
Failure Masking and Local Recovery for Stencil-based
Applications at Extreme Scales

Marc Gamell†, Keita Teranishi‡, Michael A. Heroux‡, Jackson Mayo‡, Hemanth Kolla‡,
Jacqueline Chen‡ and Manish Parashar†

†Rutgers Discovery Informatics Institute, Rutgers University, Piscataway, NJ, USA
{mgamell, parashar}@cac.rutgers.edu

‡Sandia National Laboratories, Livermore, CA, Albuquerque, NM, USA,
{knteran, maherou, jmayo, hnkolla, jhchen}@sandia.gov

ABSTRACT

Application resilience is a key challenge that must be ad-
dressed in order to realize the exascale vision. Previous work
has shown that online recovery, even when done in a global
manner (i.e., involving all processes), can dramatically re-
duce the overhead of failures when compared to the more
traditional approach of terminating the job and restarting
it from the last stored checkpoint. In this paper we sug-
gest going one step further, and explore how local recov-
ery can be used for certain classes of applications to re-
duce the overheads due to failures. Specifically we study
the feasibility of local recovery for stencil-based parallel ap-
plications, and develop programming support and scalable
runtime mechanisms to enable online and transparent local
recovery on current leadership class systems. We show how
multiple independent failures can be masked to effectively
reduce the impact on the total time to solution. We have
implemented these techniques using the Fenix framework,
providing mechanisms for transparently capturing failures,
re-spawning new processes, fixing failed connections, restor-
ing application state, returning execution control back to
the application, and handling duplicate message requests.
We deployed Fenix on the Titan Cray-XK7 production sys-
tem at ORNL and experimentally demonstrate the benefits
for local recovery for stencil applications. We then inte-
grate these mechanisms with the S3D combustion simula-
tion, and demonstrate Fenix’s ability to tolerate high fail-
ure rates (e.g., node/blade/cabinet failures every 5 seconds)
with low overhead while sustaining performance, at scales
up to 262144 cores.

1. INTRODUCTION
The increasing demands of science and engineering ap-

plications continue to push the limits of current extreme-
scale systems. As a result, the HPC community is working
towards achieving exascale (1018 FLOPS) by the end the
decade [1, 13]. One of the key anticipated challenges at ex-
ascale will be the reliability of the system, primarily due to
the very large number of cores and components [4, 26, 33].
The mean time between failures (MTBF) for current petas-
cale systems is measured in days (e.g., production runs on
ORNL’s Titan Cray showed 9 node failures/day, as shown in
Figure 1), but it is estimated that the MTBF for an exascale
system would be measured in minutes [13]. An important
class of failures that must be addressed is process and node

failures, including correlation effects. These failures are of-
ten recovered by terminating the job and restarting it from
the last checkpoint found in stable storage. While coordi-
nated, stable-storage-based global checkpoint/restart (C/R)
is currently the most widely accepted technique for address-
ing processor failures, it is unclear whether this approach
will scale to exascale since the time to checkpoint will often
be longer than the expected MTBF, and researchers con-
tinue to actively address this issue. For example, runtimes
that aim to offer an abstraction of a fault-free system to
the application have been developed (e.g. MPICH-V [7],
redMPI [15]). However, as suggested by recent studies [19],
the abstraction of a failure-free machine will not be sus-
tainable at extreme scales, and application-aware resilience
techniques will likely be required at exascale.

While programing models such as task-DAG can include
resilience features, SPMD and message passing are not de-
signed to handle process failures by default. In previous
studies, [16] we have shown how online (i.e., without dis-
rupting the job) global recovery (i.e., involving all the cores
in the system in the recovery process) can be used in con-
junction with application-guided checkpointing to support
high failure rates (i.e., every 47 seconds) for message passing
applications using the Fenix framework. In that approach,
every failure triggered a global recovery, which required all
survivor processes to recover the MPI environment. Then,
all surviving processes, along with the newly spawned ones,
had to rollback to the last commonly available checkpoint.
The advantage of global recovery is that it can be done in a
semi-transparent way: the application does not necessarily
have to be aware of the failure. However, due to the intrin-
sic global nature of the recovery algorithms, global recovery
present scalability challenges.

In this paper we present the design, prototype imple-
mentation, and evaluation of local recovery approaches
for certain classes of applications in Fenix. Specifically we
study the feasibility of local recover for stencil-based paral-
lel applications, which represent a significant set of physical
simulations, and develop programming support and scalable
runtime mechanisms, to enable online and transparent local
recovery on current leadership class systems. In additions to
its inherent scalability, local recovery provides several bene-
fits. For example, the environment does not need to be re-
covered globally after a failure, and only the newly spawned
processes have to rollback to the last checkpoint.

The key idea underlying the local recovery approach is as

SAND2015-0310C

0 10000 20000 30000 40000 50000 60000 70000 80000 86400

P
ro
d
u
c
ti
o
n

ru
n

Recovery+rollback overhead3901s 1617s 1612s 4439s 1928s 6025s

Figure 1: S3D production run on Titan Cray XK7 using 125k cores (December 2013). Note that 9 process/node failures
occurred over 24 hours. Using current technique, all failures are promoted to job failures. The fault tolerant technique used
was checkpointing (5.2 MB/core) stored in the PFS. Total overhead due to fault tolerance was 31.40% of the total execution
time. Blue lines represent checkpoints, light green represent process recovery overhead, orange represent checkpoint load time,
and vertical red lines indicate the moment where the node failure occurred.

follows. Stencil-based parallel applications, such as simula-
tions that solve partial differential equations (PDEs) using
finite-difference methods, typically consist of a number of
iterations (timesteps) with each iteration consisting of two
key steps, computation on local data to advance the simu-
lation, and communication with the immediate neighbors.
This communication pattern implies that, upon failure, by
allowing the rest of the domain to continue the simulation,
only the immediate neighbors will be immediately affected
by that failure. When a failure occurs, we can substitute the
failed process with a spare one, rollback to the last saved
state for the failed process (i.e., the last checkpoint), and
resume computation for that process. In this paper we show
how the effect of the failure will slowly propagate through
the machine. If subsequent failures occurs at a distant node
before the original failure delay has spread to that node,
we demonstrate that the delay of the second failure will be
masked with the delay of the first one. In general, we show
that the overhead of several separate failures on the total
execution time can appear to be as the overhead of a single
failure (failure masking).
We have implemented these solutions using the Fenix frame-

work and deployed them on the Titan Cray-XK7 produc-
tion system (world’s second fastest machine as of November
2014) at ORNL. We decided to implement Fenix as a stan-
dalone runtime which only dependencies are a C++ com-
piler and the Cray uGNI library. This has been a non-trivial
task. The motivation behind this decision is that fault tol-
erant versions of MPI, such as ULFM [5, 6], do not fit in
our requirements. Specifically, they are not capable to de-
liver local recovery constructs. We present an experimental
evaluation of the effectiveness and scalability of local recov-
ery in Fenix using the S3D [11] stencil-based combustion
application. S3D is a highly parallel method-of-lines solver
for PDEs and is used to perform first-principles-based direct
numerical simulations of turbulent combustion. It employs
high order explicit finite difference numerical schemes for
spatial and temporal derivatives, and realistic physics for
thermodynamics, molecular transport, and chemical kinet-
ics. S3D demonstrates good scalability up to nearly 200K
cores, and has been highlighted by [2] as one of five promis-
ing applications on the path to exascale.
Our results demonstrate Fenix’s ability to tolerate high-

frequency dynamically injected node failures while maintain-
ing sustained performance of S3D on scales up to 262144
cores. Our evaluation also explores extreme execution sce-
narios that may exist at exascale, where node failures occur
with high frequency (i.e., as often as every 5 seconds). For
example, when injecting node failures every 30 seconds, per-
formance is sustained with 13.75% overhead when compared
with a failure-free and checkpoint-free execution. Finally, we

show that the programming overhead of using Fenix is low,
requiring less than 35 new, changed, or rearranged lines of
code in S3D.

Key contributions for this work include: (1) A study of the
applicability of local recovery approaches to stencil-based
parallel applications, including a model to understand and
estimate the propagation of recovery delay due to failures;
(2) design and implementation of this approach within the
Fenix runtime, and its deployment on the Titan Cray XK7
production system at ORNL; and, (3) an experimental eval-
uation of local recovery algorithms in Fenix on Titan using
the S3D combustion application demonstrating its ability
to support sustained performance and scalability in spite of
high frequency real node failures.

2. BACKGROUND AND RELATED WORK
Process and node failures and their characteristics have

been well documented in [33, 35]. Checkpoint and restart
(C/R) [20–22] is the most widely used technique for imple-
menting resilience for HPC systems. In this model, the ap-
plication state is periodically saved (e.g., using BLCR [18])
so that, upon failure, global rollback can be used to restart
the application from the last globally committed checkpoint.
This process is independent of the number of nodes affected
by the failure, i.e., if a node or process failure occurs, all
processes are typically forced to rollback to the previous
strongly consistent checkpoint. In contrast, using local re-
covery in Fenix, only failed processes need to rollback to the
previous checkpoint.

Checkpoint coordination. Global consistency of local-
ly-created checkpoints [20] is typically ensured using coordi-
nation protocols. Examples of coordination protocols in-
clude full coordination [14], non-blocking coordination [9,10]
or blocking coordination [12]. The main advantage of coor-
dinated protocols is that they are application-agnostic and
create globally consistent checkpoints. The major draw-
back, however, is the overhead due to process synchroniza-
tion. Uncoordinated protocols [8] do not required syn-
chronization during checkpoint creation, thus reducing over-
heads and allowing application imbalance. However, during
recovery, a consistent global state has to be found by ex-
amining the checkpoints. As these protocols cannot guaran-
tee checkpoint global consistency on recovery, all processes
may end up rolling back to the beginning of the execution,
i.e., the domino effect. Uncoordinated checkpointing pro-
tocols can leverage message logging to avoid the domino
effect for piecewise deterministic applications [14], at the
expense of logging all the application messages. For send-
deterministic applications, only a subset of all the messages
need to be logged [17, 31]. Building on these ideas, the re-

search presented in [17] proposes a technique for recover-
ing only a subset of processes on failure, while avoiding the
domino effect. Furthermore, by letting the application indi-
cate when checkpoints are created, implicitly coordinated

protocols presented in [16] enable the advantages of coor-
dinated protocols (i.e., guaranteed checkpoint consistency)
to be combined with those of uncoordinated protocols (i.e.,
local checkpointing without synchronization).
Our approach in Fenix uses such implicit coordination,

and, in order to enable local recovery, it logs a small set
of messages. The total size of these logged messages, for
the target applications, is negligible when comparing with
the size of the checkpoints. However, our approach differs
from traditional uncoordinated checkpointing and message
logging in several aspects: (1) in our approach, all created
checkpoints are strongly consistent; (2) we use message log-
ging to enable local recovery, while traditional message log-
ging is used to enable global recovery from a set of non-
consistent checkpoints; (3) our message logging is local, in-
memory, and used only by the failed processes; and (4) we
guarantee that only the failed processes have to rollback.
Note that using protocols such as those presented in [17]
with our target applications (i.e., iterative applications with
a stencil-based communication patterns), and assuming that
the uncoordinated checkpoints are consistently created (i.e.,
the best case scenario), a process failure would require all
processes of the system to rollback to the last checkpoint be-
cause orphan and rolled back message dependencies would
extend across all of the mesh. This is not the case with our
protocol.

Checkpoint storage. Typically, checkpoints are saved to
a centralized parallel file system [20] but may also be stored
in local memory [30], in both local and peer-memory [36],
in non-volatile memory [25], in node-local storage (such as
SSD) [3,28], or at different storage layers [27]. They may be
compressed [23], aggregated [29], or both [24]. In order to
enable local recovery, Fenix only needs to store checkpoints
at a peer node. Other strategies, such as storing check-
points in the parallel file system or compressing them would
add performance overheads that makes them prohibitive for
Fenix, despite their advantages.

Combining optimized checkpointing with global re-

covery. Systems such as Fenix [16], LFLR [34] and FMI [32]
show how advanced in-memory diskless checkpointing can be
used in conjunction with global recovery to enable execution
in a failure-prone scenario.

3. LOCAL RECOVERY FOR STENCIL-

BASED SCIENTIFIC APPLICATIONS
This section presents the local recovery approach and our

underlying reasoning for exploring this approach for stencil-
based applications. Recovering from failures in a local man-
ner implies that (1) only the re-spawned processes have to
rollback to the last checkpoint and (2) only the processes
that communicate with the failed ones will notice the fail-
ure and might be involved in the recovery process. These
requirements are in contrast with global recovery, in which
all the processes are involved in the recovery and rollback to
the last consistent checkpoint. Global recovery can be costly
and presents scalability challenges, and, in many situations,
may be unnecessary. Note also that local recovery is by def-
inition an online recovery approach, i.e. the job does not

Rank r1 Rank r2

Rank r3

Ghost from r1

Ghost from r2

Ghost from r3

Ghost from r1

Data transfer

Rank r5

Rank r4

Figure 3: Partitioning of a 2D domain across five pro-
cesses. This figure shows the ghost region buffer exchange
between neighboring processes in a typical implementation
of a stencil-based parallel application.

have to be disrupted.
In this section we first describe the key relevant charac-

teristics of the targeted stencil-based applications. We then
explore the local recovery approach for this class of applica-
tions, its benefits in case of single and multiple failures, as
well as associated challenges.

3.1 Stencil-based Scientific Applications
In this work, we target iterative applications with stencil-

based domain partitioning and communication properties,
such as for example, typical parallel implementations for
PDE solvers using finite-difference methods. In these ap-
plications, the application domain is typically partitioned
using a block decomposition across the processes, and each
process perform two key tasks at every timestep: (1) com-
putation on its local data to advance the simulation, and (2)
communication with its immediate neighbors that based on
the specific stencil used. A typical block decomposition for a
2-D stencil-based application is illustrated in Figure 3. The
figure also illustrates the communication pattern between
blocks on neighboring processes. In a typical implementa-
tion, each process maintains a “ghost region” corresponding
to the width of the stencil used around its blocks, and pop-
ulates this region from its neighbors in a “ghost region ex-
change”communication step. The exchange shown in Figure
3 is for a 5-point stencil.

Not all scientific applications offer the descrived iterative
behavior from the beginning of the execution until the end.
Sometimes, collective operations are performed every cer-
tain number of timesteps, for example, for analysis, error
checking, etc. In this paper we focus the execution between
two consequent such synchronizations, and assume that this
interval is long enough so that, at extreme scales, several
failures can occur within it. For example, in case of the
S3D application, this interval is typically every 16 minutes.
Our focus is to enable the application to continue the execu-

(a) No failures (b) One failure (c) Two failures (d) Three failures (e) Seven failures (f) Nine failures

Figure 2: Behavior of local recovery for a stencil-based 1-D partial differential equation (PDE) solvers. X axis represents
process number (or rank) and Y axis indicates wallclock time. Each line in a figure represents a timestep, and the color of the
line represents how advanced the simulation is (i.e., it advances from yellow to dark purple). Each red ‘X’ represents a failure.
A straight line means all processes compute the timestep at the same physical time. When a failure occurs, the recovery delay
does not get propagated immediately to the entire domain. In stead, the immediately adjacent neighbor processes are the
first to be delayed, which in turn propagate the delay to their immediate neighbors, resulting in the delay eventually spanning
across the entire domain. Note how Figures 2(b), 2(c), 2(d) and 2(e) have the same recovery overhead, i.e., as if only one
failure occurred, even though they have different numbers of failures. In case of Figure 2(f), however, the total recovery time
is equal to sequentially recovering from two failures.

tion between these such synchronizations despite the number
of failures occurring and the system size. If this assump-
tion is unrealistic, we can assume, instead, without loss of
generality, that the collective operations can be done in an
asynchronous manner. Asynchronous collectives are promis-
ing, because they can naturally support imbalance between
the processes without imposing barrier-like constraints. We
leave understanding how local recovery can be beneficial
even with periodic blocking collective operations as future
work.

3.2 Local Recovery, challenges and benefits
Realizing local recovery for target stencil-based parallel

applications, implemented using message passing (MPI), pre-
sents several challenges and benefits.

Consistency. As neighbor processes must communicate,
guaranteeing consistency in a message passing environment
can be challenging. In the approach implemented and eval-
uated in this paper, we log messages that have been trans-
ferred since the last checkpoint, and store them in local
memory. Specifically, for the 1D case, only two messages
are stored every timestep: the message sent to the node in
the right, and the message sent to the node in the left. In
the 3D case, 6 messages need to be logged at each timestep.
However, note that the overhead of logging the messages is
negligible compared to the cost of checkpoint because (1)
the checkpoint is several orders of magnitude larger, and (2)
message logs are kept in the sender’s local memory and no
network transfer is required. By storing the messages at the
sender side, upon recovery, the re-spawned processes will be
able to request the messages again.

Delay propagation. Assume that a node failure occurs
while the processes mapped to the node are between iter-
ations Ci−1 and Ci. Once the failure is detected, the last
checkpoint can be fetched from the checkpoint store used
to restart the execution of the failed node on either a node
from a spare pool or a re-spawned node. While this is hap-
pening, the rest of the processes can continue working as
usual. The fact that the failed process advanced beyond
Ci−1 guarantees that all their immediate neighbors were also
already past this point. Note that, in order for a process to
advance beyond a certain communication point, it has to

exchange information with their immediate neighbors. This
is also true even when the ghost exchange is non-blocking,
because sender-based message logging guarantees the avail-
ability of the data even when the failure occurs between
the data transfer. The iterative and stencil-like nature of
the targeted applications will eventually require immediate
neighbor processes (i.e., L1 neighbors) that communicate
directly with the failed node to wait. Even though these
processes can continue executing the next iteration, it is
likely that when they reach the next communication phase
(i.e., Ci), the restarted neighbors will not have reached that
point yet. Therefore, the immediate neighbors will have to
wait. In turn, second-level (L2) neighbors (i.e., the immedi-
ate neighbors of L1) will be able to continue its execution up
to iteration Ci+1, and will then be blocked. This is possible
because the L1 processes are waiting at Ci, which means
they are not able to exchange data with the L2 processes
at iteration Ci+1. In general, kth-layer neighbors would be
able to continue until iteration Ci+k−1 without blocking.
This wave-like delay propagation behavior can be seen in
Figure 2(b) for a 1-D stencil. While we use 1-D to illustrate
the process, this behavior also applies to higher dimensions.

Failure masking. When using a large number of processes,
it is possible that another failure occurs on distant processes
where the delay from the first failure has not yet reached.
In this case, the recovery delay of the second failure will
begin propagating from the second location, as see in Figure
2(c). At some point in space and time, the delay of both
failures will merge. At this point, the total delay will be the
maximum of both delays. We call this effect failure masking,
and an example can be seen in Figure 2(d). This situation
is beneficial at large scales, because the impact of several
failures on end-to-end execution time will be comparable
to that of a single failure. Note that this effect can also
happen with multiple failures, as seen in Figures 2(d) and
2(e). Comparing these four figures, we see that the total
overhead is the same. Note that the larger the machine is,
the more plausible this effect becomes, which is an ideal
property for good scalability.

There may be cases, however, where failures occur after
the delay of previous failures have already reached the failed
node. An example can be seen in Figure 2(f), in which the
total execution time is comparable to that of recoverying

Figure 4: Results for delay propagation obtained from simu-
lations based on the model for 32 cores (left) and 13824 cores
(right). Each horizontal line indicates the same timestep
across the nodes. X indicates the point of failure.

from two failures sequentially. The likelihood of this situa-
tion is dependent on the communication pattern of the ap-
plication and the checkpointing approach used. Specifically,
it depends (1) on the dimension of the application domain
(i.e. 1D, 2D, 3D), (2) on the size of the domain assigned to
each process (which will determine the checkpoint latency),
(3) the communication frequency, and, (4) the amount of
computation per iteration (which will determine the latency
between iterations, and is a factor of the size of the domain
per node). In this work we explore an extreme scenario with
a three-dimensional application domain, a relatively large
data size, and communications every iteration.

Low power and energy footprint. Local recovery has
better power and energy behavior as compared to global re-
covery as the entire system does not have to roll back and
redo computations. Furthermore, in case of local recovery,
while the neighboring processes wait for the re-spawned ones
to catch up their CPU will be idle, and their power consump-
tion can be reduced by using techniques such as Dynamic
Voltage and Frequency Scaling (DVFS).

4. MODELING DELAY PROPAGATION
Section 3 covered the theoretical benefits of local recov-

ery. This section goes one step further and tries to under-
stand how these benefits can be mathematically modeled.
Specifically, we construct a recurrence relation to simulate
the execution pattern of a parallel stencil code and use it to
quantify the impact of local recovery. Before moving on to
the real evaluation in Section 5, this section will show how
the presented equation can effectively model the behavior
presented in Section 3.

4.1 Modeling the delay for a 1-D stencil code
As discussed in Section 3, in typical parallel stencil-based

applications, every process communicates with its neighbors
to exchange boundary data in each iteration. Based on
this observation, we use the following recurrence relation
to model the execution time of a 1-D stencil computation:

T (i, j) =max(T (i− 1, j − 1), T (i− 1, j + 1)) + Tlocal + r

T (0, j) =0

Tlocal =t1 if no delay, or t2 if delayed

where T (i, j) is the total execution time at i-th timestep
of j-th process. We assume that all the processes are as-
signed linearly to nodes so that every node communicates

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

4.23 (0.001%) 19.566 (0.005%) 39.03 (0.01%)O
ve

rh
ea

d
(r

el
at

iv
e

to
 fa

il-
fr

ee
 c

as
e)

			

Number of failures and (failure rate per timestep)

Local Recovery
Global Recovery

Figure 5: Recovery overheads for local and global recovery
obtained from simulations based on the model for the par-
allel 3D stencil code running on a 16× 16× 16 process grid.

with its neighbors (j − 1 and j + 1). Tlocal is the exe-
cution time of the local computation per timestep, which
is determined based on the probability of process failure;
we define two cases, t1 and t2 to represent no-failure (no-
delay) and failure (delayed), respectively. Additionally, a
random performance noise r is applied in every timestep.
The term, max(T (i−1, j−1), T (i−1, j+1)), represents syn-
chronization (communication) with neighboring processes;
we assume that every process waits for the completion of its
neighbors before starting its next timestep. This may not be
true for state-of-art optimized applications, which are typi-
cally designed to compute on the interior mesh points while
neighbor exchanges of ghost regions happen. Note that our
model also does not consider the interconnect network per-
formance and the checkpoint overhead. For example, the
recovery from a failed process may involve allocating a spare
process, which may dramatically change the network topol-
ogy of the nodes around the failed ones. However, the goal
of our model is to capture the execution pattern of stencil-
based applications and to explore delay propagation and re-
sulting performance impacts due to local recovery from fail-
ures. Note that as show in Section 5, results from this model
do corroborate with experimental results. A more rigorous
model and verifications would be helpful to better under-
stand the relationship between system performance and ap-
plication behavior and for optimizing our recovery schemes,
and we plan to explore it in a part of our ongoing research.

4.2 Simulation
We have implemented a simulator using the model de-

scribed above in Matlab and used it to study the progress
of each process in the event of failures. The simulator com-
putes the execution time at each core for every timestep
using the recurrence presented above. The failure rates are
provided as input parameters and are used to determine t1
and t2. These simulations do reproduce the progress of each
timestep as presented in Figure 4. For example, the 32 core
case shows how the first two delay propagations are merged.
We observe similar results from the experiments using real
1D stencil code in Figures 8 and 9 presented in Section 5.8.

Next, we extended our model and simulator to model a
3D stencil (with 6 neighbors) on 4096 cores, to estimate
the execution pattern of S3D on a 163 process grid for 100
timesteps. In this case, we use the set of parameters pre-
sented in the table below:

t1 1.0 Failure rate (in %) 0.001, 0.005, 0.01
t2 5.0 r (0, 0.1)

We ran each simulation 30 times and plot the average
execution time (for each core) for local recovery and global
recovery in Figure 5. In case of the global recovery model,
we apply the same delay factor t2 to all the processes when
a failure occurs in one (or many) of the processes. This may
be optimistic as it does not consider the potentially high
overhead for MPI communicator recovery, as reported by
our previous work [16, 34], but we do apply the same delay
effect to both cases for fair comparisons. The model-based
simulation shows the delay from multiple failures is masked
by local recovery, reducing the recovery overhead down to
22% of the global recovery case.

5. EVALUATION
Previous work [16] has shown how to tolerate failures in

an online and global manner with failures occurring every
47 seconds. In this paper we have reduced the sources of
overhead related to faults and, therefore, we want to ex-
perimentally evaluate how these algorithmic improvements
affect the feasibility of injecting failures at even higher rates
(i.e. every 5 seconds). Furthermore, we want to show that
the local recovery algorithm implemented in Fenix can tol-
erate a set of failures and mask the total overhead so that it
appears as if only a single failure occurred. In other words,
we will empirically show that, with local recovery, the total
overhead ON of recovering from N failures is not necessarily
N × O1 (being O1 the overhead of recovering from a single
failure).
In this section we will present the experimental evaluation

of Fenix performed using the S3D combustion simulation on
Cray XK7 Titan at ORNL.

5.1 Goal
The goal of the experimental evaluation is to demonstrate

that using Fenix, even in tightly-coupled applications such as
S3D, (i) node failures coming as frequent as every 5 seconds
can be recovered (ii) failure recovery is scalable and (iii) the
overhead of recovering from failures is not proportional to
the system size.
All these make local recovery in Fenix a viable prototype

towards exascale resilience for applications like S3D.

5.2 Methodology
We first present an scalability evaluation of the check-

pointing technique implemented on Fenix using the S3D
with a checkpoint size of 130 MB/core.
As a second step, we study the overheads related to the

recovery process. To do it, we inject worst-case failures,
i.e. sets of failures that do not allow recovery propagation
delays to merge and, therefore, the total overhead is the
sum of the recovery overhead for each failure. We show that
Fenix handles frequent node failures up to MTBFs as low
as 5-s with total overheads on or below 50% in the worst
case scenario. This is an empirical demonstration that this
method is more efficient than theoretical full redundancy for
MTBFs greater than 5 seconds, in the targeted application
type.
Finally, we show the full advantage of Fenix’ local recovery

capabilities on S3D up to 140736 cores (140608 + 128 spare
cores). We demonstrate how in real scenarios local recovery

 0

 0.1

 0.2

 0.3

 0.4

 0.5

576
4224

8128
13952

32896

64128

140736

262272

C
he

ck
po

in
t t

im
e

(s
)	

	

Core count

Figure 6: Checkpointing Scalability using 130MB/core.

can impose a total overhead of only one failure recovery,
regardless the number of failures.

In order to perform these experiments we inject node fail-
ures. Node failures are injected by simultaneously sending
SIGKILL signals to all application processes running in that
node. As the network setup parameters are stored in the
process memory, by killing the process we do not allow any
disconnection to be performed (which is what would happen
if a real failure occurred). The processes on other nodes will
get error codes when trying to perform a uGNI operation
towards the killed processes, exactly as would happen if the
node actually went down. In this sense, we say that we in-
ject real failures, as opposed to just pretend that a process
is dead. From now on, when we talk about failures, we refer
to node failures, which is equivalent to N -process failures,
being N the total number of processes of a node, two nodes,
a blade, etc. By default, the experiments use N = 16.

5.3 Implementation
Fenix has been designed in a modular and layered manner.

Four main modules exist: data resiliency, process resiliency,
communication logic and transport layer. The communi-
cation module is object oriented in order to isolate failure
recovery mechanisms from the different communication pro-
tocols. A base class Command offers an abstraction for re-
liably requesting services or communicate with other pro-
cesses using the chosen transport layer. All communication
mechanisms (i.e. checkpoint, send/recv, barrier, broadcast,
etc.) rely on this class and implement the logic in a simple
manner without including any fault tolerance code. Data
resiliency implements the checkpointing and data recovery
mechanisms, which can be substituted by an interface to
any existing checkpointing library. Process resiliency man-
ages the spare process pool and implements the protocol
to restart processes. The transport layer has been imple-
mented using uGNI, but could be easily extended to other
networks. Communications in production versions of MPI
implementations are probably faster than with our frame-
work, because we have not optimized performance of data
transfer yet. Specifically, we cannot use RDMA in uGNI,
due to inconsistent behavior of the network driver that ap-
pears only after injected failures. When a failure occurs,
the core of the runtime invokes the different modules, or-
chestrates the recovery process at high level and determines
which commands have to be re-executed.

Fenix offers three interfaces: C, C++ and Fortran. The
programming overhead of using Fenix is low, requiring less
than 35 new, changed, or rearranged lines of code in S3D,

 0

 0.01

 0.02

 0.03

 0.04

 0.05

5 10 15 20 25 30 35 40 45

P
ro

ce
ss

 r
ec

ov
er

y
tim

e
(s

)	
	

MTBF (s)

(a) Different MTBFs. Core count fixed at 4736 cores (4096
compute cores and 640 spare cores).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

4224 8128 13952 32896 64128 140736 262272

P
ro

ce
ss

 r
ec

ov
er

y
tim

e
(s

)	
	

Core count (including 128 spare cores)

(b) Different core count. MTBF fixed at 10 seconds.

Figure 7: Average process recovery overhead.

as shown in Section IV.B on [16]. Indeed, the programma-
bility of Fenix for local recovery is even simpler than the
one required by global recovery, because the status returned
by Fenix_Init() can take three different values for global
recovery (i.e. New, Respawned, or Survivor) and only two
values for local recovery (i.e. Survivor status is no longer
valid, since all survivor processes don’t get interrupted from
their processing). This simplifies the application side of the
recovery logic.
We leave the detailed description of the architectural de-

sign of Fenix and its implementation for future work.

5.4 Testbed
As already mentioned, all the experiments in this paper

were done on the Cray XK7 Titan at ORNL. Titan is com-
posed of 18688 16-core CPU and the same number of GPUs.
Every pair of nodes is connected to a single custom system-
on-chip Gemini ASIC network interconnect. Gemini ASICs
are connected using a 3D torus topology. Applications can
directly access network capabilities using uGNI, the user
level proprietary interface from Cray, which is forward com-
patible with newer versions of Cray networks, such as Aries.

5.5 Checkpoint Scalability
In [16] double in-memory checkpoints were evaluated and

proved to scale independently of the number of processes.
With this newer version of the Fenix framework we reevalu-
ated the checkpoint scalability even when injecting failures,
and with data sizes per core up to 16 times larger. Figure
6 depicts the weak scalability of checkpointing up to 262272
cores (including 128 spare cores) using a larger checkpoint
size of 130 MB/core. The test was done injecting failures
every 10 seconds. As we can see, the checkpoint overhead
is the same independently of the number of cores, which
demonstrates ideal weak scalability.

5.6 Recovery time for different MTBFs

The goal of this second experiment is to show that our
implementation is capable of handling failures occurring up
to every 5 seconds. We will also study process recovery over-
head and empirically demonstrate that its performance does
not depend on the total number of processes (i.e. optimal
scalability), which is a highly desirable property towards ex-
ascale. We performed the experiment using S3D and 4736
cores (4096 compute cores and 640 spare cores), unless oth-
erwise specified.

In this experiments we engineer the set of failures in a
way that do not allow recovery propagation delays to merge
and, therefore, the total overhead is the sum of the recovery
overhead for each failure. In other words, this is a worst-
case local recovery test, because failures are injected so that
the recovery overhead of different failures is not merged to-
gether. This is done in order to explore the benefits of the
local recovery algorithm over global recovery and the poten-
tial benefit for all kinds of applications, not just stencil-like
architectures.

Process recovery overhead. First, we will study the to-
tal overhead to recover from a failure for different failure
frequencies. Figure 7(a) shows the average overhead of pro-
cess recovery for different node failure frequencies injected
on S3D on an execution of about 200 seconds. Each bar
represents the average time to recover the processes from
a failure. This overhead is only initially seen in the spare
processes that substitute the failed ones, and then propa-
gated to the rest of the domain due to the communication
nature of the application. This figure does not include over-
heads due to data recovery (i.e. checkpoint fetching) Note
that checkpoint fetching is exactly the inverse process of
checkpointing: first, checkpoint has to be fetched from the
neighbor that stores it in-memory to the spare process mem-
ory. Then, it has to be memcpy()’ed to the application store.
Therefore, checkpoint fetching overhead must be very simi-
lar to checkpointing overhead.

Scalability. Figure 7(b) shows the average process recov-
ery time for every failure. The figure demonstrates that
local recovery overhead is constant regardless the number
of processes in the system, tested up to 262272 cores. The
test was done with a fixed MTBF of 10 seconds and all the
tests include 128 spare processes. Most of the tests (exclud-
ing 64k and larger) have been repeated with different total
number of failures (e.g. ranging from 1 to 8 failures), and
the results have been averaged.

5.7 Total overhead for different MTBFs
Once we understand that process recovery time from a

single failure is constant (and small) independently of the
total number of cores in the system and the failure fre-
quency, we are ready to study the total overhead due to
fault tolerance (i.e. including checkpointing, process/data
recovery and rollback overheads). In other words, we are
interested in comparing the end-to-end execution time of a
failure-free, checkpoint-free, execution with the end-to-end
execution time of different executions at different MTBFs.

Figure 10 shows the results of the experiment, which has
been executed using a fixed core count of 4096 cores and 640
spare processes and a checkpoint size of 53 MB/core. For
different failure rates ranging from 5 to 45 seconds, Figure 10
shows the total overhead relative to a failure-free checkpoint-
free base test. The total number of failures ranges from 48

(a) One process failure (b) Two process failures (c) Three process failures (d) Four process failures

Figure 8: Behavior of local recovery on 1D PDE using 36 cores (32 compute cores and 4 spare cores).

(a) Base execution (b) One node failure (c) Four node failures (d) Ten node failures

Figure 9: Behavior of local recovery on 1D PDE using 13984 cores (13824 compute cores and 160 spare cores), with failures
inserted every 10 seconds.

processes (3 nodes) to 528 processes (33 nodes), as indicated
on top of each bar during a total time of around 150 seconds.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

5 10 15 20 25 30 35 40 45 47/GR

O
ve

rh
ea

d
(r

el
at

iv
e

to
 b

as
e

te
st

)	
	

MTBF (s)

recovery (process+data+rollback) total time
checkpoint total time

528

240
160

112
80

64
64

48 48

48

Figure 10: Comparison of total overhead due to failures and
fault tolerance mechanisms with different MTBFs. Core
count fixed at 4736 cores (4096 cores and 640 spare ranks).
Checkpoint size is 53MB/core. Numbers on top of the bars
indicate the total number of process failures injected during
the execution.

The right-most bar in the figure shows the overhead of
the same test using global recovery while injecting failures
every 47 seconds, as described in [16]. We can see that using
local recovery we obtain much lower performance penalties
even at higher failure rates. For example, notice that local
recovery allows failures every 20 seconds with an overhead
below 25% while global recovery allows failures every 47 sec-
onds (∼2.35x) with an overhead of 31% (∼1.25x). Note that

the total overhead of running the experiment in a worst-case
scenario (i.e. having node failures arriving every 5 seconds),
is 51%. That is, it is slightly worst (1% worst) than the
theoretical best-case overhead of using 2-way redundancy.
Again, it is important to note that this experiment has been
done injecting worst-case failures, in which failure masking
does not occur in most cases (note that the exception is
the 5-s MTBF test in which the total time is just a small
portion above the 10-s MTBF test). This has been done to
study only one of the advantages and scalability of process
recovery. Next subsection studies the full advantage of local
recovery, but the best case (i.e. where the overheads from
all failures merge in just one) from the current experiment
can be obtained by dividing the recovery overhead in Figure
10 by the number of node failures.

5.8 Local Recovery and Failure Masking
The goal of this last experiment is to show that, with

local recovery, the total overhead ON of recovering from N

failures is not necessarily N ×O1 (being O1 the overhead of
recovering from a single failure). This is what we call failure
masking.

1D PDE. We will begin by studying the behavior of lo-
cal recovery in a Stencil-structured unidimensional Partial
Differential Equation solver, or 1D PDE for short.

Figure 8 shows several executions using 32 compute cores
and 4 spare cores. The results were obtained via real exe-
cution on Titan Cray XK7 at ORNL, in which we injected
real process failures. The X axis represents the core num-
ber (or rank number), while the Y axis represents wall time
clock. Each rank simulates a certain number of points in the

(a) 4224c 1f

(b) 4224c 2f

(c) 4224c 4f

(d) 4224c 8f

(e) 8128c 1f

(f) 8128c 2f

(g) 8128c 4f

(h) 8128c 8f

(i) 13952c 1f

(j) 13952c 2f

(k) 13952c 4f

(l) 13952c 8f

(m) 32896c 2f

(n) 32896c 3f

(o) 32896c 4f

(p) 32896c 8f

(q) 64128c 1f

(r) 64128c 2f

(s) 64128c 3f

(t) 64128c 5f

Figure 11: Behavior of local recovery in S3D Stencil three-dimensional Partial Differential Equation solver. Each line in a
figure represents a timestep, and the color of the line represents how advanced the simulation is (i.e. it advances from yellow
to dark purple). Each red cross represents a failure. A straight line means all processes compute the timestep at the same
physical time (note how in some cases performance fluctuation create wavy lines. When a failure occurs, the recovery delay
does not get propagated immediately to all the domain. On the contrary, the immediately adjacent neighbors in the 3D space
are the first to be delayed, which in turn propagate the delay to their contiguous neighbors in subsequent iterations, eventually
reaching the whole domain. The X axis of the figures shows the rank number, which is mapped to the 3D domain linearly.
The Y axis of the figures shows the wall time. In the caption of each figure a ‘c’ refers to cores and an ‘f’ refers to the number
of node failures injected. Note how the overhead in the first three columns is the same, which empirically demonstrates how
failure masking works.

domain, which is a 1D space (i.e. line). Adjacent ranks sim-
ulate adjacent parts of the line. Each horizontal line in a plot
represents a simulated timestep (i.e. every time the solver
communicates with the neighbors in order to advance the
simulation). Red crosses represents injected process failures.
A straight line means all processes compute the timestep at
the same physical time. When a failure occurs, the recovery
delay does not get propagated immediately to all the do-
main. On the contrary, the immediately adjacent neighbor
process is the first to be delayed, which in turn propagate the
delay to their contiguous neighbors, eventually reaching the
whole domain. Note how Figures 8(b), 8(c) and 8(d) have
the same recovery overhead: as if only one failure occurred,
Figure 8(a).
Figure 9 shows a longer experiment using a larger number

of processes and injecting node failures: 13984 total cores,
including 13824 compute cores and 160 spare cores. As we
can observe, in this case the propagation waves occasioned
by one failure recovery never merge with other waves. There-
fore, the overhead in the total time to solution will be only
increased by the time to recover from a single failure, inde-
pendently of the total number of failures.
By comparing Figure 8 with Figure 4 (left) and Figure

9 with Figure 4 (right) we can see that results from the
model and simulation accurately predict the real experimen-
tal results. We can conclude, therefore, that the presented
discrete event simulator can capture the benefit of local re-
covery. These results not only validate our algorithm and
implementation, but also show that local recovery can be
benefitial in extreme scale environments, where failures are
predicted to appear at high frequency. Local recovery is a
scalable approach in both the number of failures and the size
of the machine.

S3D. Figure 11 shows the profile of multiple S3D execu-
tions. Figures follow the same format as Figure 8. Here,
however, the communication pattern between ranks is not
as obvious as with the 1D case and, therefore, the delay will
be propagated in a strange pattern. The communication
in the simulated 3D domain goes as follows: each process
communicates with six other processes, responsible of sim-
ulating points in the neighboring up/down, front/back and
left/right points. The mapping between 3D space and 1D
ranks is done in a straightforward manner. By beginning in
the point (0,0,0) we assign rank numbers by counting first
in the Z direction, followed by the Y direction and finally in
the X direction.
For each scale (576, 4224, 8128, 13952, 32896, 64128 and
140736 cores), different number of failures has been injected,
from 1 to 8. We show that the total overhead is, in most
cases, as if only one failure occurred. This can be seen in a
summarized way in Figure 12. This figure shows the relative
execution time compared to the base test of just recovering
from one single failure. Note how, in many of the cases, the
execution time difference is around 2% or below, which indi-
cates similar execution times. The difference might be due
to different rollback overheads: if failures occur right after
a checkpoint is done, the rollback overhead is small mean-
while if a failure occurs right before a checkpoint should
be done, the rollback overhead is much larger, because al-
most an entire iteration has to be recomputed. The tests
that take larger execution times, up to 6 or 12% compared
to injecting a single failure, cannot be considered the same
overhead, which means that there was at least one failure

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

512 4096 8000 13824 32768 64000 140608R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
to

 O
ne

 F
ai

lu
re

 te
st

		

Number of cores

1 failure
2 failures
3 failures
4 failures
5 failures
6 failures
7 failures
8 failures

Figure 12: Summary of relative total execution time of in-
jecting multiple failures, compared to the execution time
while injecting a single failure. For 64k and 140k cores,
only the test that went through Titan’s execution queue are
shown. For 262k cores only one test went through the exe-
cution queue, so no comparison is available.

that occurred within the propagation delay of the recovery
of a previous failure. This is consistent with Figure 11. For
example, if we compare Figure 11(d) with the rest of the
tests using 4224 cores, we can observe a large difference in
the total overhead. This difference is due to a failure occur-
ring in a core which already suffered delay from a previous
failure in a neighboring core. In this case, the third failure
(counting from the left) suffers from the effects of the second
failure.

We have shown how local recovery enables failure mask-
ing, which is a highly desirable property towards extreme-
scale systems. We have empirically demonstrated that, with
local recovery, the total overhead ON of recovering from N

failures is not necessarily N ×O1 (being O1 the overhead of
recovering from a single failure).

6. CONCLUSION
In this paper we have explored an approach for failure

masking and online, local recovery from high-frequency node
failures for stencil-based parallel applications, using appli-
cation guided checkpointing as a means for data resilience.
The approach is based on understanding the propagation of
delays associated with local recovery for stencil-based com-
putation/communication pattern, and the observation that
the impact of the delay associated with multiple failures is
often not additive, allowing this approach to be feasible and
scalable. In this paper we first used simulations to validate
the approach and then design and implement it within the
Fenix framework. We then deployed it on the Titan Cray
XK7 production system at ORNL and used it to enable fail-
ure masking and local recovery for the S3D combustion ap-
plication, which is a key application for exascale [2] – the
simple Fenix local recovery interface enabled this integra-
tion to be achieved with less than 35 lines of S3D code to
be added, changed, or rearranged.

We also presented an extensive experimental evaluation of
the local recovery algorithms in Fenix on Titan using S3D,
while injecting real failures. Our experiments demonstrate
that local recovery in Fenix provides a viable solution for
stencil-based application, for addressing node failures oc-
curring as frequently as every 5 seconds, on scales up to

262144 cores. Our results show an overall performance over-
head of 13.75% while tolerating node failures every 30 sec-
onds (worst-case scenario, as the MTBF for the exascale
systems is expected in order of minutes [13]). We also show
that this overhead is smaller as compared to the overheads
of using global recovery techniques previously presented on
Fenix [16], and is also smaller than the overhead of tradi-
tional checkpointing with global offline restart that is cur-
rently used by S3D for its large-scale production runs on
Titan.
Our experiments also evaluated the scalability of the lo-

cal recovery stages in Fenix, and demonstrate that all fault
tolerance aspects scale well with increasing number of cores.
Finally, our experiments also demonstrated how local recov-
ery enables failure masking, i.e., the overheads on the total
execution time due to recovery from multiple failures is com-
parable to that of only one failure.
Our ongoing and future work includes (1) exploring how

the conclusions in this paper apply to other classes of ap-
plications (beyond stencil-based), (2) modeling and under-
standing optimal sizes for ghost regions so that delays due to
local recover propagates slower, and (3) studying how asyn-
chronous transfers of checkpoints can reduce checkpointing
overheads without impacting simulation time.

Acknowledgments

The authors would like to thank Josep Gamell, Robert Clay
and George Bosilca for interesting discussions related to this
work. The research was conducted as part of RDI2 at Rut-
gers University. It was supported by the NSF via grant
number ACI 1339036, by the DoE RSVP grant via sub-
contract number 4000126989 from UT Battelle, and used
resources of the OLCF at the ORNL. This work was sup-
ported by the U.S. Department of Energy (DOE) National
Nuclear Security Administration (NNSA) Advanced Simula-
tion and Computing (ASC) program. Sandia National Lab-
oratories is a multi-program laboratory managed and oper-
ated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

7. REFERENCES
[1] S. Amarasinghe and et al. ExaScale Software Study:

Software Challenges in Extreme Scale Systems.
Technical report, DARPA IPTO, Air Force Reserach
Lab, Sept. 2009.

[2] S. Amarasinghe and et al. Exascale Programming
Challenges. In Proceedings of the Workshop on
Exascale Programming Challenges, Marina del Rey,
CA, USA. U.S Department of Energy, Office of
Science, Office of Advanced Scientific Computing
Research (ASCR), Jul 2011.

[3] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch,
F. Cappello, N. Maruyama, and S. Matsuoka. FTI:
High Performance Fault Tolerance Interface for
Hybrid Systems. In Proceedings of International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2011, 2011.

[4] P. Beckman, R. Brightwell, B. R. de Supinski,
M. Gokhale, S. Hofmeyr, S. Krishnamoorthy, M. Lang,
B. Maccabe, J. Shalf, and M. Snir. Exascale Operating

Systems and Runtime Software Report. Technical
report, US Department of Energy, December 2012.

[5] W. Bland, G. Bosilca, A. Bouteiller, T. Herault, and
J. Dongarra. A Proposal for User-Level Failure
Mitigation in the MPI-3 Standard. Technical report,
Innovative Computing Laboratory, University of
Tennessee, February 2012.

[6] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and
J. J. Dongarra. Post-failure recovery of MPI
communication capability: Design and rationale.
International Journal of High Performance Computing
Applications, 2013.

[7] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier,
and F. Cappello. MPICH-V Project: A Multiprotocol
Automatic Fault-Tolerant MPI. International Journal
of High Performance Computing Applications,
20(3):319–333, 2006.

[8] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and
J. Dongarra. Reasons for a pessimistic or optimistic
message logging protocol in MPI uncoordinated
failure, recovery. In IEEE International Conference on
Cluster Computing and Workshops, CLUSTER 2009,
pages 1–9, 2009.

[9] B. Bouteiller, P. Lemarinier, K. Krawezik, and
F. Capello. Coordinated checkpoint versus message log
for fault tolerant MPI. In Proceedings of the IEEE
International Conference on Cluster Computing, pages
242–250, 2003.

[10] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Trans. Comput. Syst., 3(1):63–75, Feb. 1985.

[11] J. H. Chen, A. Choudhary, B. de Supinski,
M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao,
K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende, and C. S. Yoo. Terascale
direct numerical simulations of turbulent combustion
using S3D. Computational Science and Discovery,
2(1):015001, Jan. 2009.

[12] C. Coti, T. Herault, P. Lemarinier, L. Pilard,
A. Rezmerita, E. Rodriguez, and F. Cappello.
Blocking vs. Non-Blocking Coordinated Checkpointing
for Large-Scale Fault Tolerant MPI. In ACM/IEEE
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, pages 18–18, Nov 2006.

[13] J. Dongarra and et al. The International Exascale
Software Project Roadmap. International Journal of
High Performance Computing Applications,
25(1):3–60, 2011.

[14] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34(3):375–408, Sep 2002.

[15] D. Fiala, F. Mueller, C. Engelmann, R. Riesen,
K. Ferreira, and R. Brightwell. Detection and
correction of silent data corruption for large-scale
high-performance computing. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC
2012, pages 78:1–78:12, 2012.

[16] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky,
and M. Parashar. Exploring Automatic, Online

Failure Recovery for Scientific Applications at
Extreme Scales. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’14, 2014.

[17] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and
F. Cappello. Uncoordinated Checkpointing Without
Domino Effect for Send-Deterministic MPI
Applications. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages
989–1000, 2011.

[18] P. H. Hargrove and J. C. Duell. Berkeley lab
checkpoint/restart (blcr) for linux clusters. In Journal
of Physics: Conference Series, volume 46, page 494.
IOP Publishing, 2006.

[19] M. A. Heroux. Toward Resilient Algorithms and
Applications. In Proceedings of the 3rd Workshop on
Fault-tolerance for HPC at Extreme Scale, FTXS
2013, pages 1–2, New York, NY, USA, 2013. ACM.

[20] J. Hursey. Coordinated checkpoint/restart process fault
tolerance for mpi applications on hpc systems. PhD
thesis, Indiana University, Indianapolis, IN, USA,
2010. AAI3423687.

[21] J. Hursey, T. I. Mattox, and A. Lumsdaine.
Interconnect agnostic checkpoint/restart in Open
MPI. In Proceedings of the 18th ACM international
symposium on High Performance Distributed
Computing, HPDC 2009, pages 49–58, New York, NY,
USA, 2009. ACM.

[22] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine.
The Design and Implementation of
Checkpoint/Restart Process Fault Tolerance for Open
MPI. In IEEE International Parallel and Distributed
Processing Symposium, pages 1–8, 2007.

[23] D. Ibtesham, D. Arnold, P. Bridges, K. Ferreira, and
R. Brightwell. On the Viability of Compression for
Reducing the Overheads of Checkpoint/Restart-Based
Fault Tolerance. In 41st International Conference on
Parallel Processing (ICPP), pages 148–157, 2012.

[24] T. Islam, K. Mohror, S. Bagchi, A. Moody,
B. De Supinski, and R. Eigenmann. MCREngine: A
scalable checkpointing system using data-aware
aggregation and compression. In International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2012, pages
1–11, Nov 2012.

[25] S. Kannan, A. Gavrilovska, K. Schwan, and
D. Milojicic. Optimizing Checkpoints Using NVM as
Virtual Memory. In IEEE 27th International
Symposium on Parallel Distributed Processing, pages
29–40, May 2013.

[26] D. S. Katz, J. Daly, N. DeBardeleben, M. Elnozahy,
B. Kramer, L. Lathrop, N. Nystrom, K. Milfeld,
S. Sanielevici, S. Cott, and L. Votta. Fault Tolerance
for Extreme-Scale Computing Workshop,
Albuquerque, NM - March 19-20, 2009. Technical
Report ANL/MCS-TM-312, Argonne National
Laboratory, December 2009.

[27] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d.

Supinski. Design, Modeling, and Evaluation of a
Scalable Multi-level Checkpointing System. In
Proceedings of the ACM/IEEE International
Conference for High Performance Computing,

Networking, Storage and Analysis, SC 2010, pages
1–11, Washington, DC, USA, 2010. IEEE Computer
Society.

[28] X. Ouyang, S. Marcarelli, and D. K. Panda.
Enhancing Checkpoint Performance with Staging IO
and SSD. In Proceedings of the International
Workshop on Storage Network Architecture and
Parallel I/Os, SNAPI 2010, pages 13–20, Washington,
DC, USA, 2010. IEEE Computer Society.

[29] X. Ouyang, R. Rajachandrasekar, X. Besseron,
H. Wang, J. Huang, and D. K. Panda. CRFS: A
lightweight user-level filesystem for generic
checkpoint/restart. In International Conference on
Parallel Processing (ICPP), pages 375–384. IEEE,
2011.

[30] R. Rajachandrasekar, A. Moody, K. Mohror, and
D. K. D. Panda. A 1 PB/s file system to checkpoint
three million MPI tasks. In Proceedings of the 22nd
international symposium on High-performance parallel
and distributed computing, HPDC 2013, pages
143–154, New York, NY, USA, 2013. ACM.

[31] T. Ropars, T. V. Martsinkevich, A. Guermouche,
A. Schiper, and F. Cappello. SPBC: Leveraging the
Characteristics of MPI HPC Applications for Scalable
Checkpointing. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2013, pages
8:1–8:12, New York, NY, USA, 2013. ACM.

[32] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. d.
Supinski, N. Maruyama, and S. Matsuoka. Fmi: Fault
tolerant messaging interface for fast and transparent
recovery. In Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing
Symposium, IPDPS ’14, pages 1225–1234,
Washington, DC, USA, 2014. IEEE Computer Society.

[33] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V.
Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose,
F. Cappello, B. Carlson, and et al. Addressing Failures
in Exascale Computing. U.S. DoE, 2013.

[34] K. Teranishi and M. A. Heroux. Toward local failure
local recovery resilience model using mpi-ulfm. In
Proceedings of the 21st European MPI Users’ Group
Meeting, EuroMPI/ASIA ’14, pages 51:51–51:56, New
York, NY, USA, 2014. ACM.

[35] M. Turmon, R. Granat, D. Katz, and J. Lou. Tests
and tolerances for high-performance
software-implemented fault detection. IEEE
Transactions on Computers, 52(5):579–591, 2003.

[36] G. Zheng, X. Ni, and L. V. Kalé. A scalable double
in-memory checkpoint and restart scheme towards
exascale. In IEEE/IFIP 42nd International
Conference on Dependable Systems and Networks
Workshops (DSN-W), pages 1–6, 2012.

	Introduction
	Background and Related Work
	Local Recovery for Stencil- based Scientific Applications
	Stencil-based Scientific Applications
	Local Recovery, challenges and benefits

	Modeling Delay Propagation
	Modeling the delay for a 1-D stencil code
	Simulation

	Evaluation
	Goal
	Methodology
	Implementation
	Testbed
	Checkpoint Scalability
	Recovery time for different MTBFs
	Total overhead for different MTBFs
	Local Recovery and Failure Masking

	Conclusion
	References

