square cylinder

= Experimental data

= Water tunnel, 39 cm X 56 cm St 2D moamremment ponts +
cross-section 4t
y/D
= Square-cylinder 4 cm perside 3|
= 96 probes in the wake where 21 IIIIIIIIIIIIIIIIIIIIIIIIIT LTI Y]
1 e fiisssegss _
n = u’v’ are measured g
0r 4
= (Calibration: Make a map of n .

to (CM, CZ,Cl)
= Use a statistical (surrogate)

model

Make a RANS training set using
2744 samples from the (C, C,, C;)
space

Save 1 = u’v’ at the 96 probes for
each run
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Figure 1: Coordinate system and location of measurement points.

Experimental data and setup from Lyn & Rodi,
JFM, 1994
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Surrogate models )t

"= Model n as a function of Ci.e. n =n(C)

= Approximate this dependence with a polynomial
N ZMNyena = 4 +4,C, +a,C, +a,C +a,C C, +a,C C +a,C,C ...

= Given n,,, at a bunch of probe locations, it should be possible to
estimate {C,, C,, C;} by fitting the polynomial model to data
= But how to get (a,, a,, ....) for each of the probe locations to
complete the surrogate model for each probe?
= Divide training data in a Learning Set and Testing Set

= Fit a full quadratic model for n to the Learning Set via least-squares
regression; sparsify using AIC

= Estimate prediction RMSE for Learning & Testing sets; should be equal

= Final model tested using 100-fold cross-validation; a 10%

error threshold was used to select models for the probes
13




Calibration — in earnest rh) s

= Basic idea: st i
= Choose 55/96 probes atx/D =2 ... 8 | .
* Measured u'v', (u')? and (v') e
= minimize ||n. — Nyengll2 PY finding ‘good’ L :iéi’iié
values of (C,,, C,, C,) ol
= Bayesian calibration: Find P(C,, C,, C, | 2 0 2 s 6 WD g
nexpt) Figure 1: Coordinate system and location of measurement points.

* RANS does not even provide a very good prediction for the wake
— (Nex — Mireng) €aN be large for many probes

» Choose a set of ‘calibration’ probes
— 0.25 < Mgy / Mtrend(Crominal) < 4

* We end up with 28 / 96 probes which we can use for calibration
— We call this set of 28 probes P




The Bayesian calibration problem )iz

« Model experimental values at probe p as n®,, = n®,_ ,(C) + ),
eP) ~ N(0, c?)

2
néf) —Tlfféid(c))

262

A& C)ec [ T exp i

pe?

 Given prior beliefs © on C, the posterior density (‘the PDF’) is

ex ex

P(C,o Ing)oc A, |Co)m, (C,) m,(Cy) m (Cm, (o)

* P(C|n.,) is @ complicated distribution that has to be
described/visualized by drawing samples from it

* This is done by MCMC




What is MCMC? rh) pes

= A way of sampling from an arbitrary distribution

= The samples, if histogrammed, recover the distribution

= Efficient and adaptive

= Given a starting point (1 sample), the MCMC chain will sequentially
find the peaks and valleys in the distribution and sample
proportionally

= Ergodic

= Guaranteed that samples will be taken from the entire range of the
distribution

= Drawback

= Generating each sample requires one to evaluate the expression for
the density &

= Not a good idea if winvolves evaluating a computationally expensive
model



An example, using MCMC ) i,

=  Given: (Y°Ps, X), a bunch of n observations
= Believed:y=ax+b
=  Model:y°* =ax. + b + ¢, ¢~ N0, 62)
=  We also know a range where a, b and ¢ might lie
= j.e. we will use uniform distributions as prior beliefs for a, b, o
= Foragiven value of (a, b, ), compute “error” g, =y.°* — (ax. + b))
= Probability of the set (a, b, 5) = ITexp( - ¢2/c?)
= Solution: w(a, b, 5 | Y, X) =TI exp( - €%/c? ) * (bunch of uniform priors)
= Solution method:
= Sample fromw (a, b, o | Yo, X ) using MCMC; save them

= Generate a “3D histogram” from the samples to determine which region in the (a, b, o)
space gives best fit

= Histogram values of a, b and g, to get individual PDFs for them
= Estimation of model parameters, with confidence intervals!



MCMC, pictorially ) s,

" Choose a starting point, P" =

(acurri I:)curr) “
“good” values of (a, b)
= Propose a new a, Qprop \ : j
Mag,, o) N
curr’ ~a b ﬁ( '

\ 4

urr

with probability min(1, m) /XK $
= Repeat with b i X

= Evaluatemt (a,.p beyr | -+) / s == -
Y
T (Acyer Beyer | ) =m I
. < ...............................
| Accept aprop (l.e' ac <- apr‘op) Proposal distribution

. : . o
Loop over till you have >
enough samples X




MCMC solution for (C, C,, C,) =

= Computed using an
adaptive MCMC
method (DRAM)

= These are marginals— | \ |
the distribution is 4D 006 008 010 042 7 18 18 20 24

0.0 05 10 15 20 25

= Nominal values are

vertical lines > o
= Blue dashed lines are S
prior beliefs o S -
" The model errorcis s 2 -
Iarge g _I T T T T I’ ° T T T T T
1.2 1.3 14 15 1.6 1.7 0.02 0.04 0.06 0.08 0.10 0.1

Ci 5




Recreating experimental observations Tz

= Post-calibration, we
ChOOSG 100 C 0 After calibration

4 Experiment

Samp|es from the g - + Nominal parameter values
PDF B
= Run the ensemble of S - I N T I
100 RANS runs and ) ] - Ik Ik
plot results at P £ g - i
o © . 8 A “
= Median predictions  © | A S
close to experimental & T S
values - | R
= Error bars capture all S - ar Lo~ L
measurements | %. h . |
20 40 60 80

Probe ID




Is the PDF predictive for jet-in- ) s,
crossflow?

240 250 260 270 280
u (m/s)

= Pick 100 C samples from etroczigent] —
the PDF g
{ oy \100’§

150

= Simulate jet-in-crossflow

= Inthe crossplane, quantify
= Circulation
= Centroid of vorticity

= Radius of gyration 3000
" From the ensemble, 01 2000
. . . ' 1000

calculate median, quartiles ¢ )

>_
etc ~1000
. 0.05 :

= Compare with o

-3000

experimental values

- -4000

| . . \ . ]
Q.06 0.04 0.02 0 -0.02 -0.04 -0.06




Comparison of predictions and ) i,
experiments

Jet-in—crossflow predictions

= Plotting Predictions /

2r o i
Experimental values o 1
o 1.0 | N
o X
= We overpredict L R l
. ) = 16" 0 | ]
circulation £ | |
. . E 14r — 7
= Location is somewhat off 3 l
< O
. . 2] L i
= Sizeis somewhat larger 5§ '°
0 .
= Big improvements over g ‘ l ‘ 51
. | _
nominal value g 08 | O l .
S | | |
= Also search the 100 E 06/ | | -
zZ | !
ensemble- m.embers for a1 L |
best prediction . _ | , |
Circulation Centroid-z Centroid-y  Radius of gyration

= “Optimal” ensemble
member

22



Optimal ensemble member — vorticity

zm) o zm)

With nominal C With best C
= Experimental vorticity as contours
= Calibration positions the vortex better; also gets its strength right

= The circulation, position and size are +/- 15% from experiments
23
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Optimal ensemble member: v velocity

Predictions with IQR; x/Dj =315 Predictions with IQR; x/Dj =42.0
18 T T T 18 T T
o Experiments © Experiments
16 ---Nominal - 16} ---Nominal -
—— Optimal —— Optimal
141 —— Predictions | 14 — Predictions |
121 b 12+ 4
10+ SS N n 10+ 7 - \, i
— R4 - g
o gl - | -
s 8 %, 8- i
6’ 7 6’ |
4r ] 4+ 7
2r N 2 i
0’ B O,
-_0.05 6 0.65 0‘.1 0.‘15 0‘.2 0.‘25 0‘.3 0.55 0.4 -2 : : : ‘ : ;
Vertical Velocity -0.05 0 0.05 0.1. 0.15 0.2 0.25 0.3
Vertical velocity
x/D = 31.6 x/D =42.0

" Improvement over C . inal

= Nearly nailed the experiment
24



Conclusions — Section 1 rih) s

= Qur hypothesis of calibrating to a simple vortical flow for
predictive jet-in-crossflow proved correct

= Even simple, polynomial surrogates were sufficiently accurate
to allow us to calibrate RANS models

= More elaborate models, with the deficit would probably do somewhat
better

= With surrogates come Bayesian calibration and PDFs of calibrated
parameters

= Being able to get a PDF for (C, C,, C,) proved to be very
convenient
= Ensemble predictions provide error bars on predictions
= They allow us to test various (C,, C,, C;) combinations for predictive
power

= Details: S. Lefantzi, J. Ray, S. Arunajatesan and L. Dechant, "Tuning a RANS k-¢
model for jet-in-crossflow simulations”, Sandia Technical Report, SAND2013-8158



Section 2

UNCOVERING MODEL-FORM
ERROR

26



1 |I1 ﬁgtnigi:a]
Introduction
= Aim: Estimate model-form error in 3D P T
. . . . . / u(m/s
RANS simulations of transonic jet-in- ] S
crossflow interaction @ -
= Approach e
\100’§
= Estimate {Cy, C,, C,} using Bayesian . =
inference and surrogate models of a 3D :

RANS simulator
= Experimental data: Beresh et al, AIAAJ
2005; vorticity on the crossplane
= M=0.8,J]=10.2
= Predict the flowfield (and see 01
improvement over C__ . predictions)
= See predictive skill at off-calibration
points (other M and J) 0.05
= Uncover mismatch between predicted
and experimentally measured turbulent -

stresses So6 o004 oo 0 002 -004 -0.06
Z(m)

1000

Y (m)

-1000

—2000

-3000

—-4000




Building surrogate models ) ..

= Sample {Cy, C,, C,} space with 2744
points

= Run 3D RANS at each and obtain 2744
predicted vorticity fields on crossplane

4000

2000

= Choose locations with high vorticity (less
affected by numerical noise) - 108
“probe” locations

-2000

y[m]
0.04 0.05 0.06 0.07 0.08 0.09 0.10

-4000

= Construct a quadratic surrogate F(Cp, C,, | |
C,) for stream-wise vorticity 2t

] COX(RANS) ~ F(CH’ CZ, Cl p) + T] Cubic surrogate model predictive errors

= Retain only those surrogates that have n | Lo,
<10% | Tt
= Only 52 /108 “probes” survive .

Relative errors

= Compute vorticity using experimentally P
observed velocity on crossplane s,

0.1
>

|”

= “experimental” vorticity

= Use them in MCMC calibration




Bayesian calibration ) e

=  Use “experimental g |
observations” of vorticity to ¢ |
perform MCMC calibration

=  Vertical lines are the

nominal values of ///

50

40

Density
20
1
Density
30
1

20
|

10
|
10
|

parameters T — 71—
= Only C, estimates are close K >

to nominal one o o
= Also compute an estimate s

of model — data mismatch =1 8

@, (&XP) — gy (RANS) = g ~ N (0, g g:_

%) o g1
= Redid calculation using GA; | s |

CGA={O'10512‘09911'42} ) 1.I20 1.I25 1.I30 1.I35 1.I40 1.I45 10I00 | 14I00 | 18I00 | 22I00

Ci c




Can we predict vorticity?

= Take 100 samples from JPDF and run 3D RANS
with them

= Compute median prediction & inter-quartile
range

= Uncertainty in {Cp, C,, C,} does not lead to a

Sandia
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Pushed forward posterior

big variation in @, (RANS)

=  Model-form error m ) — @ (RANS) = § ~ N(O,
2 . Posterior predictive
qQ?,) is large

. ”Error&

6l

5000

4000

Vorticity

2000 3000
| |
f = 1
I ;4‘ [
; =
+
+
—
+
+
—_—
e
=

1000
|
4

60 80 100 120 140 160

Probe index

=
o o
£ Q3
S
S 2
) S | .
(= P
@ e
o S
Q3 - SR
B L
« B
+ u
o [ T
§ - e +
N + + .
I I I I I I
60 80 100 120 140 160

Probe index

Now add in the statistical
summary of model-form error

Model-form error (as estimated)
is responsible for coming close
to the measurements
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Normalized predictions (numerical / experimental)

Sandia

1 1 M r.h National
re- an post-ca Ibration con 1Parison lboroes
‘Jet—in—crossflow‘predictions for M - 0.8andJ= 10.2‘ .5 ‘Jet-in-crossflow‘predictions for M = 0.8andJ=16.7
13} O o 1 M=0.8. =" O
1.2F - _ ’ ‘% |
0 J=102 £ :
09 — . g 117
0.8 g 1T n
S ==
0.7 M - 0_8, g 0.9 %‘ .
0.6 o] L
J=167 " 1" ——
0.5 ’26 07k .
0.4 | | | Q osl 0
o Cireulation Centroid-z Centroid-y Gyration-R Circu‘lation CentrLJid—z CentrLJid—y Gyrat‘ion—R
) Jet-in—crossflow predictions for M = 0.8 and J = 5.6
Summarize vorticity on the -
= 18-
crossplane das a point-vortex .21
g 16
Normalize by experimental values M =0.8, — 5
- . J=56 S ©
Plot predictions using C,,, for S ==
comparison g
P N : T —=
Compare, pre & post-calibration 3
= 0.8
. . s ENC
Do for M = 0.8, J = 10.2 (calibration —
06 | 0 | |
Ca Se)’ J = 16.7 & J = 5.6 Circulation Centroid-z Centroid-y Gyration-R 31




Vorticity distribution

Keep M constant

and Va ry J Vorticity (nominal case); J = 10.2
Use “point-vortex” 2000
metrics to compute i
an optimal C,, | 000
0 0.02 0.04

COpt_ {O 1025' Vorticity (nominal case); J = 16.7
2.099, 1.416}

. . -2000
Plot predictions
with C,, for s
comparison : e S -6000

-2000

-4000

-6000
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Vorticity (best case); J = 10.2

-2000
-4000
-6000
0 0.02 0.04

Vorticity (best case); J = 16.7

-2000

-4000

-6000
0 0.02 0.04

Vorticity (best case); J = 5.6

0.12
0.1 -2000
0.08 _
0.06 @ -4000
0.04 :
0.02 -6000
0 0.02 0.04




Streamwise velocity deficit

Keep M constant

x/Dj =21

x/Dj =21

and vary | 1
_10¢
Computed and o)

5_
compared on the )
midplane .
NOT used in the .
calibration ol

-
Compared at 2 > 5
locations 0
= Experiment,
ensemble mean & i
nominal
_10¢
. o
Improvement in B
predictions persists ol

at off-calibration
points

(U(x) - u)/U(x)
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X/Dj =315

X/D]. =315

(U(x) - u)/U(x)-
x/Dj =315

(U(x) - u)/U(x)
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Vertical velocity distribution

= Keep M constant and

vary J 15[
— 10}
= Compared at 2 S |
locations " .
-0.1 : : ; : 0.4
= Experiment, ensemble ViU, ViU,

mean & nominal

= Extremely good
agreement

0.6

= Governed mostly by
streamwise vorticity
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= Keep J constant and L s
vary M (0.8, 0.7, 0.6) 15 | 15—g L
= Computed and g e .
50 P ] ~ 5
compared on the - | - |
1 -(()).05 0 0.65 01 015 0.2 -(()).05 0 0.0 01 015 0.2
midplane
(U();I)D- u)/U(x) (U%) - u)/U(x)
. x/D. =21 x/D. =315
= NOT used in the P a1
calibration Lo} B I e
3 e 3 oAod®
= Compared at 2 &L .
locations 005 0 005 (;1 015 02 805 0 0.(‘)5I o.n1 015 02
. (U(x) - u)/U(x) (U(x) - u)/U(x)
= Experiment, ensemble X/D, = 21 x/D, =315
mean & nominal & . i
. _ 10 _ 10
= |mprovement in g | 3 g i
predictions persists at R T L R Soma
. . . -0.05 0 005 01 015 02 -0.05 0 005 01 015 0.2
off-calibration points U U 08
35



Vertical velocity distribution

Keep J constant and
vary M (0.8, 0.7, 0.6)
Compared at 2
locations

= Experiment, ensemble
mean & nominal

Extremely good
agreement

Governed mostly by
streamwise vorticity

y/Dj

x/Di =21

y/D.
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M=0.8, .J =10.2 | | 56 | aboratories

20
oo Experiment

Turbulent stresses

002 0 002
L /UfC

0.04

= Compare normal (t,, T,,) and shear stresses(t,,)
= Strain-rates have very little effect on the stresses — it’s mostly 2/3k 37




Conclusions rih) s

= We have developed a way of calibrating RANS models for
predictive jet-in-crossflow simulations
= Based on surrogate models and Bayesian inference
= Predictions are probabilistic — we predict using an ensemble

= The primary cause of inaccurate RANS JinC predictions was an
unsuitable C__
= Calibration to flow-over-square cylinder largely fixed it

= (Calibration to JinC data revealed model error — and it’s not much,
comparatively

= Calibrated joint PDF predictive even at off-calibration flow interaction

= Cause of model-form error — the linear eddy viscosity model
we use

38



