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Introduction

 Aim: Develop a predictive RANS model for transonic jet-in-
crossflow simulations
 A strongly vortical flow, often with weak shocks

 Drawback: RANS simulations are simply not predictive
 They have “model-form” error i.e., missing physics 

 The numerical constants/parameters in the k-model are usually 
derived from canonical flows 

 Motivation
 RANS simulations are still the workhorse for most design activities

 Jet-in-crossflow is a canonical flow for many maneuvers involving spin 
rockets and finned aerodynamics bodies

 Hypotheses
 H1: Source of errors are the unsuitable values used for {C, C2, C1} 

 H2: Model form error in RANS mostly due to the eddy-viscosity model 



Technical approach

 H1 – Obtain better values of C = {C, C2, C1} by calibrating to an 
incompressible flow over square cylinder

 Strongly vortical, but has little else in common with transonic jet-in-crossflow.

 H2 – Quantify model-form errors by calibrating RANS to transonic jet-in-
crossflow measurements 

 Also check robustness of calibration (compare predictive skill at off-calibration 
points

 Estimate k- parameters by posing it as a Bayesian inverse problem

 Estimate {C, C2, C1} as a 3-dimension joint PDF (JPDF) by solving the inverse 
using Markov chain Monte Carlo (MCMC)

 Capture uncertainty due to (1) limited measurements (2) model limitations

 Post-calibration, draw 100 samples from the JPDF and probabilistically predict 
the flow field (develop an ensemble of 100 predictions)

 MCMC will require O(104) invocations of the flow solver (to link proposed 
{C, C2, C1} with calibration / experimentally observed variable)

 Develop a surrogate/proxy/statistical response function representation of the 
RANS simulator 3



Sections of the talk

 Section 1
 Show that C = {C, C2, C1} obtained by calibrating to flow-over-square-

cylinder observations are better than the nominal values Cnom = {0.09, 
1.42, 1.92}

 Section 2
 Quantify the improvement in predictions if {C, C2, C1} are calibrated 

to a transonic jet-in-crossflow experiment (M = 0.8, J = 10.2)

 Are they still more predictive (versus Cnom) at other M and J?

 How big is the disagreement cause by the model-form error on RANS?

 Where can we isolate the model-form error and how big is it (in that 
particular variable of interest)?
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CALIBRATING TO FLOW OVER 
SQUARE CYLINDER EXPERIMENT

Section 1
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Introduction

 Aim: Develop a predictive RANS model for transonic jet-in-
crossflow (JinC) simulations
 A strongly vortical flow, often with weak shocks

 Approach:
 Estimate C = {C, C2, C1} from experimental measurements of 

Reynolds stresses from a flow-over-square-cylinder experiment

 Check predictive skill versus Cnom in a JinC interaction

 Numerical considerations
 Describe how one makes a surrogate model for Reynolds stresses 

generated by a 2D RANS simulator

 Set up the Bayesian inverse problem, and describe how it’s solved 
using MCMC; describe the estimation error

 Check predictive skill by developing an ensemble of 100 JinC 
predictions, post-calibration
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The problem

 The model

 Devising a method to calibrate 3 k- parameters C = {C, C2, C1} from expt. data

 Calibration parameters

 C: affects turbulent viscosity; C1 & C2: affect dissipation of TKE

 Calibration method

 Pose a statistical inverse problem using experimental data for flow-over-a-square-
cylinder

 Estimate parameters using Markov chain Monte Carlo

 Construct a polynomial surrogate for square-cylinder RANS simulations
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Target problem - jet-in-crossflow

 A canonical problem for spin-
rocket maneuvering, fuel-air 
mixing etc.

 We have experimental data (PIV 
measurements) and 
corresponding RANS simulations

 The RANS simulations have 
stability problems
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RANS (k-) simulations - crossplane results

 Crossplane results for stream

 Computational results (SST) are too round; Kw98 doesn’t have 
the mushroom shape; non-symmetric!

 Less intense regions; boundary layer too weak
9



RANS (k-) simulations – midplane results

 Experimental results in black

 All models are pretty inaccurate (blue and red lines are the non-
symmetric results)

U-defect V - velocity



The desired outcome

 Summary
 The velocity distribution from RANS at the crossplane is sub-optimal

 At the mid-plane, the jet sits too high; the vertical velocity is too high 
indicating a very strong vortex

 Aims of the calibration
 Get the crossplane vorticity distribution right

 Correct circulation, position and size of the CVP

 Match the midplane velocity profiles

 Procedure
 Use experimental data from a  flow-over-square-cylinder experiment

 Observations of Reynolds stress in the wake behind the cylinder

 Construct a computationally inexpensive surrogate for the RANS 
model / predictions of Reynolds stress

 Use the surrogate for Bayesian calibration of the 3 parameters



Flow over  a square cylinder

 Experimental data
 Water tunnel, 39 cm X 56 cm 

cross-section

 Square-cylinder 4 cm per side

 96 probes in the wake where

 = u’v’ are measured

 Calibration: Make a map of 
to (C, C2,C1) 
 Use a statistical (surrogate) 

model 

 Make a RANS training set using 
2744 samples from the (C, C2, C1) 
space

 Save  = u’v’ at the 96 probes for 
each run
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Experimental data and setup from Lyn & Rodi, 
JFM, 1994 



Surrogate models

 Model  as a function of C i.e.  = (C)
 Approximate this dependence with a polynomial

 Given exp at a bunch of probe locations, it should be possible to 
estimate {C, C2, C1}  by fitting the polynomial model to data

 But how to get (a0, a1, ….) for each of the probe locations to 
complete the surrogate model for each probe?
 Divide training data in a Learning Set and Testing Set

 Fit a full quadratic model for  to the Learning Set via least-squares 
regression; sparsify using AIC

 Estimate prediction RMSE for Learning & Testing sets; should be equal

 Final model tested using 100-fold cross-validation; a 10% 
error threshold was used to select models for the probes
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Calibration – in earnest

 Basic idea:

 Choose 55/96 probes at x/D = 2 ... 8

 Measured u’v’, (u’)2 and (v’)2

 minimize ||ex – trend||2 by finding ‘good’ 

values of (Cm, C2, C1)

 Bayesian calibration: Find P(C, C2, C1 | 

expt)

• RANS does not even provide a very good prediction for the wake

– (ex – trend) can be large for many probes

• Choose a set of ‘calibration’ probes

– 0.25 < ex / trend(Cnominal) < 4

• We end up with 28 / 96 probes which we can use for calibration

– We call this set of 28 probes P



The Bayesian calibration problem

• Model experimental values at probe p as (p)
ex = (p)

trend(C) + (p), 

(p) ~ N(0, 2)

• Given prior beliefs  on C, the posterior density (‘the PDF’) is

• P(C|ex) is a complicated distribution that has to be 

described/visualized by drawing samples from it

• This is done by MCMC
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What is MCMC?

 A way of sampling from an arbitrary distribution
 The samples, if histogrammed, recover  the distribution

 Efficient and adaptive
 Given a starting point (1 sample), the MCMC chain will sequentially 

find the peaks and valleys in the distribution and sample 
proportionally

 Ergodic
 Guaranteed that samples will be taken from the entire range of the 

distribution

 Drawback
 Generating each sample requires one to evaluate the expression for 

the density 

 Not a good idea if  involves evaluating a computationally expensive 
model



An example, using MCMC

 Given: (Yobs, X), a bunch of n observations

 Believed: y = ax + b

 Model: yi
obs = axi + bi + i,  ~ N(0, )

 We also know a range where a, b and  might lie

 i.e. we will use uniform distributions as prior beliefs for a, b, 

 For a given value of (a, b, ), compute “error” i = yi
obs – (axi + bi)

 Probability of the set (a, b, ) =   exp( - i
2/2 )

 Solution:  ( a, b,  | Yobs, X ) =  exp( - i
2/2 ) * (bunch of uniform priors)

 Solution method:

 Sample from  ( a, b,  | Yobs, X ) using MCMC; save them

 Generate a “3D histogram” from the samples to determine which region in the (a, b, ) 
space gives best fit 

 Histogram values of a, b and , to get individual PDFs for them

 Estimation of model parameters, with confidence intervals!



MCMC, pictorially

 Choose a starting point, Pn = 
(acurr, bcurr)

 Propose a new a, aprop ~ 
N(acurr, a)

 Evaluate  ( aprop, bcurr | ...) / 
 ( acurr, bcurr | … ) = m 

 Accept aprop (i.e. acurr <- aprop) 
with probability min(1, m)

 Repeat with b

 Loop over till you have 
enough samples

a

a

b

b

a

Proposal distribution

“good” values of (a, b)
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MCMC solution for (C, C2, C1)

 Computed using an 
adaptive MCMC 
method (DRAM)

 These are marginals –
the distribution is 4D

 Nominal values are 
vertical lines

 Blue dashed lines are 
prior beliefs

 The model error is 
large
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Recreating experimental observations

 Post-calibration, we 
choose 100 C 
samples from the 
PDF
 Run the ensemble of 

100 RANS runs and 
plot results at P

 Median predictions 
close to experimental 
values

 Error bars capture all 
measurements
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 Pick 100 C samples from 
the PDF

 Simulate jet-in-crossflow

 In the crossplane, quantify

 Circulation

 Centroid of vorticity

 Radius of gyration

 From the ensemble, 
calculate median, quartiles 
etc

 Compare with 
experimental values

21

Is the PDF predictive for jet-in-
crossflow?



 Plotting Predictions / 
Experimental values

 We overpredict
circulation

 Location is somewhat off

 Size is somewhat larger

 Big improvements over 
nominal value

 Also search the 100 
ensemble members for 
best prediction

 “Optimal” ensemble 
member
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Optimal  ensemble member – vorticity

 Experimental vorticity as contours

 Calibration positions the vortex better; also gets its strength right

 The circulation, position and size are +/- 15% from experiments
23
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Optimal ensemble member: v velocity

 Improvement over Cnominal

 Nearly nailed the experiment
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Conclusions – Section 1

 Our hypothesis of calibrating to a simple vortical flow for 
predictive jet-in-crossflow proved correct

 Even simple, polynomial surrogates were sufficiently accurate 
to allow us to calibrate RANS models
 More elaborate models, with the deficit would probably do somewhat 

better

 With surrogates come Bayesian calibration and PDFs of calibrated 
parameters

 Being able to get a PDF for (C, C2, C1) proved to be very 
convenient
 Ensemble predictions provide error bars on predictions

 They allow us to test various (C, C2, C1)  combinations for predictive 
power

 Details: S. Lefantzi, J. Ray, S. Arunajatesan and L. Dechant, "Tuning a RANS k-
model for jet-in-crossflow simulations”, Sandia Technical Report, SAND2013-8158 25



UNCOVERING MODEL-FORM 
ERROR

Section 2
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Introduction

 Aim: Estimate model-form error in 3D 
RANS simulations of transonic jet-in-
crossflow interaction

 Approach

 Estimate {C, C2, C1} using Bayesian 
inference and surrogate models of a 3D 
RANS simulator

 Experimental data: Beresh et al, AIAAJ 
2005; vorticity on the crossplane

 M = 0.8, J = 10.2

 Predict the flowfield (and see 
improvement over Cnom predictions)

 See predictive skill at off-calibration 
points (other M and J)

 Uncover mismatch between predicted 
and experimentally measured turbulent 
stresses 
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Building surrogate models

 Sample {C, C2, C1} space with 2744 
points 

 Run 3D RANS at each and obtain 2744 
predicted vorticity fields on crossplane

 Choose locations with high vorticity (less 
affected by numerical noise)  - 108 
“probe” locations

 Construct a quadratic surrogate F(C, C2, 
C1) for stream-wise vorticity

 x
(RANS) ~ F(C, C2, C1; p) + 

 Retain only those surrogates that have 
< 10% 

 Only 52 / 108 “probes” survive

 Compute vorticity using experimentally 
observed velocity on crossplane

 “experimental” vorticity

 Use them in MCMC calibration
28
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Bayesian calibration

 Use “experimental 
observations” of vorticity to 
perform MCMC calibration

 Vertical lines are the 
nominal values of 
parameters

 Only C1 estimates are close 
to nominal one

 Also compute an estimate 
of model – data mismatch 
x

(exp) – x
(RANS) =  ~ N(0, 

2
)

 Redid calculation using GA; 
CGA = {0.105,2.099,1.42}
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Can we predict vorticity?

 Take 100 samples from JPDF and run 3D RANS 
with them

 Compute median prediction & inter-quartile 
range

 Uncertainty in {C, C2, C1} does not lead to a 
big variation in x

(RANS)

 Model-form error x
(exp) – x

(RANS) =  ~ N(0, 
2
) is large 

 “Error bars”
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 Now add in the statistical 
summary of model-form error

 Model-form error (as estimated) 
is responsible for coming close 
to the measurements



Pre- and post-calibration comparison

 Summarize vorticity on the 
crossplane as a point-vortex

 Normalize by experimental values

 Plot predictions using Cnom for 
comparison

 Compare, pre & post-calibration

 Do for M = 0.8, J = 10.2 (calibration 
case), J = 16.7 & J = 5.6 31
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Vorticity distribution

 Keep M constant 
and vary J

 Use “point-vortex” 
metrics to compute 
an optimal Copt

 Copt= {0.1025, 
2.099, 1.416}

 Plot predictions 
with Copt for 
comparison
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Streamwise velocity deficit

 Keep M constant 
and vary J

 Computed and 
compared on the 
midplane

 NOT used in the 
calibration

 Compared at 2 
locations
 Experiment, 

ensemble mean & 
nominal

 Improvement in 
predictions persists 
at off-calibration 
points
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Vertical velocity distribution

 Keep M constant and 
vary J

 Compared at 2 
locations
 Experiment, ensemble 

mean & nominal

 Extremely good 
agreement

 Governed mostly by 
streamwise vorticity
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Streamwise velocity deficit

 Keep J constant and 
vary M (0.8, 0.7, 0.6)

 Computed and 
compared on the 
midplane

 NOT used in the 
calibration

 Compared at 2 
locations
 Experiment, ensemble 

mean & nominal

 Improvement in 
predictions persists at 
off-calibration points
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Vertical velocity distribution

 Keep J constant and 
vary M (0.8, 0.7, 0.6)

 Compared at 2 
locations
 Experiment, ensemble 

mean & nominal

 Extremely good 
agreement

 Governed mostly by 
streamwise vorticity
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 Compare normal (11, 22) and shear stresses(12)

 Strain-rates have very little effect on the stresses – it’s mostly 2/3k 37



Conclusions

 We have developed a way of calibrating RANS models for 
predictive jet-in-crossflow simulations
 Based on surrogate models and Bayesian inference

 Predictions are probabilistic – we predict using an ensemble

 The primary cause of inaccurate RANS JinC predictions was an 
unsuitable Cnom

 Calibration to flow-over-square cylinder largely fixed it

 Calibration to JinC data revealed model error – and it’s not much, 
comparatively

 Calibrated joint PDF predictive even at off-calibration flow interaction

 Cause of model-form error – the linear eddy viscosity model 
we use
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