

Abstract for the 2015 SPIE optics + Photonics conference

An overview of the Ultra-Fast X-ray Imager (UXI) program at Sandia Labs

L. Claus, L. Fang, R. Kay, M. Kimmel, J. Long, J. Porter, G. Robertson, M. Sanchez,
J. Stahoviak
Sandia National Laboratories
D. Trotter
Douglas Trotter Consulting

The Ultra-Fast X-ray Imager (UXI) program is an ongoing effort at Sandia National Laboratories to create high speed, multi-frame, time gated, Readout Integrated Circuits (ROICs) and a corresponding suite of photodetectors to image a wide variety of High Energy Density (HED) physics experiments. The program is currently fielding a 1024 x 448 prototype camera with 25um pixel spatial resolution and 2 frames of in-pixel storage with the possibility of exchanging spatial resolution to achieve 4 or 8 frames of storage. The camera's minimum integration time is 2ns. The minimum signal is targeted to be 1500 e- rms and full well is 1.5 million e-. The design and initial characterization results will be presented here as well as a description of future imagers.

The Ultra-Fast X-ray Imager (UXI) program is an ongoing effort at Sandia National Laboratories to create high speed, multi-frame, time gated imagers for High Energy Density physics experiments. The program is currently fielding a 1024 x 448 prototype camera with 25um pixel spatial resolution and 2 frames of in-pixel storage with the possibility of exchanging spatial resolution to achieve 4 or 8 frames of storage. The camera's minimum integration time is 2ns. The minimum resolution is targeted to be 1500 e- rms and full well is 1.5 million e-. The design and initial characterization results will be presented here.