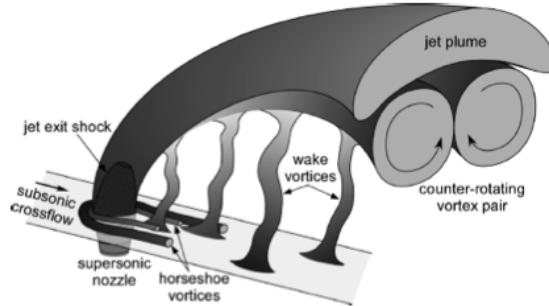
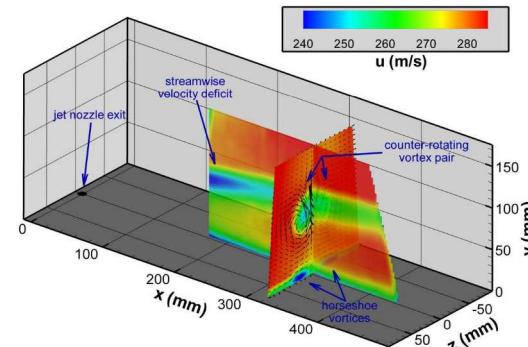


Exceptional service in the national interest



Bayesian calibration of $k-\epsilon$ parameters for predictive jet-in-crossflow simulations

J. Ray, S. Lefantzi, S. Arunajatesan and L. Dechant

Contact: jairay@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-2429C

Introduction

- **Aim:** Develop a predictive RANS model for transonic jet-in-crossflow simulations
 - A strongly vortical flow, often with weak shocks
- **Drawback:** RANS simulations are simply not predictive
 - They have “model-form” error i.e., missing physics
 - The numerical constants/parameters in the $k-\varepsilon$ model are usually derived from canonical flows
- **Motivation**
 - RANS simulations are still the workhorse for most design activities
 - Jet-in-crossflow is a canonical flow for many maneuvers involving spin rockets and finned aerodynamics bodies
- **Hypotheses**
 - H1: Source of errors are the unsuitable values used for $\{C\mu, C_2, C_1\}$
 - H2: Model form error in RANS mostly due to the eddy-viscosity model

Technical approach

- H1 – Obtain better values of $\mathbf{C} = \{C\mu, C_2, C_1\}$ by calibrating to an incompressible flow over square cylinder
 - Strongly vortical, but has little else in common with transonic jet-in-crossflow.
- H2 – Quantify model-form errors by calibrating RANS to transonic jet-in-crossflow measurements
 - Also check robustness of calibration (compare predictive skill at off-calibration points)
- Estimate $k-\varepsilon$ parameters by posing it as a Bayesian inverse problem
 - Estimate $\{C\mu, C_2, C_1\}$ as a 3-dimension joint PDF (JPDF) by solving the inverse using Markov chain Monte Carlo (MCMC)
 - Capture uncertainty due to (1) limited measurements (2) model limitations
 - Post-calibration, draw 100 samples from the JPDF and probabilistically predict the flow field (develop an ensemble of 100 predictions)
- MCMC will require $O(10^4)$ invocations of the flow solver (to link proposed $\{C\mu, C_2, C_1\}$ with calibration / experimentally observed variable)
 - Develop a surrogate/proxy/statistical response function representation of the RANS simulator

Sections of the talk

- Section 1
 - Show that $\mathbf{C} = \{C\mu, C_2, C_1\}$ obtained by calibrating to flow-over-square-cylinder observations are better than the nominal values $\mathbf{C}_{\text{nom}} = \{0.09, 1.42, 1.92\}$
- Section 2
 - Quantify the improvement in predictions if $\{C\mu, C_2, C_1\}$ are calibrated to a transonic jet-in-crossflow experiment ($M = 0.8, J = 10.2$)
 - Are they still more predictive (versus \mathbf{C}_{nom}) at other M and J ?
 - How big is the disagreement cause by the model-form error on RANS?
 - Where can we isolate the model-form error and how big is it (in that particular variable of interest)?

Section 1

CALIBRATING TO FLOW OVER SQUARE CYLINDER EXPERIMENT

Introduction

- **Aim:** Develop a predictive RANS model for transonic jet-in-crossflow (JinC) simulations
 - A strongly vortical flow, often with weak shocks
- **Approach:**
 - Estimate $\mathbf{C} = \{C\mu, C_2, C_1\}$ from experimental measurements of Reynolds stresses from a flow-over-square-cylinder experiment
 - Check predictive skill versus \mathbf{C}_{nom} in a JinC interaction
- **Numerical considerations**
 - Describe how one makes a surrogate model for Reynolds stresses generated by a 2D RANS simulator
 - Set up the Bayesian inverse problem, and describe how it's solved using MCMC; describe the estimation error
 - Check predictive skill by developing an ensemble of 100 JinC predictions, post-calibration

The problem

- The model
 - Devising a method to calibrate 3 $k-\varepsilon$ parameters $\mathbf{C} = \{C_\mu, C_2, C_1\}$ from expt. data

$$\frac{\partial \rho k}{\partial t} + \frac{\partial}{\partial x_i} \left[\rho u_i k - \left(\mu + \frac{\mu_T}{\sigma_k} \right) \frac{\partial k}{\partial x_i} \right] = P_k - \rho \varepsilon + S_k$$

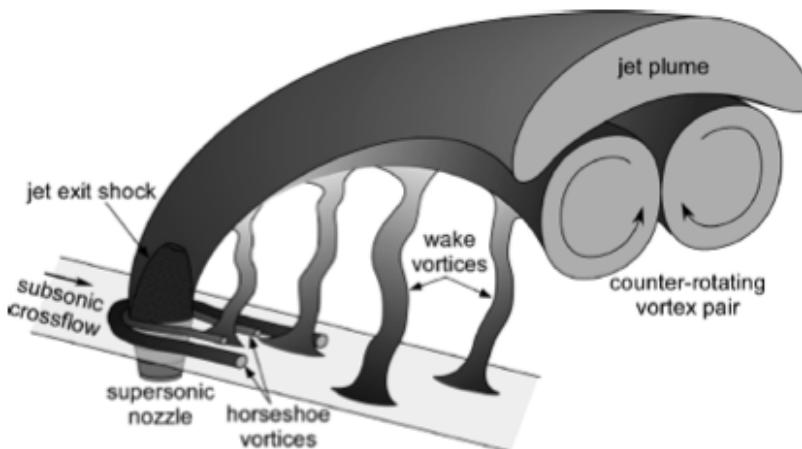
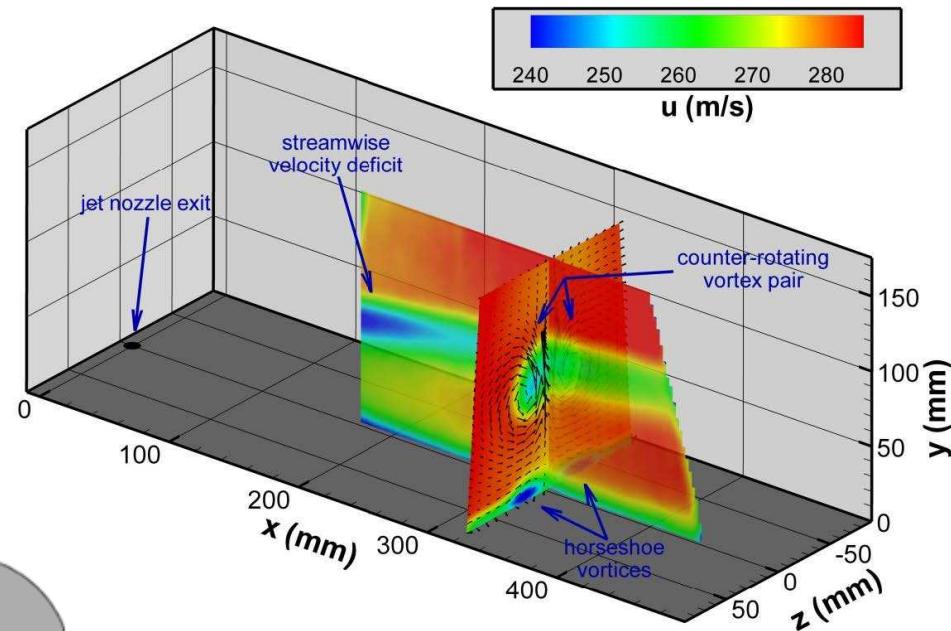
$$\frac{\partial \rho \varepsilon}{\partial t} + \frac{\partial}{\partial x_i} \left[\rho u_i \varepsilon - \left(\mu + \frac{\mu_T}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_i} \right] = \frac{\varepsilon}{k} (C_1 f_1 P_k - C_2 f_2 \rho \varepsilon) + S_\varepsilon$$

$$\mu_T = C_\mu f_\mu \rho \frac{k^2}{\varepsilon}$$

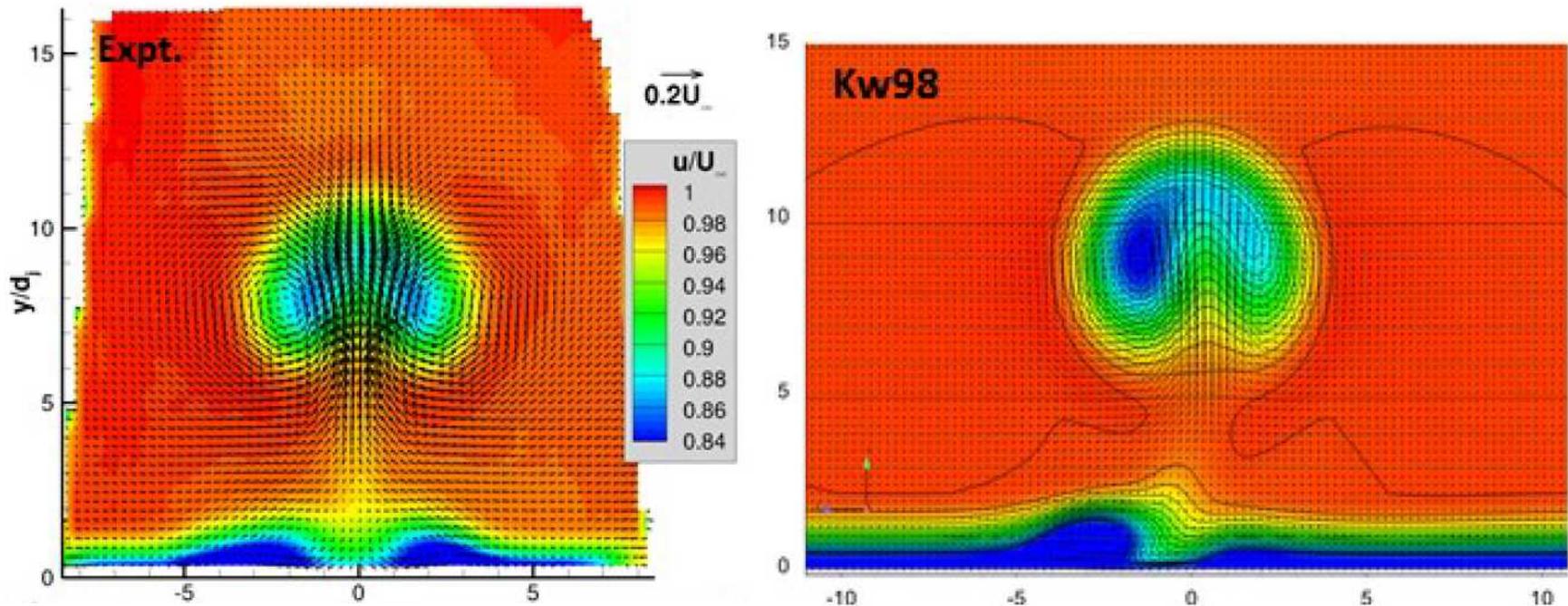
- Calibration parameters
 - C_μ : affects turbulent viscosity; C_1 & C_2 : affect dissipation of TKE
- Calibration method
 - Pose a statistical inverse problem using experimental data for flow-over-a-square-cylinder
 - Estimate parameters using Markov chain Monte Carlo
 - Construct a polynomial surrogate for square-cylinder RANS simulations

Target problem - jet-in-crossflow

- A canonical problem for spin-rocket maneuvering, fuel-air mixing etc.
- We have experimental data (PIV measurements) and corresponding RANS simulations
- The RANS simulations have stability problems

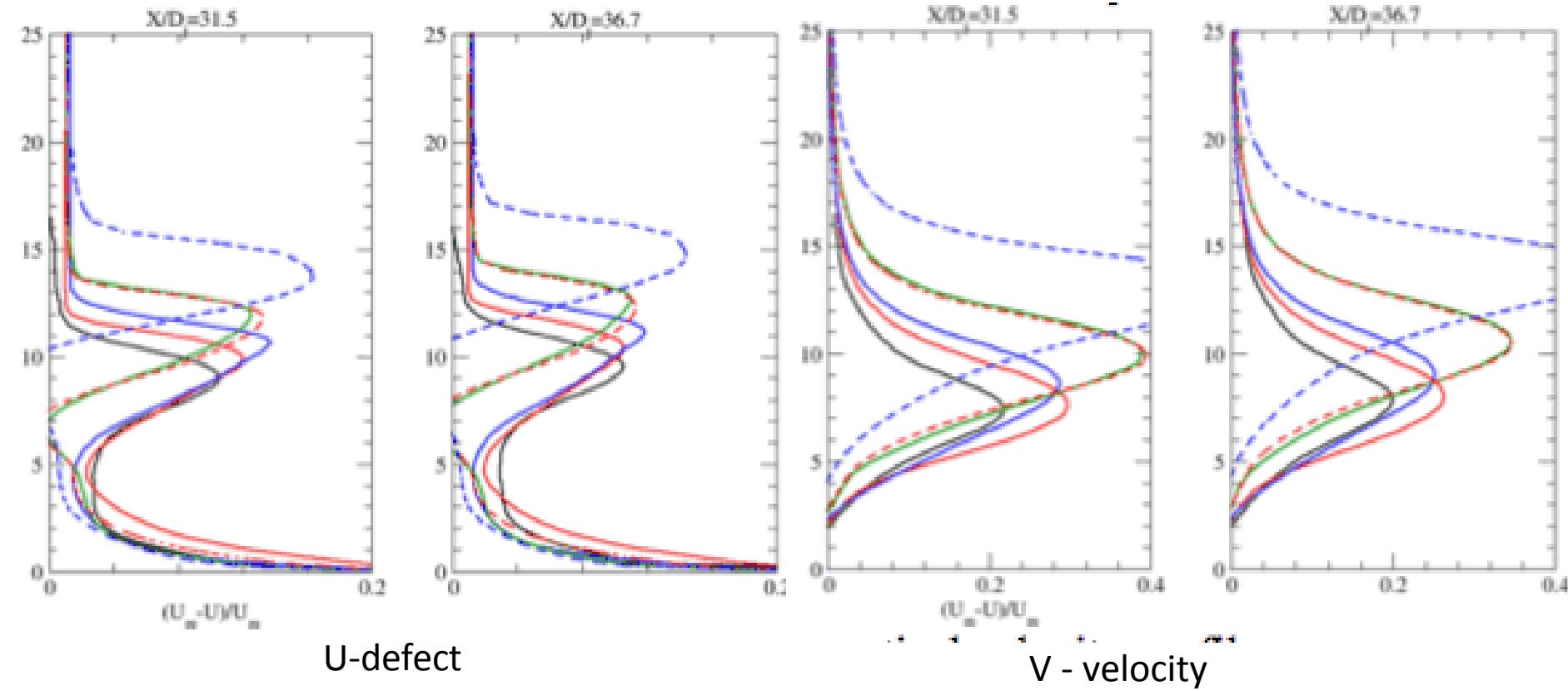


RANS ($k-\omega$) simulations - crossplane results



- Crossplane results for stream
- Computational results (SST) are too round; Kw98 doesn't have the mushroom shape; non-symmetric!
- Less intense regions; boundary layer too weak

RANS (k- ω) simulations – midplane results



- Experimental results in black
- All models are pretty inaccurate (blue and red lines are the non-symmetric results)

The desired outcome

- **Summary**
 - The velocity distribution from RANS at the crossplane is sub-optimal
 - At the mid-plane, the jet sits too high; the vertical velocity is too high indicating a very strong vortex
- **Aims of the calibration**
 - Get the crossplane vorticity distribution right
 - Correct circulation, position and size of the CVP
 - Match the midplane velocity profiles
- **Procedure**
 - Use experimental data from a flow-over-square-cylinder experiment
 - Observations of Reynolds stress in the wake behind the cylinder
 - Construct a computationally inexpensive surrogate for the RANS model / predictions of Reynolds stress
 - Use the surrogate for Bayesian calibration of the 3 parameters

Flow over a square cylinder

- **Experimental data**
 - Water tunnel, 39 cm X 56 cm cross-section
 - Square-cylinder 4 cm per side
 - 96 probes in the wake where $\eta = u'v'$ are measured
- **Calibration: Make a map of η to (C_μ, C_2, C_1)**
 - Use a statistical (surrogate) model
 - Make a RANS training set using 2744 samples from the (C_μ, C_2, C_1) space
 - Save $\eta = u'v'$ at the 96 probes for each run

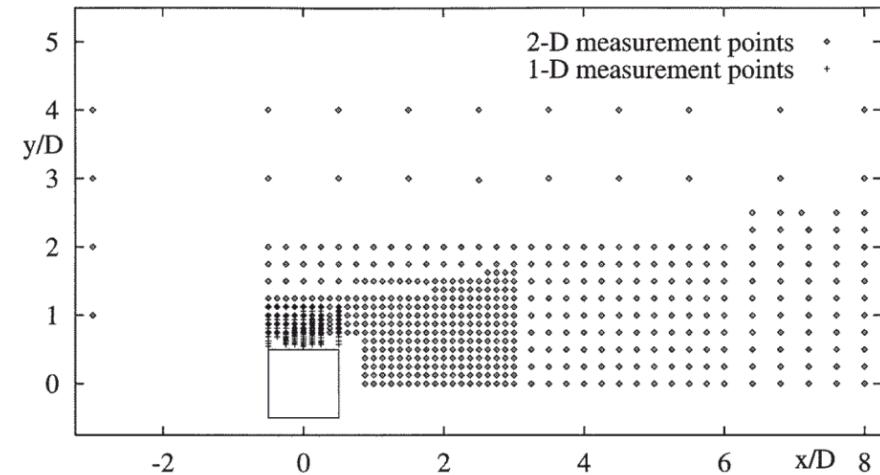


Figure 1: Coordinate system and location of measurement points.

Experimental data and setup from Lyn & Rodi, JFM, 1994

Surrogate models

- Model η as a function of \mathbf{C} i.e. $\eta = \eta(\mathbf{C})$
 - Approximate this dependence with a polynomial

$$\eta \approx \eta_{trend} = a_0 + a_1 C_\mu + a_2 C_2 + a_3 C_1 + a_4 C_\mu C_2 + a_5 C_\mu C_1 + a_6 C_2 C_1 + \dots$$

- Given η_{exp} at a bunch of probe locations, it should be possible to estimate $\{C_\mu, C_2, C_1\}$ by fitting the polynomial model to data
- But how to get (a_0, a_1, \dots) for each of the probe locations to complete the surrogate model for each probe?
 - Divide training data in a Learning Set and Testing Set
 - Fit a full quadratic model for η to the Learning Set via least-squares regression; sparsify using AIC
 - Estimate prediction RMSE for Learning & Testing sets; should be equal
- Final model tested using 100-fold cross-validation; a 10% error threshold was used to select models for the probes

Calibration – in earnest

- Basic idea:
 - Choose 55/96 probes at $x/D = 2 \dots 8$
 - Measured $u'v'$, $(u')^2$ and $(v')^2$
 - minimize $\|\eta_{\text{ex}} - \eta_{\text{trend}}\|_2$ by finding ‘good’ values of (C_m, C_2, C_1)
 - Bayesian calibration: Find $P(C_\mu, C_2, C_1 \mid \eta_{\text{expt}})$

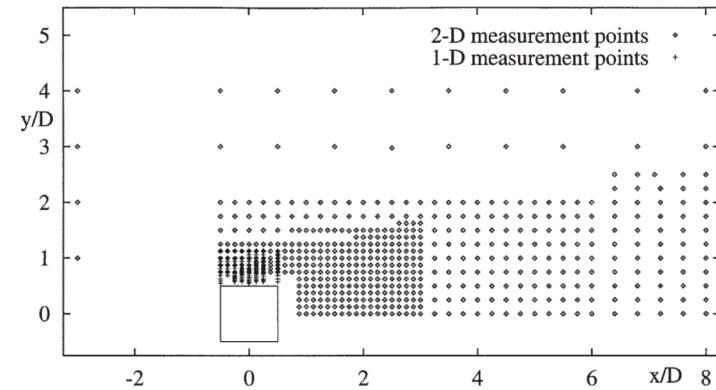


Figure 1: Coordinate system and location of measurement points.

- RANS does not even provide a very good prediction for the wake
 - $(\eta_{\text{ex}} - \eta_{\text{trend}})$ can be large for many probes
- Choose a set of ‘calibration’ probes
 - $0.25 < \eta_{\text{ex}} / \eta_{\text{trend}}(\mathbf{C}_{\text{nominal}}) < 4$
- We end up with 28 / 96 probes which we can use for calibration
 - We call this set of 28 probes \mathcal{P}

The Bayesian calibration problem

- Model experimental values at probe p as $\eta_{\text{ex}}^{(p)} = \eta_{\text{trend}}^{(p)}(\mathbf{C}) + \varepsilon^{(p)}$, $\varepsilon^{(p)} \sim N(0, \sigma^2)$

$$\Lambda(\eta_{\text{ex}}^{(p)} | C) \propto \prod_{p \in \mathcal{P}} \exp\left(-\frac{(\eta_{\text{ex}}^{(p)} - \eta_{\text{trend}}^{(p)}(C))^2}{2\sigma^2}\right)$$

- Given prior beliefs π on \mathbf{C} , the posterior density ('the PDF') is

$$P(C, \sigma | \eta_{\text{ex}}^{(p)}) \propto \Lambda(\eta_{\text{ex}}^{(p)} | C, \sigma) \pi_{\mu}(C_{\mu}) \pi_2(C_2) \pi_1(C_1) \pi_{\sigma}(\sigma)$$

- $P(\mathbf{C} | \eta_{\text{ex}})$ is a complicated distribution that has to be described/visualized by drawing samples from it
- This is done by MCMC

What is MCMC?

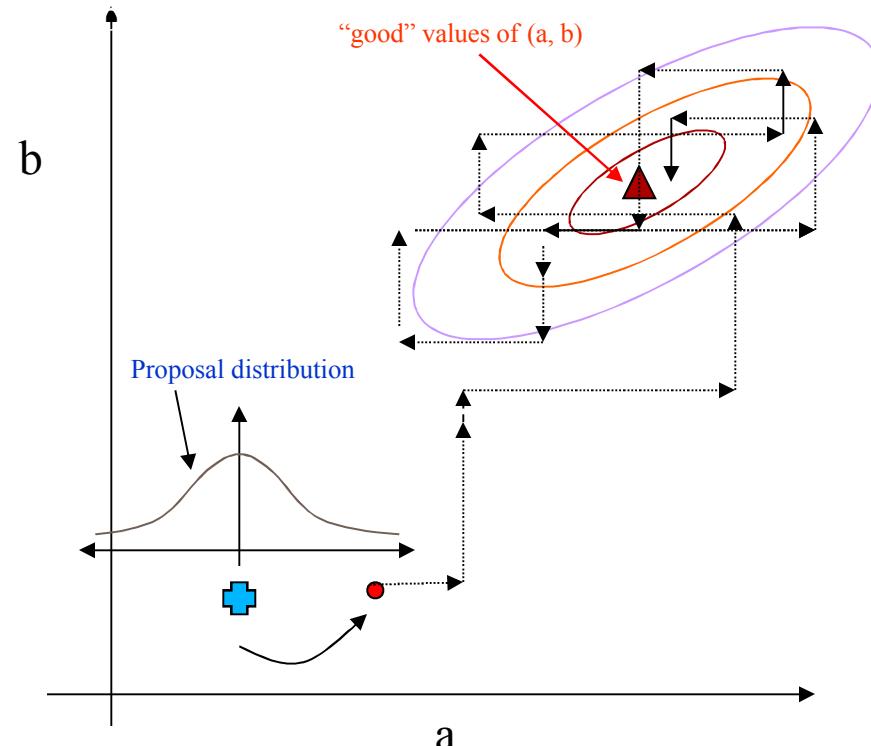
- A way of sampling from an arbitrary distribution
 - The samples, if histogrammed, recover the distribution
- Efficient and adaptive
 - Given a starting point (1 sample), the MCMC chain will sequentially find the peaks and valleys in the distribution and sample proportionally
- Ergodic
 - Guaranteed that samples will be taken from the entire range of the distribution
- Drawback
 - Generating each sample requires one to evaluate the expression for the density π
 - Not a good idea if π involves evaluating a computationally expensive model

An example, using MCMC

- Given: (Y^{obs}, X) , a bunch of n observations
- Believed: $y = ax + b$
- Model: $y_i^{obs} = ax_i + b_i + \varepsilon_i, \varepsilon \sim \mathcal{N}(0, \sigma^2)$
- We also know a range where a , b and σ might lie
 - i.e. we will use uniform distributions as prior beliefs for a , b , σ
- For a given value of (a, b, σ) , compute “error” $\varepsilon_i = y_i^{obs} - (ax_i + b_i)$
 - Probability of the set $(a, b, \sigma) = \prod \exp(-\varepsilon_i^2/\sigma^2)$
- Solution: $\pi(a, b, \sigma | Y^{obs}, X) = \prod \exp(-\varepsilon_i^2/\sigma^2) * (\text{bunch of uniform priors})$
- Solution method:
 - Sample from $\pi(a, b, \sigma | Y^{obs}, X)$ using MCMC; save them
 - Generate a “3D histogram” from the samples to determine which region in the (a, b, σ) space gives best fit
 - Histogram values of a , b and σ , to get individual PDFs for them
 - Estimation of model parameters, with confidence intervals!

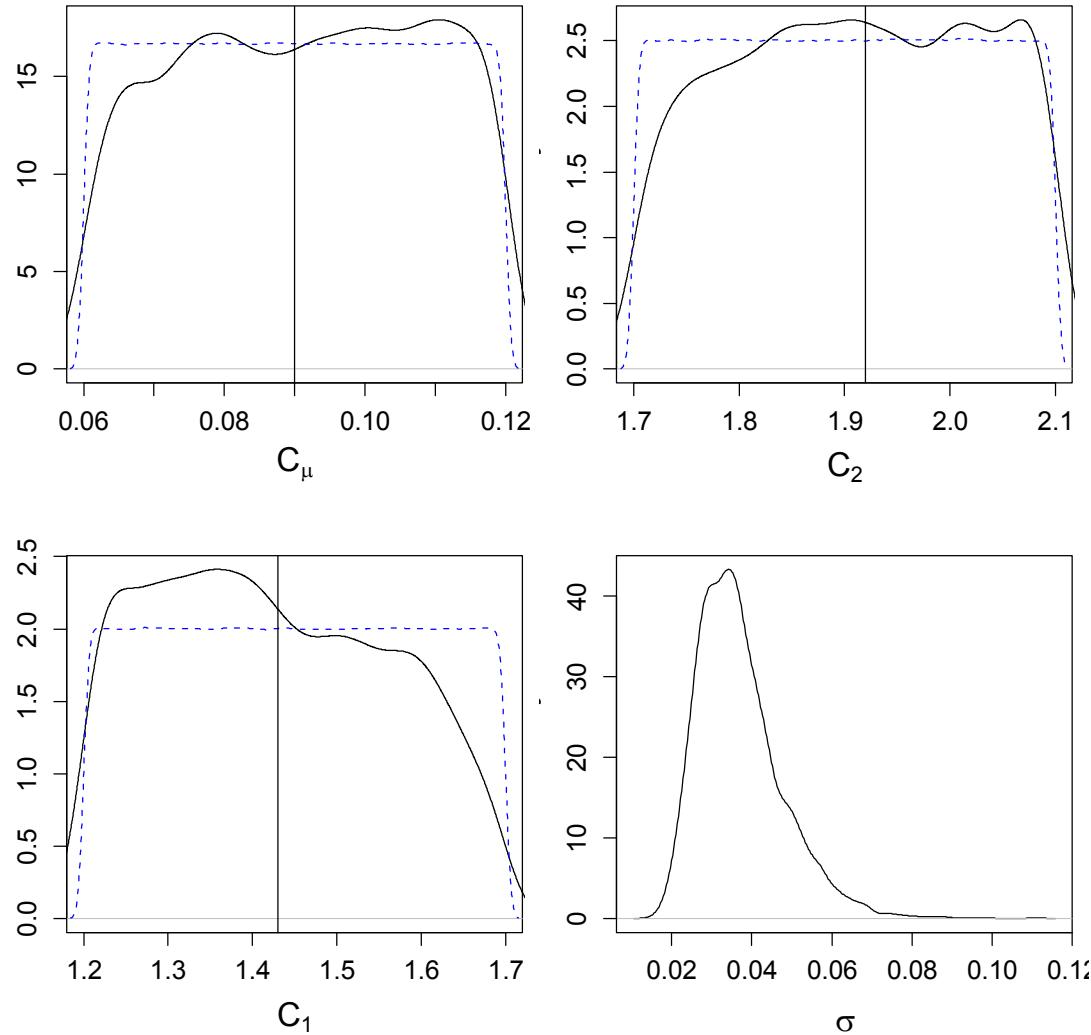
MCMC, pictorially

- Choose a starting point, $P^n = (a_{curr}, b_{curr})$
- Propose a new a , $a_{prop} \sim \mathcal{N}(a_{curr}, \sigma_a)$
- Evaluate $\pi(a_{prop}, b_{curr} | \dots) / \pi(a_{curr}, b_{curr} | \dots) = m$
- Accept a_{prop} (i.e. $a_{curr} \leftarrow a_{prop}$) with probability $\min(1, m)$
- Repeat with b
- Loop over till you have enough samples



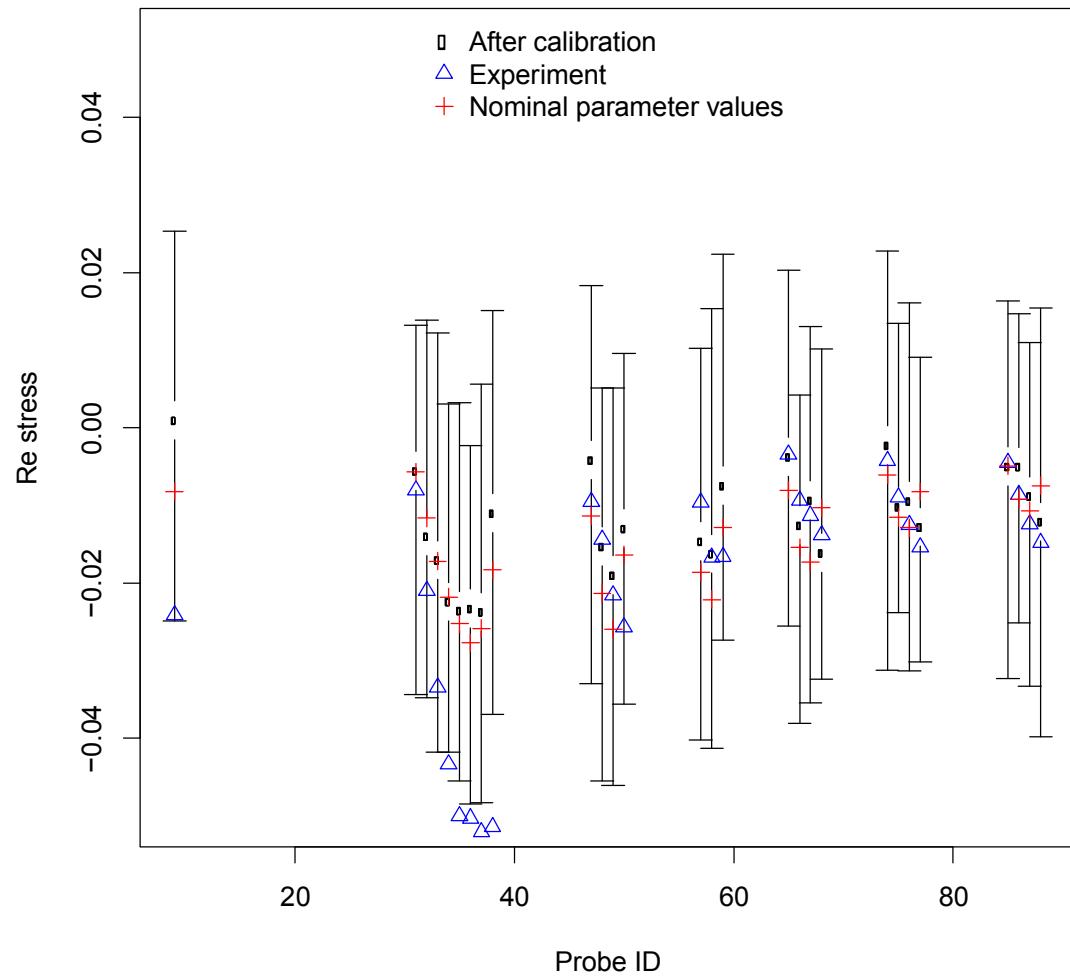
MCMC solution for (C_μ, C_2, C_1)

- Computed using an adaptive MCMC method (DRAM)
- These are marginals – the distribution is 4D
- Nominal values are vertical lines
- Blue dashed lines are prior beliefs
- The model error σ is large



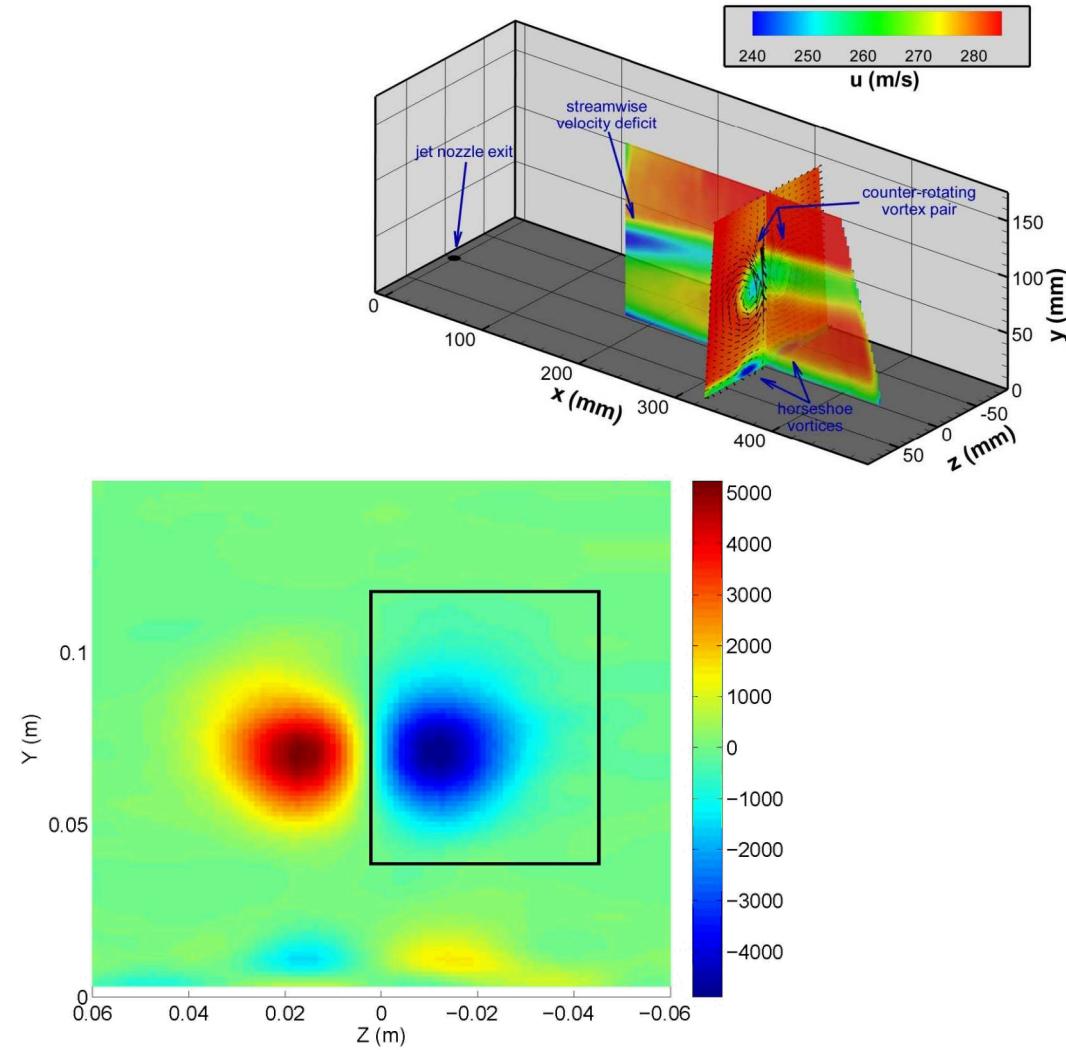
Recreating experimental observations

- Post-calibration, we choose 100 \mathbf{C} samples from the PDF
 - Run the ensemble of 100 RANS runs and plot results at \mathcal{P}
- Median predictions close to experimental values
- Error bars capture all measurements



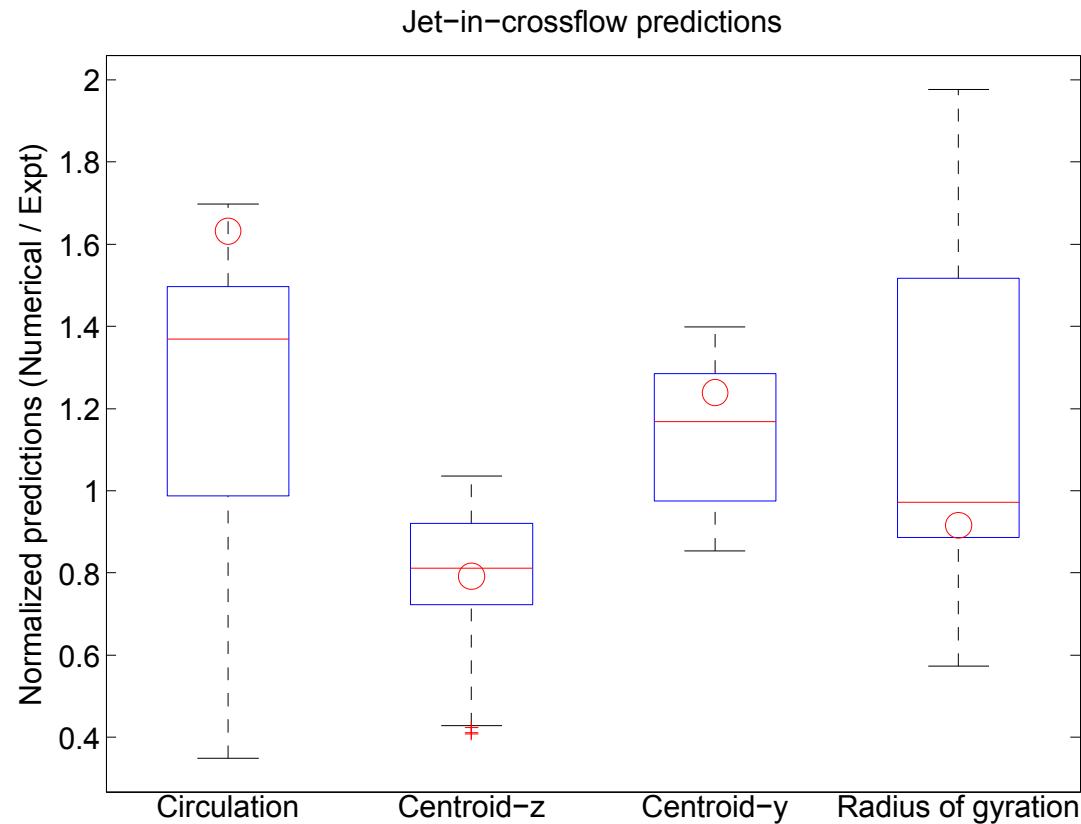
Is the PDF predictive for jet-in-crossflow?

- Pick 100 C samples from the PDF
- Simulate jet-in-crossflow
- In the crossplane, quantify
 - Circulation
 - Centroid of vorticity
 - Radius of gyration
- From the ensemble, calculate median, quartiles etc
- Compare with experimental values

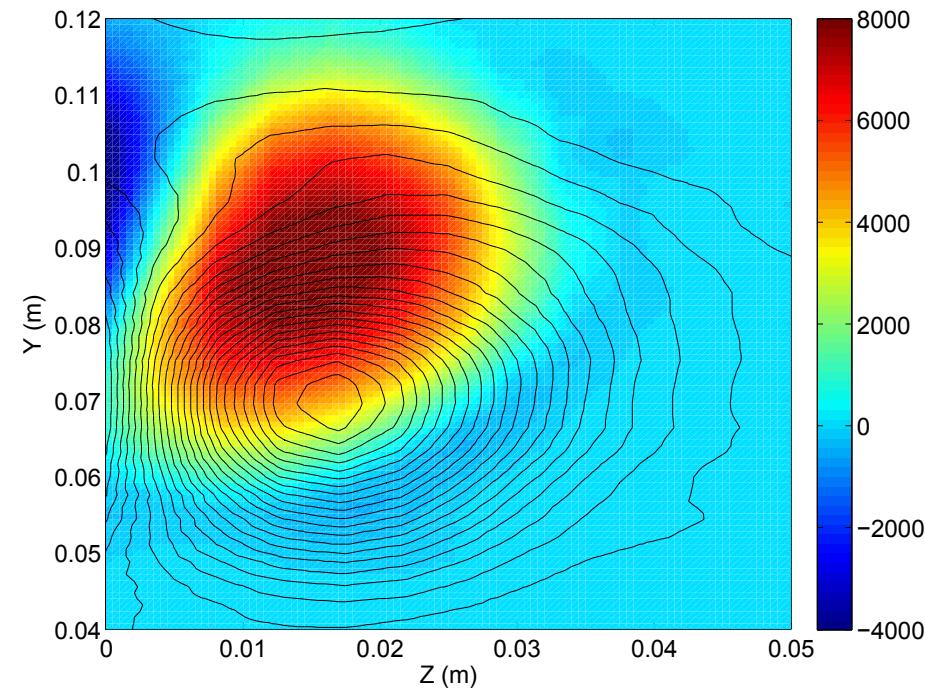


Comparison of predictions and experiments

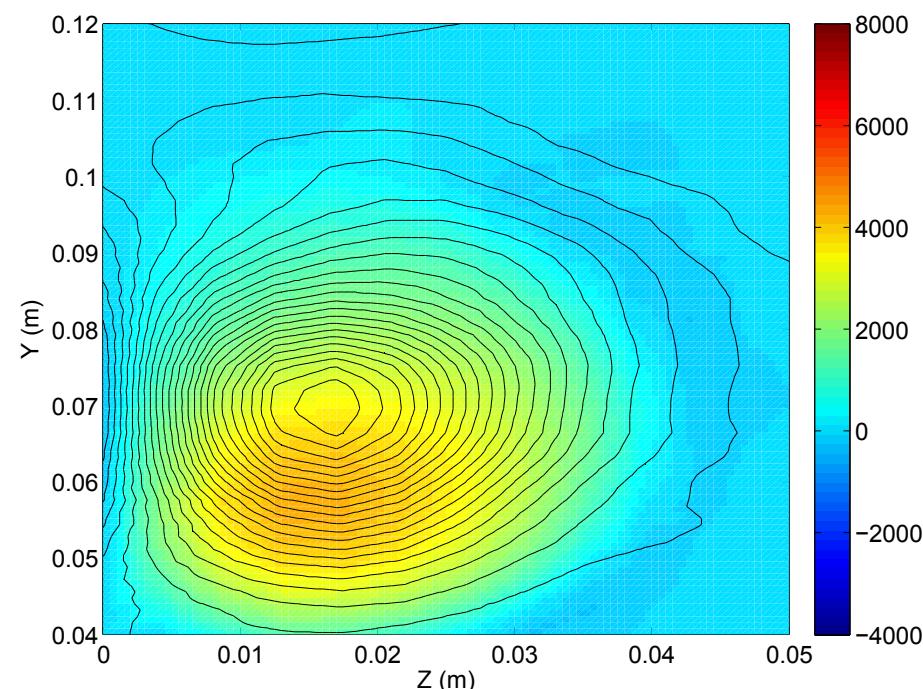
- Plotting Predictions / Experimental values
- We overpredict circulation
- Location is somewhat off
- Size is somewhat larger
- Big improvements over nominal value
- Also search the 100 ensemble members for best prediction
 - “Optimal” ensemble member



Optimal ensemble member – vorticity



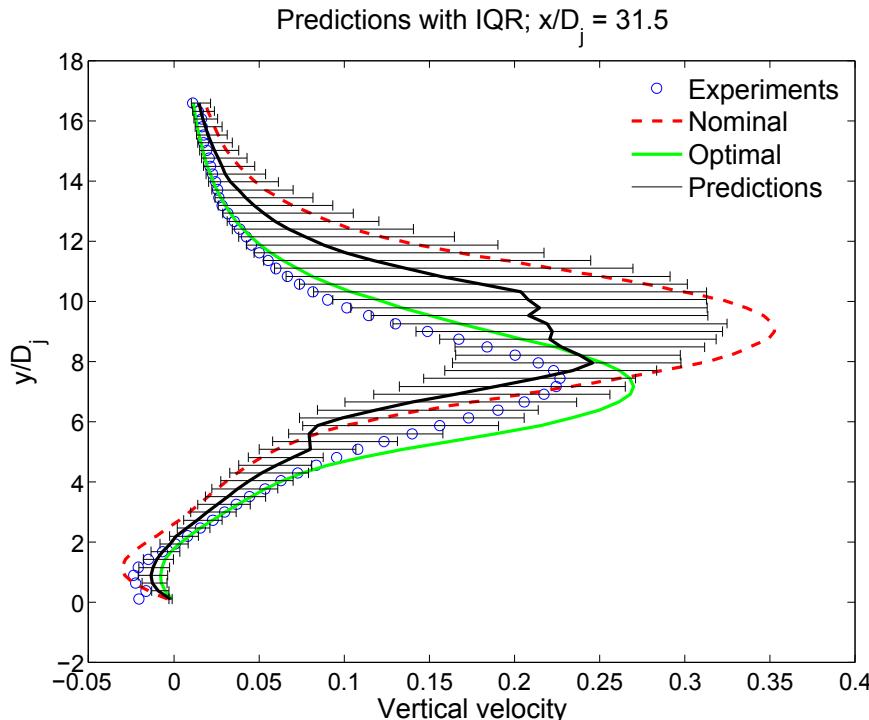
With nominal **C**



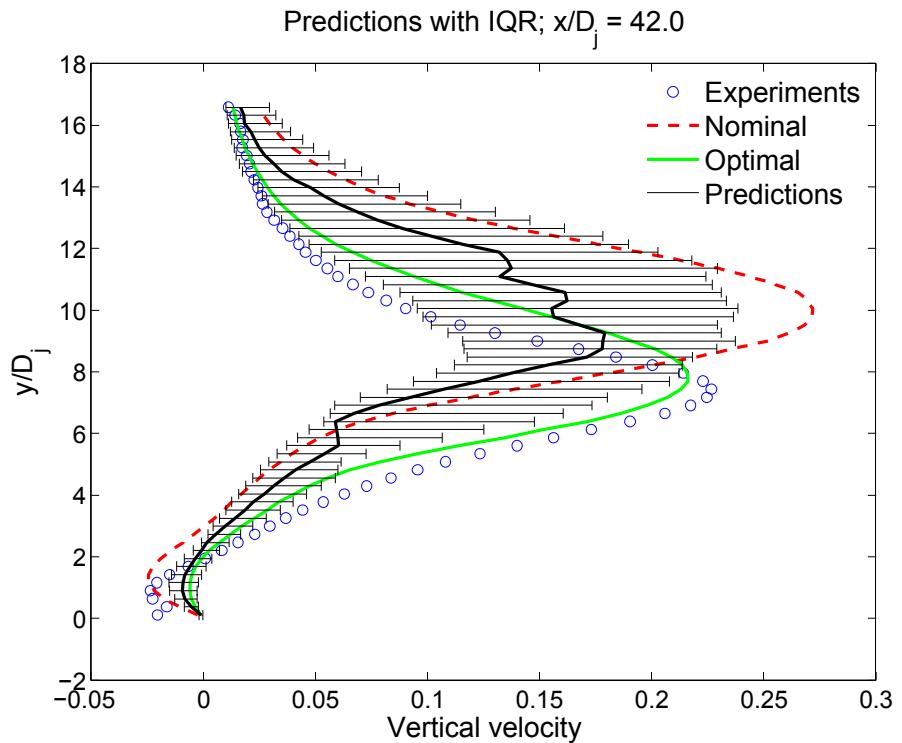
With best **C**

- Experimental vorticity as contours
- Calibration positions the vortex better; also gets its strength right
- The circulation, position and size are +/- 15% from experiments

Optimal ensemble member: v velocity



$x/D = 31.6$



$x/D = 42.0$

- Improvement over C_{nominal}
- Nearly nailed the experiment

Conclusions – Section 1

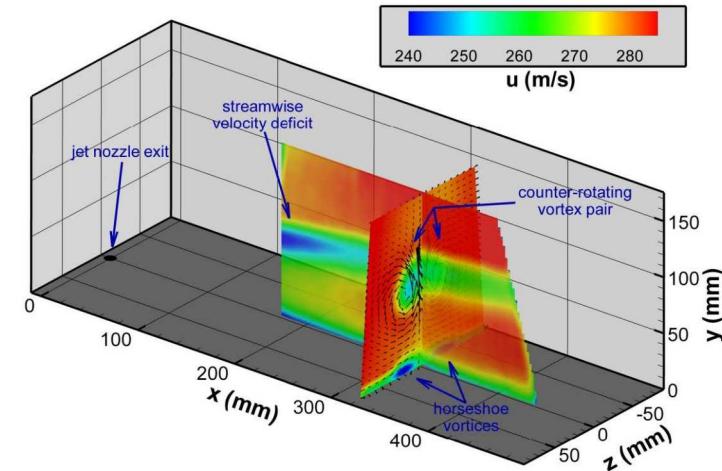
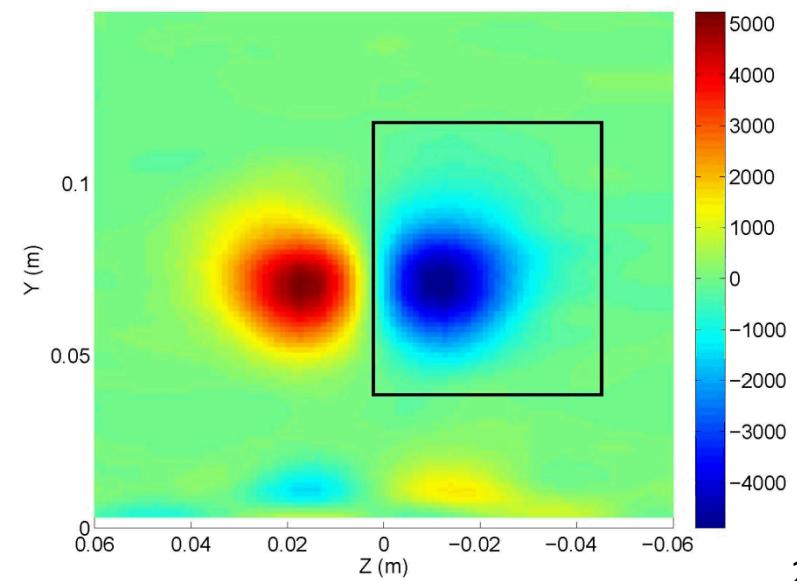
- Our hypothesis of calibrating to a simple vortical flow for predictive jet-in-crossflow proved correct
- Even simple, polynomial surrogates were sufficiently accurate to allow us to calibrate RANS models
 - More elaborate models, with the deficit would probably do somewhat better
 - With surrogates come Bayesian calibration and PDFs of calibrated parameters
- Being able to get a PDF for (C_μ, C_2, C_1) proved to be very convenient
 - Ensemble predictions provide error bars on predictions
 - They allow us to test various (C_μ, C_2, C_1) combinations for predictive power
- *Details: S. Lefantzi, J. Ray, S. Arunajatesan and L. Dechant, "Tuning a RANS $k-\varepsilon$ model for jet-in-crossflow simulations", Sandia Technical Report, SAND2013-8158*

Section 2

UNCOVERING MODEL-FORM ERROR

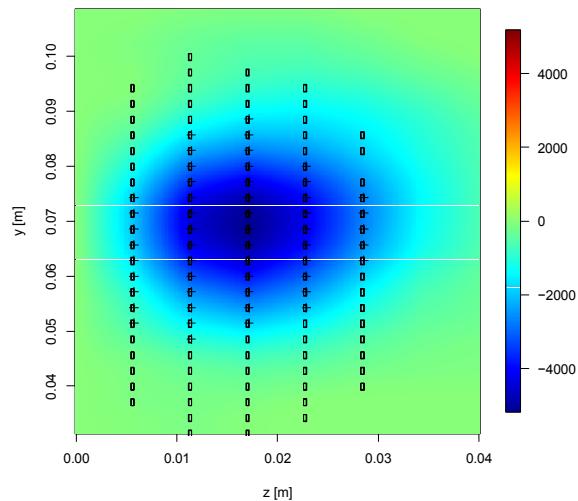
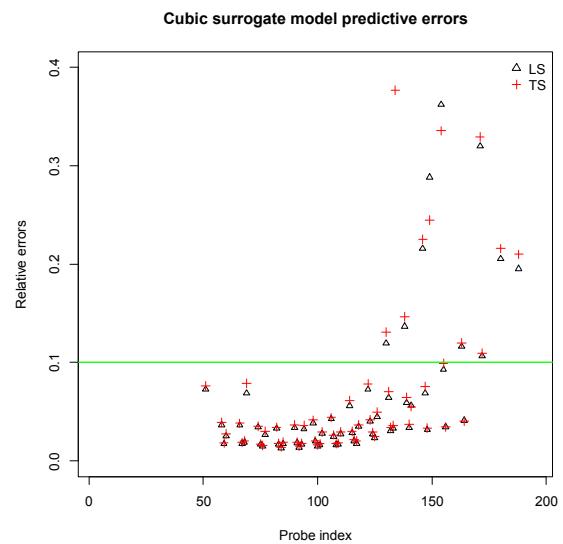
Introduction

- **Aim:** Estimate model-form error in 3D RANS simulations of transonic jet-in-crossflow interaction
- **Approach**
 - Estimate $\{C\mu, C_2, C_1\}$ using Bayesian inference and surrogate models of a 3D RANS simulator
 - Experimental data: Beresh et al, AIAAJ 2005; vorticity on the crossplane
 - $M = 0.8, J = 10.2$
 - Predict the flowfield (and see improvement over C_{nom} predictions)
 - See predictive skill at off-calibration points (other M and J)
 - Uncover mismatch between predicted and experimentally measured turbulent stresses



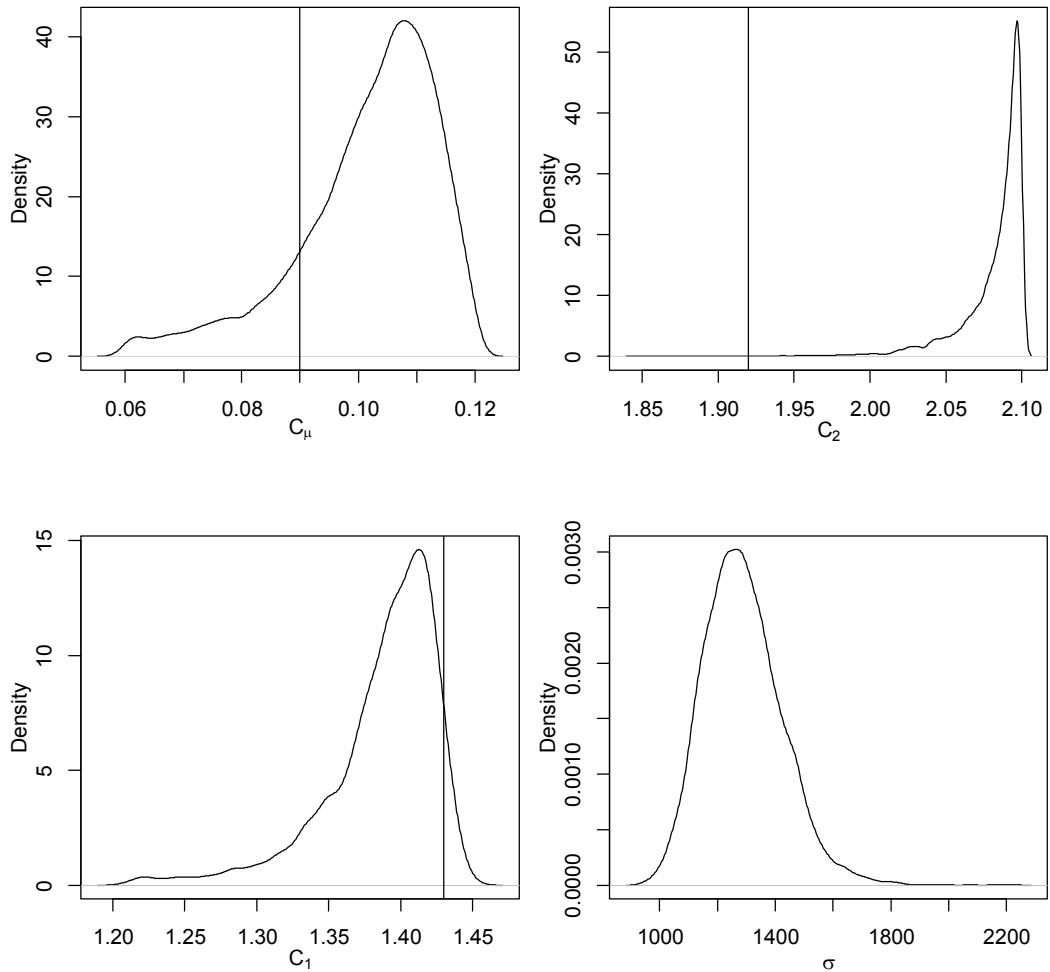
Building surrogate models

- Sample $\{C\mu, C_2, C_1\}$ space with 2744 points
 - Run 3D RANS at each and obtain 2744 predicted vorticity fields on crossplane
 - Choose locations with high vorticity (less affected by numerical noise) - 108 “probe” locations
 - Construct a quadratic surrogate $F(C\mu, C_2, C_1)$ for stream-wise vorticity
 - $\omega_x^{(\text{RANS})} \sim F(C\mu, C_2, C_1; \mathbf{p}) + \eta$
 - Retain only those surrogates that have $\eta < 10\%$
 - Only 52 / 108 “probes” survive
- Compute vorticity using experimentally observed velocity on crossplane
 - “experimental” vorticity
 - Use them in MCMC calibration



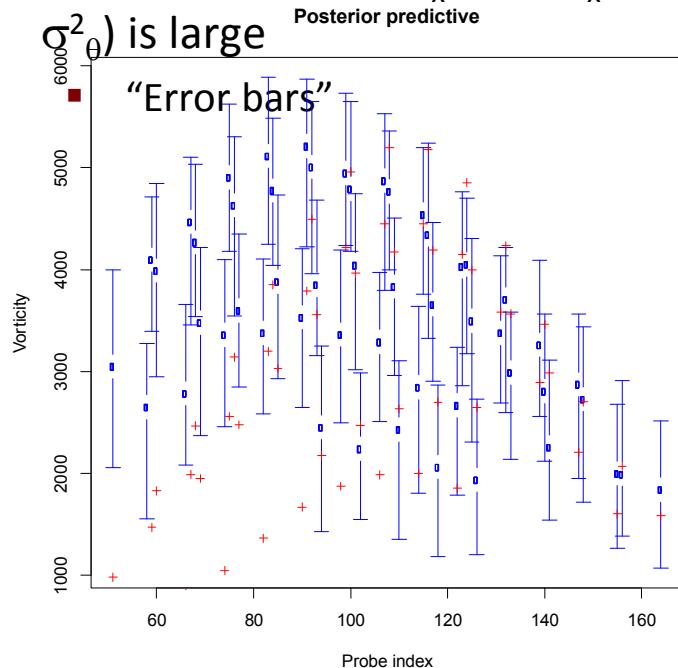
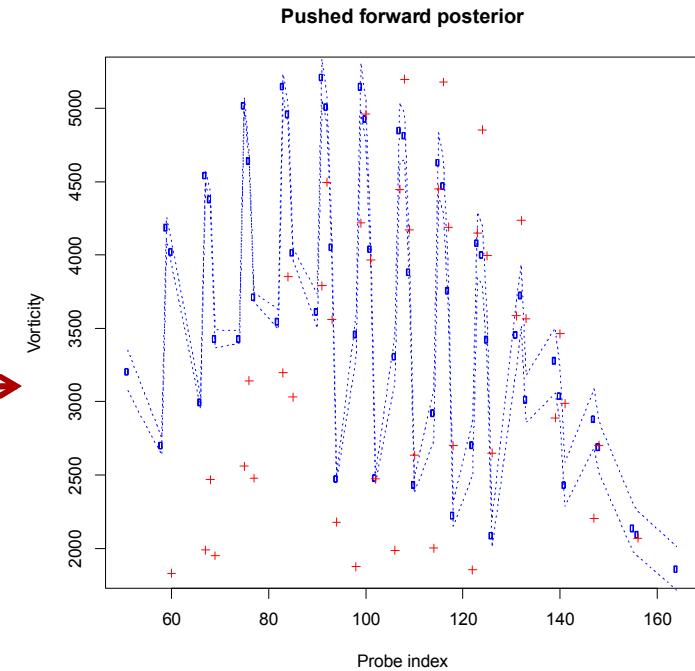
Bayesian calibration

- Use “experimental observations” of vorticity to perform MCMC calibration
- Vertical lines are the nominal values of parameters
- Only C_1 estimates are close to nominal one
- Also compute an estimate of model – data mismatch $\omega_x^{(\text{exp})} - \omega_x^{(\text{RANS})} = \theta \sim N(0, \sigma^2_\theta)$
- Redid calculation using GA; $\mathbf{C}_{\text{GA}} = \{0.105, 2.099, 1.42\}$



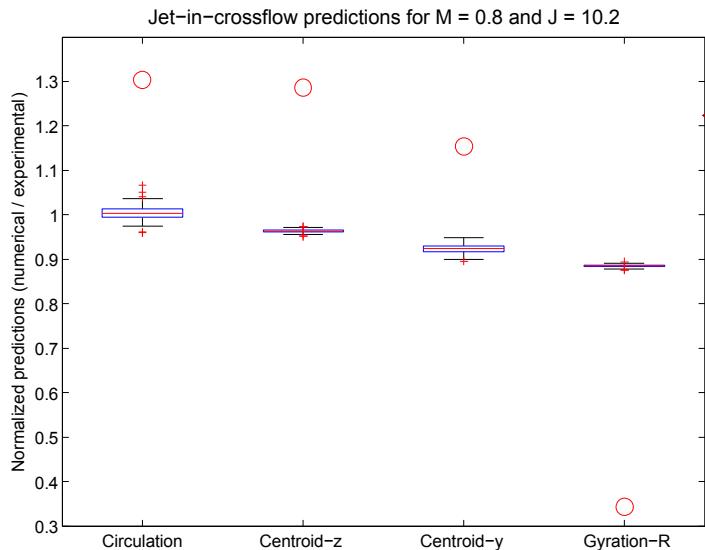
Can we predict vorticity?

- Take 100 samples from JPDF and run 3D RANS with them
- Compute median prediction & inter-quartile range
- Uncertainty in $\{C\mu, C_2, C_1\}$ does not lead to a big variation in $\omega_x^{(RANS)}$
- Model-form error $\omega_x^{(exp)} - \omega_x^{(RANS)} = \theta \sim N(0, \sigma^2_\theta)$ is large

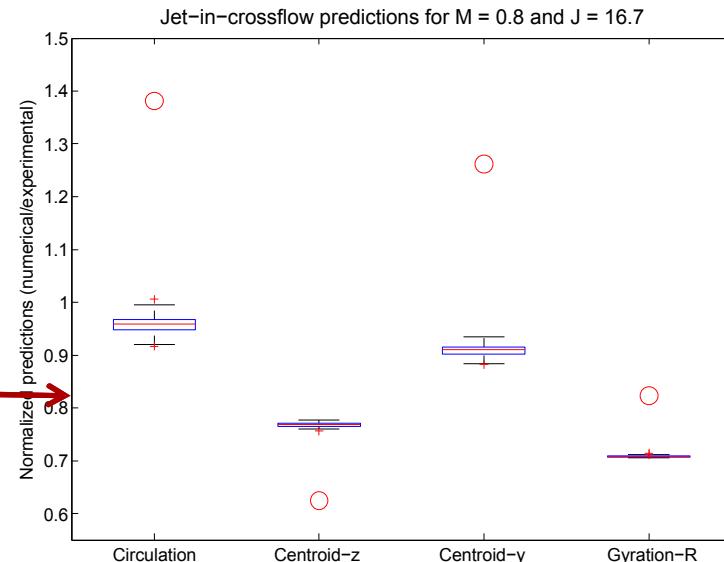


- Now add in the statistical summary of model-form error
- Model-form error (as estimated) is responsible for coming close to the measurements

Pre- and post-calibration comparison

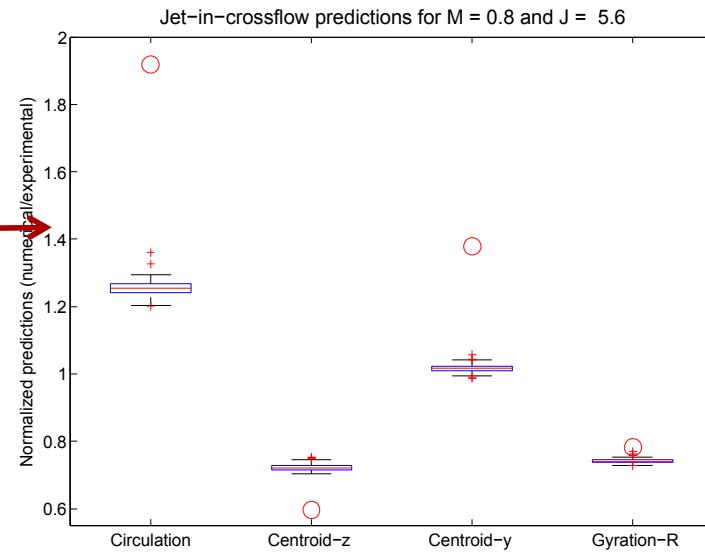


$M = 0.8,$
 $J = 10.2$



$M = 0.8,$
 $J = 16.7$

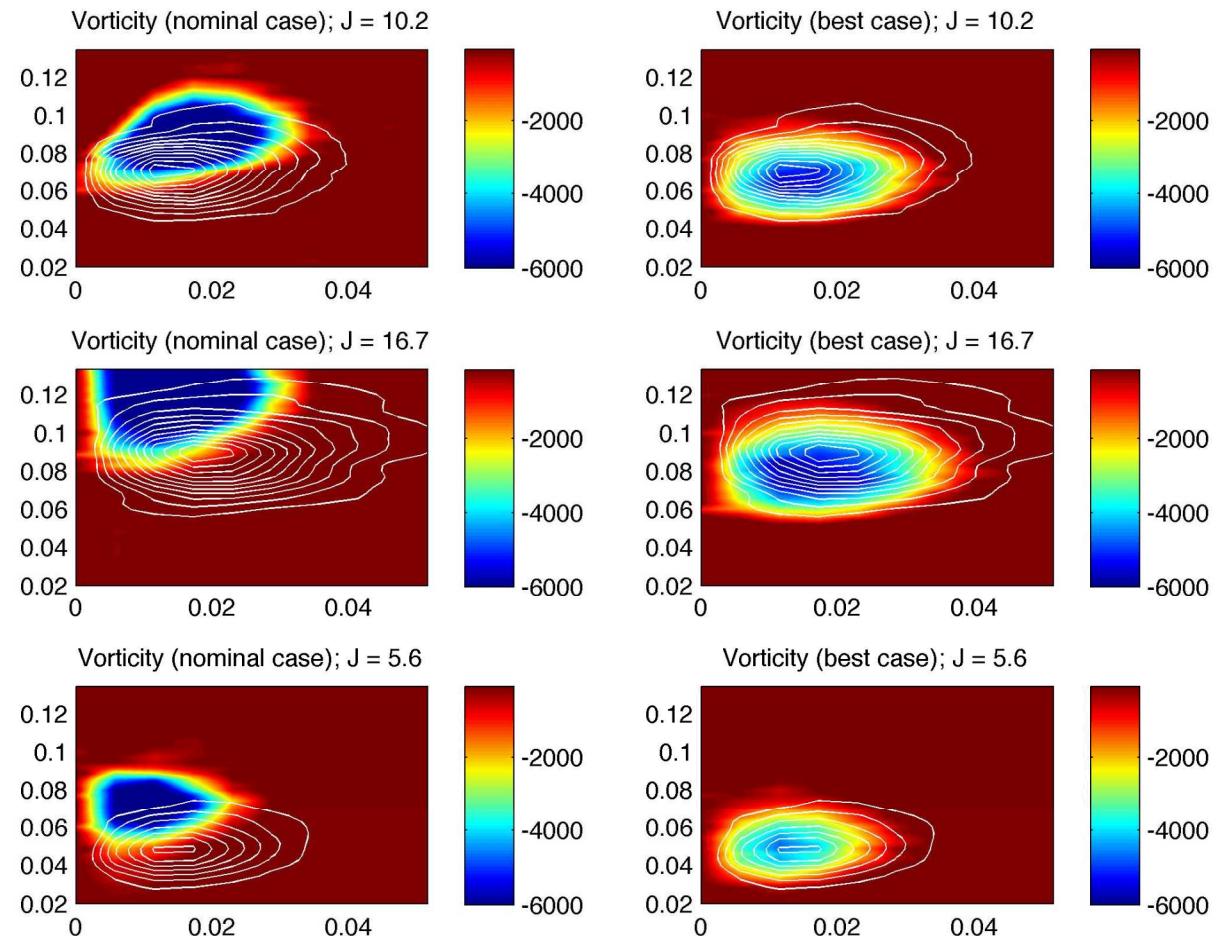
- Summarize vorticity on the crossplane as a point-vortex
- Normalize by experimental values
- Plot predictions using C_{nom} for comparison
- Compare, pre & post-calibration
- Do for $M = 0.8, J = 10.2$ (calibration case), $J = 16.7$ & $J = 5.6$



$M = 0.8,$
 $J = 5.6$

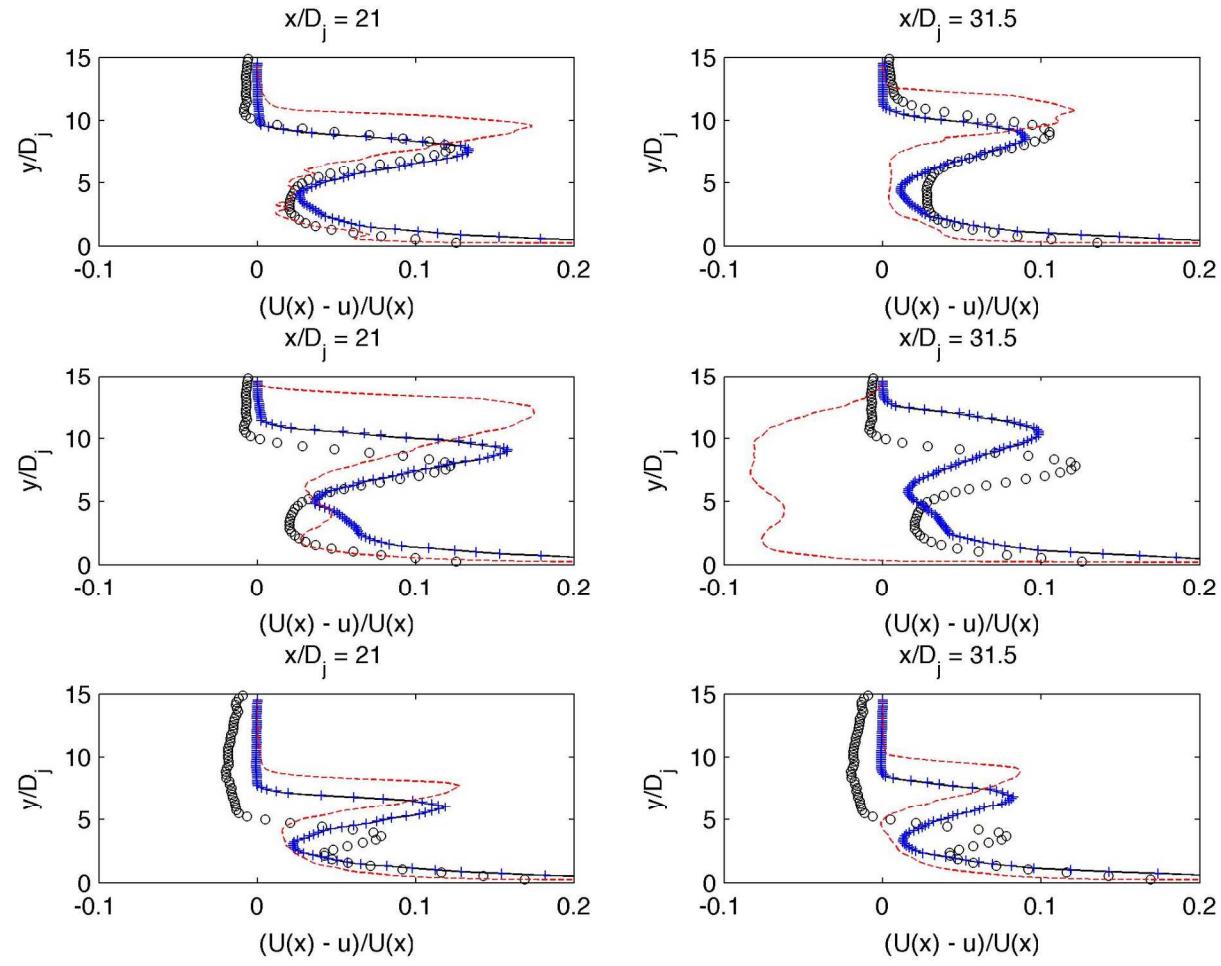
Vorticity distribution

- Keep M constant and vary J
- Use “point-vortex” metrics to compute an optimal \mathbf{C}_{opt}
- $\mathbf{C}_{\text{opt}} = \{0.1025, 2.099, 1.416\}$
- Plot predictions with \mathbf{C}_{opt} for comparison



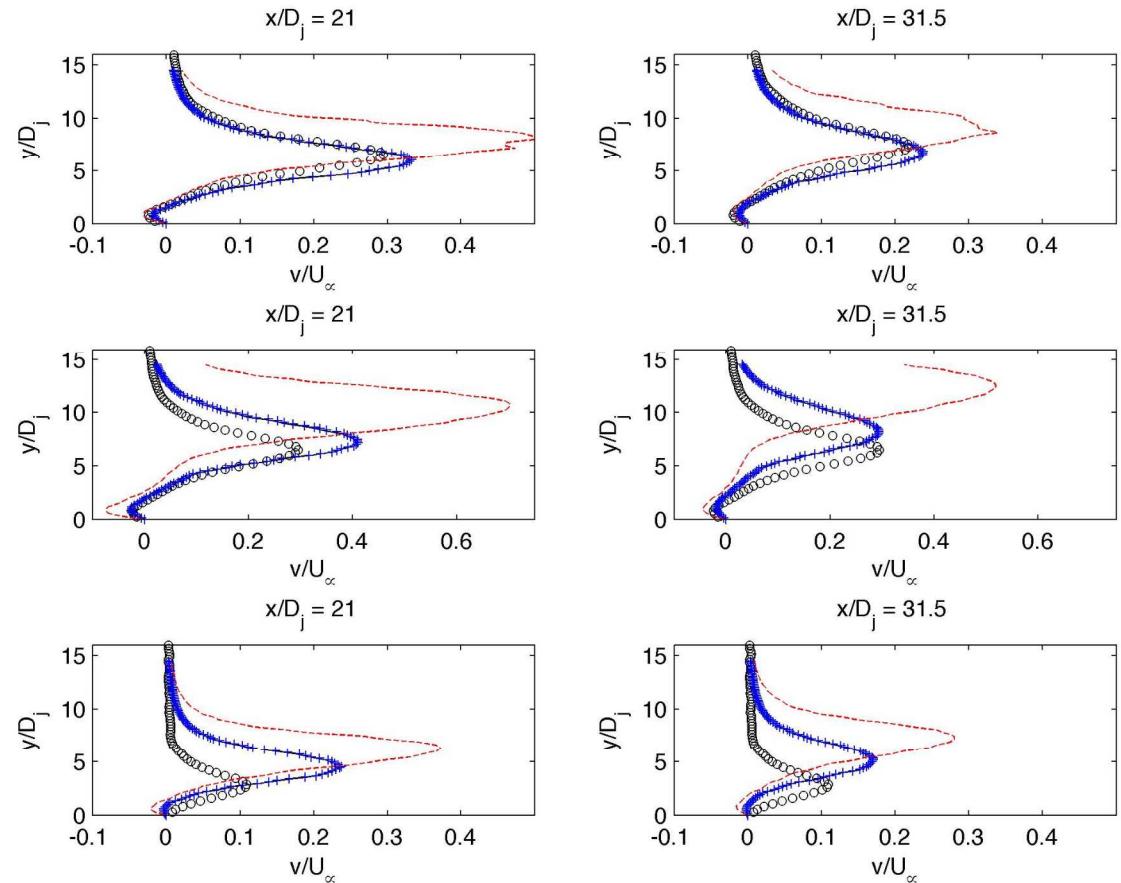
Streamwise velocity deficit

- Keep M constant and vary J
- Computed and compared on the midplane
- NOT used in the calibration
- Compared at 2 locations
 - Experiment, ensemble mean & nominal
- Improvement in predictions persists at off-calibration points



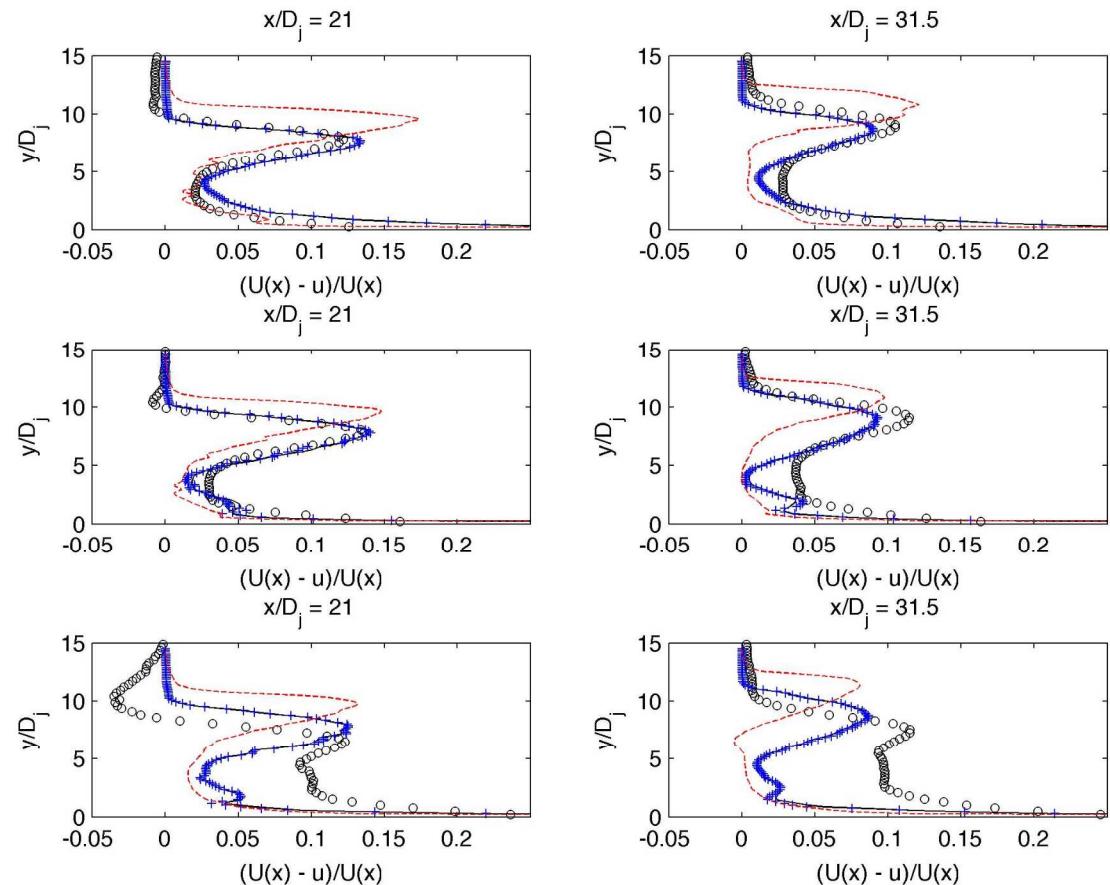
Vertical velocity distribution

- Keep M constant and vary J
- Compared at 2 locations
 - Experiment, ensemble mean & nominal
- Extremely good agreement
- Governed mostly by streamwise vorticity



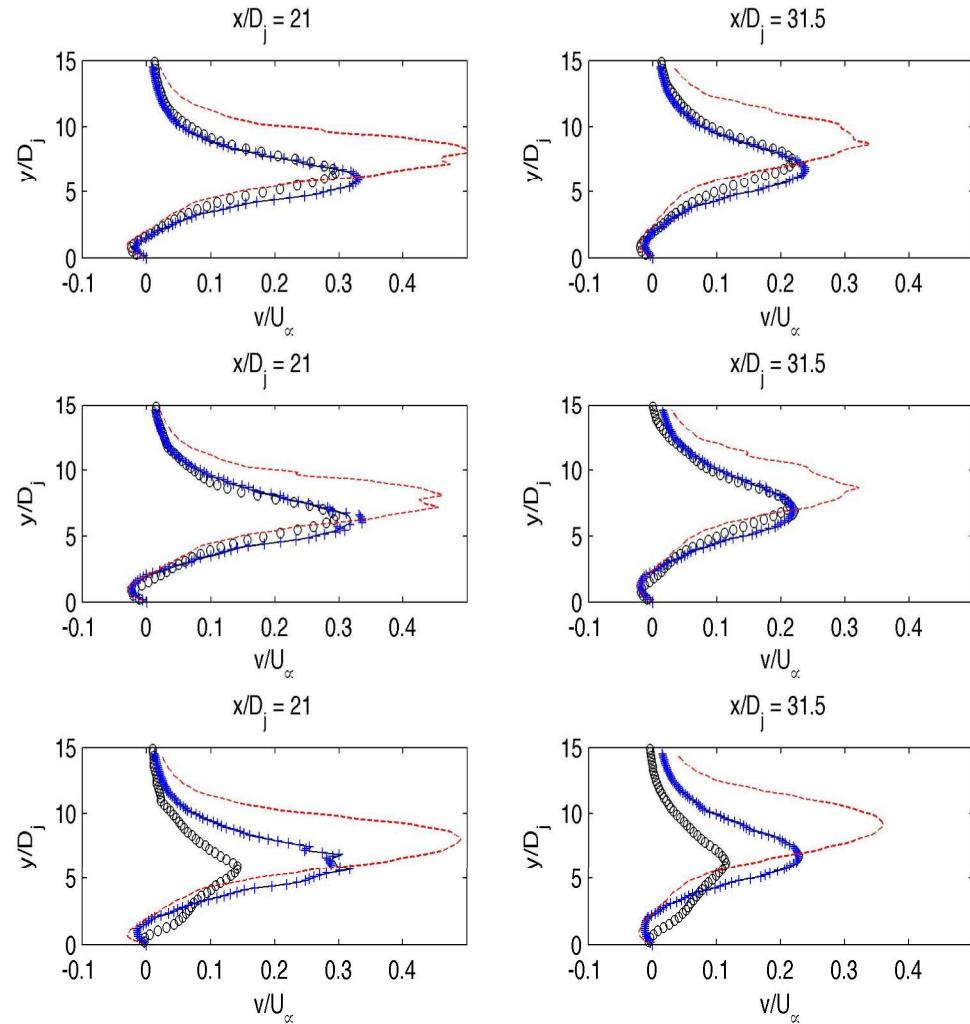
Streamwise velocity deficit

- Keep J constant and vary M (0.8, 0.7, 0.6)
- Computed and compared on the midplane
- NOT used in the calibration
- Compared at 2 locations
 - Experiment, ensemble mean & nominal
- Improvement in predictions persists at off-calibration points

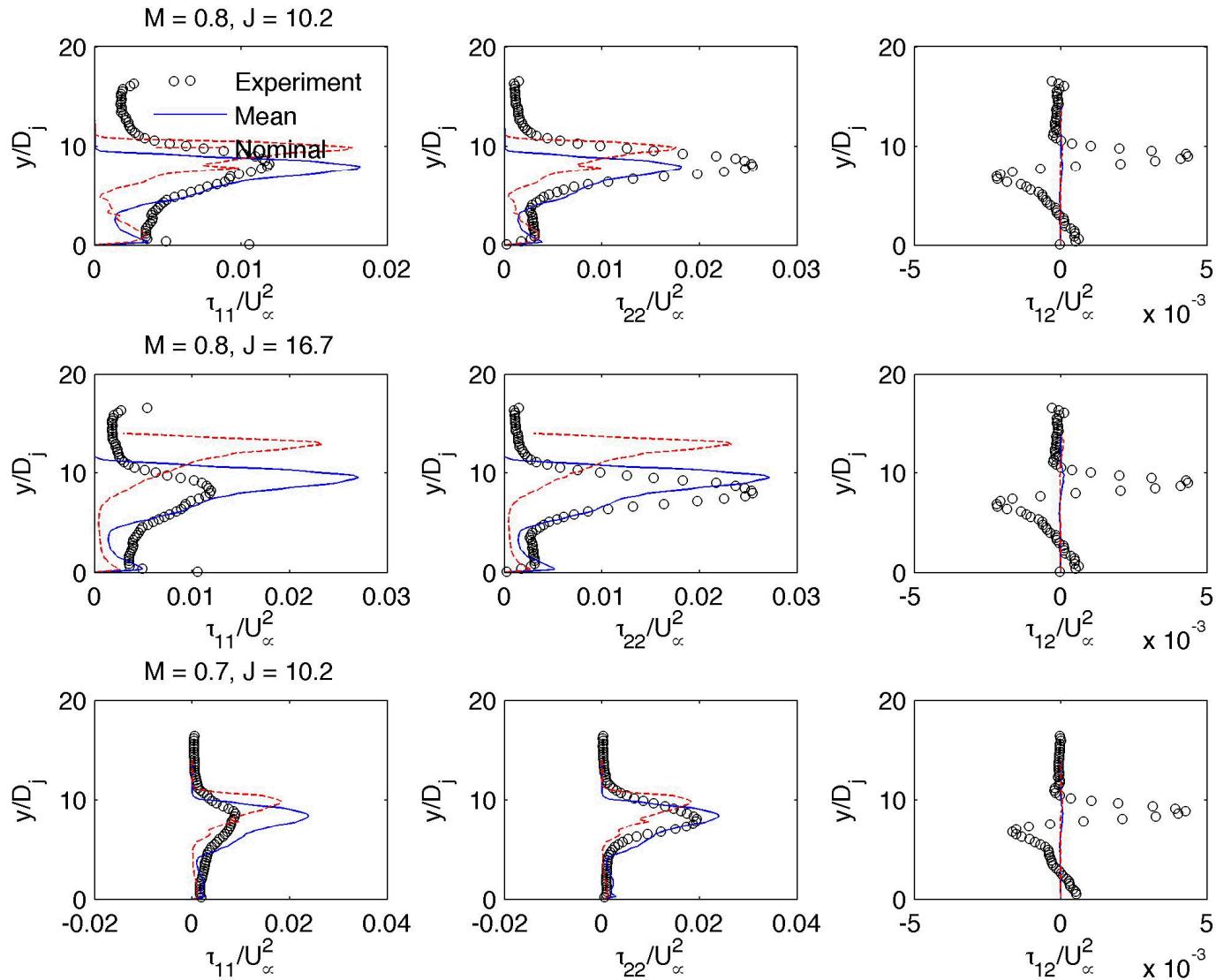


Vertical velocity distribution

- Keep J constant and vary M (0.8, 0.7, 0.6)
- Compared at 2 locations
 - Experiment, ensemble mean & nominal
- Extremely good agreement
- Governed mostly by streamwise vorticity



Turbulent stresses



- Compare normal (τ_{11}, τ_{22}) and shear stresses (τ_{12})
- Strain-rates have very little effect on the stresses – it's mostly $2/3k$

Conclusions

- We have developed a way of calibrating RANS models for predictive jet-in-crossflow simulations
 - Based on surrogate models and Bayesian inference
 - Predictions are probabilistic – we predict using an ensemble
- The primary cause of inaccurate RANS JinC predictions was an unsuitable C_{nom}
 - Calibration to flow-over-square cylinder largely fixed it
 - Calibration to JinC data revealed model error – and it's not much, comparatively
 - Calibrated joint PDF predictive even at off-calibration flow interaction
- Cause of model-form error – the linear eddy viscosity model we use