
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

IDC Reengineering Phase 2

Inception Iteration I2
Architectural Prototyping Review

Jonathen Kwok

January 27, 2015

SAND2015-XXXXXXX

SAND2015-0245PE

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

2

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

3

Study: Service Identification

4

Goal: identify if the USNDC can be built from services

 Granularity – ratio of how much computation is performed in
a single call to a service to its invocation overhead.
Higher ratio is better

 Autonomy – likeliness of a component’s results
independently meeting a need versus always used as an
intermediate step in a larger process.
Higher is better

 Modularity – component is described by a general interface
Higher is better

 Volume – indicates how often a component is used

Sample Service Identifications

5

Potential Service Granularity Autonomy Modularity Volume

Service /

Library /

Application

Event location C H H H S

Signal association C H H M S

Event identification C H H M S

Discriminant calculations F L M M L/S

Individual signal processing /

feature extraction operations (filter,

beam, rotate, onset time, …)

F L H M L/S

Combined signal detection &

feature extraction
M M H M S

Waveform correlation based signal

analysis
C H H M S

Analyst work assignment creation F H H L A

Analyst work assignment

distribution
F H H L A

Write
Bulletin

persist intermediate results
get additional parameters

Optional:

SOA Study Status

6

Acquire
Data

Signal
Processing

Event
Processing

Write
Bulletin

Data

Acquire
Data

Signal
Processing

Event
Processing

Data

Rich interfaces: control and data flow together between services

Light interfaces: control flows between services; data flows through DB

Context: XML, direct COI access, no central pipeline controller

Results using other configurations are available

SOA Study Status

7

1 minute of 40Hz data
50 stations (no arrays)
8-byte doubles w/ metadata

1000 arrivals
(~45 minutes)
CSS 3.0

61 origins and origerrs
1000 arrivals and assocs
CSS 3.0

1. Receive 1 min intervals of waveform data from a network

2. Immediately signal process waveforms to produce arrivals

3. Collect 45 minutes of arrivals then form network events

4. Immediately store events and associated detections to DB

Acquire
Data

1.

Signal
Processing

2.

Event
Processing

3.

Write
Bulletin

4.

 IDCX data has on the order of 1000 arrivals in a 45 minute time interval

 A sample time period with 1000 arrivals produced 61 automatic events

Operation Cost - ms Operation Cost - ms Operation Cost - ms Operation
Cost -

ms
Subtotal -

s
Total-

s

Light:

input - 0 GET(WF)
289

(650250)
GET(ARVL) 84 - 0 650

1075
output PUT(WF)

186
(418500)

PUT(ARVL)
87

(3915)
PUT(EVNT) 2726 - 0 425

Rich:

input - 0 U(WF)
21

(47250)
U(ARVL) 151 U(EVNT) 284 48

83
output M(WF)

14
(31500)

M(ARVL)
15

(675)
M(EVNT) 210

PUT(EV
NT)

2726 35

SOA Study Status: Results
Human readable XML; no central pipeline controller; direct access to COI

8

Machine Configurations
 Marshaling and unmarshaling: RHEL 6 server; Nehalem Xeon xx5570 processors

 Database: Solaris SunOS 5.10 server; SPARC processor

 Waveform NAS : NetApp FAS3240; 256GB cache

Acquire
Data

Signal
Processing

Event
Processing

Write
Bulletin

1 min x 50 sta 1 min x 50 sta 45 min 45 min

M(X): Marshal X U(X): Unmarshal X GET(X): Query DB for X
PUT(X): Store X to DB

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

9

Study: Proof-of-concept

10

 Configure SOA technologies using SNL tools

 Gain working understanding of SOA for a simple system

 Look at:
 Configuring service directories

 Configuring messaging

 Implications of mixing control flow and data flow

Waveform
Injection

IDC
Waveforms

Signal
Processing

WavePRO

Event
Processing

PEDAL

Write
Bulletin

DB

ESB

Processing components

Event
Relocation

LocOO3D

Result
Viewer

Web app

Config.
tool

Controller
service

Process
Monitoring

Tools

Logging
service

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

11

E1: Common Object Interface

 E1 focus
 Means for persisting data

 Abstraction of underlying data storage

 The COI includes:
 Application data model: class model representation of data

 Application Programming Interface (API): provides SCRUD1

functionality via the application data model

12

1 Search/Create/Read/Update/Delete

E1: Common Object Interface

 COI Goals
 Minimize dependencies between applications and data storage

solution

 Decouple logical data model (e.g. database schema) from application
data model

 Provide a query language independent of data storage solution

 Provide optimizations to support performance requirements

 Support storage solutions and application languages defined for the
system

13

1 Search/Create/Read/Update/Delete

E1: Common Object Interface

14

Candidate
Solution

Solution Type Summary Assessment

Java

Hibernate

Java Object
Relational
Mapping
(ORM) OSS

Advantages: Leading ORM candidate for Java. Hibernate Query Language (HQL) could provide both
application and researcher level access to underlying COI objects. JPA provider.

Disadvantages: A dependence on HQL could introduce a tight coupling to Hibernate.

Lower
database
solution
coupling

Higher
database
solution
coupling

Open JPA
Java ORM
OSS

Advantages: JPA provider.

Disadvantages: ORM features supported through embedded SQL. Not a prevalent software solution.

Apache
Cayenne

Java ORM
OSS

Advantages: Supports Remote Object Persistence

Disadvantages: CayenneModeler required for mapping. Not a prevalent software solution.

Apache
Empire-DB

Java RDBMS
Abstraction
OSS

Advantages: Database interactions more easily optimized since interactions are at such a low level.

Disadvantages: Database abstraction layer (not an ORM). SQL-centric. Not a prevalent software
solution.

Apache
Torque

Java ORM
OSS

Advantages: Uses XML that describes the database schema, which avoids reliance on reflection.

Disadvantages: Requires that domain model extend Torque specific classes. Not a prevalent software
solution.

C++

ODB

C++ ORM
OSS

Advantages: Leading ORM candidate for C++. Does not require manual entry of mapping code.

Disadvantages: Developed by Code Synthesis, located in South Africa. Does not provide C++ object

to relational database mapping for existing DB tables.

Lower
coupling

Higher
coupling

QxORM

C++ ORM
OSS

Advantages: Supports object relational mapping with MySQL, SQLite, PostgreSQL, Oracle, and SQL
Server databases.

Disadvantages: Market usage is unknown and documentation is limited.

E1: Common Object Interface

15

 E1 COI Conclusions
 Hibernate and ODB are OSS solutions that meet many of the goals

outlined for the COI in this prototyping effort including:

 Minimizing dependencies between applications and data storage solution

 Decoupling the logical data model (e.g. database schema) from
application data model

 Providing a query language independent of the data storage solution

 Providing optimizations to support performance requirements

 Supporting storage solutions defined for the system

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

16

E1: Processing Control Framework

17

Category Candidate
Solution

Summary Assessment

Enterprise Java
Application
Frameworks

Java EE

Advantages: Widely-used open standards with large development community. Provides a robust
platform for development of scalable, fault-tolerant, distributed processing architectures.

Disadvantages: EJB standard prohibits use of native libraries and direct thread creation, limiting
design options supporting non-JVM languages.

Spring Framework

Advantages: Widely-used open-source solution with large development community. Provides a
robust platform for development of scalable, fault-tolerant, distributed processing architectures.

Disadvantages: Not standards-based.

Stream
Processors

Apache Storm

Advantages: Open-source solution with significant industry interest. Provides a robust platform for
development of scalable, fault-tolerant, distributed processing architectures. Supports multiple
development languages.

Disadvantages: New offering. Not standards-based.

Apache Samza

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures.

Disadvantages: New offering that has yet to establish significant industry interest. Not standards-
based. Does not support multiple languages (Java only).

Apache S4

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures. Supports multiple development languages.

Disadvantages: Little industry interest and development activity. Not standards-based.

Enterprise Service
Bus

WS02 ESB

Advantages: Provides a robust platform for integration of heterogeneous systems via
standardized messaging as part of a service-oriented architecture.

Disadvantages: Design strengths not well aligned to the end-state US NDC modernized
architecture (US NDC is not a heterogeneous system of systems).

Complex Event
Processor

Esper

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures.

Disadvantages: Specialized, query-based architecture does not fit US NDC processing needs
particularly well. Not standards-based. Does not support multiple languages (Java only).

E1: Processing Control Framework
 Apache Storm

 The E1 Storm prototype demonstrates a flexible, robust, fault-tolerant distributed
processing architecture for the automated pipeline

 Storm is a recent offering (2011), but has generated significant interest in the open
source community and has seen significant commercial adoptions since its initial release

 Storm natively supports processing components built in multiple languages via the JSON
multilang protocol, including Java & C++

 JVM languages were easier to work with

 It is not clear whether the multilang protocol provides a significant advantage over JNI or JNA

 Java EE / Wildfly

 The E1 Java EE prototype demonstrates a flexible, robust, fault-tolerant distributed
processing architecture for the automated pipeline built on widely-used open standards

 Wildfly server provides a stable, secure runtime environment for highly-available Java
EE applications

 Together the Java EE APIs and Wildfly server administration tools, documentation and
examples enable highly efficient application development

 Lack of support for direct invocation of non-JVM language software components is a
significant limitation

 Further investigation of options is necessary if Java EE is to be considered further

18

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

19

E2: OSD & PC Software Infrastructure
 Messaging COTS Investigation

 Design Assumption: Two basic data distribution models considered:

1. Notification: publish/subscribe distribution of data notifications where clients retrieve the
indicated data either from the database or distributed cache (TBD)

2. Direct Data Messaging (TBD): distribution of serialized data where clients receive the data
directly

 E2 Activities: Surveyed open-source messaging frameworks supporting both distribution models

 Focused on standards-based solutions: AMQP & DDS

 Selected RabbitMQ as preferred AMQP messaging solution

– Feature set, cross-language support, performance, popularity

Notification

OSD

Control
Class

Control Class

DBMS/Cache

Messaging
Framework

DAO

ORM

Send Data

Direct Data Messaging (TBD)

OSD

Control
Class

Control Class

DBMS/Cache

Messaging
Framework

Pub/Sub TopicsControl Class

DAO

ORM

Store
Published
Data

Notify
Subscribers

Retrieve
Subscribed-for
Data

20

E2: OSD & PC Software Infrastructure

21

Name Standards
Language

Support
Advantages Disadvantages

RTI DDS

DDS

JMS

REST

SOAP

C, C++

C#

Java

Ada

 Standards-Based

 Cross-Language Support

 Designed for low-latency, high-throughput with configurable

QoS

 Flexible communication patterns & configurable transports

 Open-source version available with commercial support from

RTI

 Generally considered to be higher performance than

brokered solutions

 Open-source license is more restrictive than for other

solutions

 Many features are only available in the commercial edition

 Appears to be less popular than other solutions (based on

Google Trends)

 Configurable QoS introduces complexity relative to other

solutions

 Past prototyping efforts have struggled with product

complexity

Qpid
AMQP

JMS

Java

C, C++

C#

Ruby

Perl

Python

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Appears to be less popular than other solutions (based on

Google Trends)

ActiveMQ

/ Apollo

AMQP

STOMP

REST

XMPP

JMS 1.1

Java

C, C++

C#

Ruby

Perl

Python\

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Mature & highly stable (widely used since early 2000s)

 Highly popular

 Performance limitations at scale (Apollo subproject attempts

to address these, but is not yet a full-featured product)

 Interest in ActiveMQ appears to be declining in recent years

(based on Google trends)

RabbitMQ
AMQP

STOMP

Java

C++

.NET

Ruby

Perl

Python

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Highly popular (highest search term frequency on Google

Trends)

 Favorable performance on a number of benchmarks

 Broker is implemented in Erlang (not necessarily a

disadvantage)

ZeroMQ None

Java

C, C++

C#

Ruby

Perl

Python

 Cross-Language Support

 Free OSS with community support

 Generally considered to be higher performance than

brokered solutions

 Not standards-based

 Appears to be less popular than other solutions (based on

Google Trends)

E2: OSD & PC Software Infrastructure

 Design Assumption: The OSD will include data
caching facilities to support temporary storage
of non-persistent application data and
optimized access to data stored in the database

 E2 Activities: Surveyed open-source data
caching & data grid frameworks
 Focused on cross-language, distributed caching solutions

 E3 Path Forward: TBD – The need for a caching
solution will be assessed during development of
the executable architecture prototype in E3.

Data Caching (TBD)

OSD

Control
Class

Control
Class

DBMS

Messaging Framework

Pub/Sub TopicsControl
Class

DAO

ORM

Cache
Published
Data

Notify
Subscribers

Caching/Data Grid

Retrieve
Subscribed-for
Data

Caches

22

E2: OSD & PC Software Infrastructure

23

Name
Client Language

Support
Advantages Disadvantages

JCS Java
 Cross-Language Support

 Free OSS with community support

 Java only (no cross-language support)

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

 It is not clear whether commercial support is available

 Limited feature set relative to other solutions surveyed

 Does not support partitioning (only replication)

memcached

C, C++

Java, Python Ruby

Perl

C#

 Well established and mature

 Widely used highly popular

 Cross-Language Support

 Free OSS with community support

 Commercial support available

 Popularity appears to be declining (based on Google Trends)

EHCache

Java

C++ &C#

(commercial

version)

 Cross-Language Support

 Free OSS version available

 Commercial support available from Terracotta

 Strong feature set, including partitioning, replication,

transactions, security, etc.

 Many features are only available in the commercial edition

 Limited cross-language support (and only in the commercial

edition)

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

 Popularity appears to be declining (based on Google Trends)

Infinispan

C++

Java

Python

Ruby

C#

 Cross-Language Support

 Free OSS with community support

 Commercial support available from JBoss

 Strong feature set, including partitioning, replication,

transactions, security, etc.

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

Redis

C, C++

Java

Perl

Python

Ruby

C#

Closure

Scala

 Widely used highly popular

 Broad cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Strong feature set, including partitioning, replication,

transactions, etc.

 Limited built-in security features

Hazelcast

Java

C++ &C#

(commercial

version)

 Cross-Language Support

 Commercial support available from Hazelcast

 Strong feature set, including partitioning, replication,

transactions, security, etc.

 Many features are only available in the commercial edition

 Limited cross-language support (and only in the commercial

edition)

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

E2: OSD & PC Software Infrastructure

 E2 Goal: Identify OSD & Processing Control COTS for use in executable
architecture prototyping starting in E3

 E2 Results:

 Identified AMQP standard-based messaging COTS for internal OSD data
distribution and processing control

 Evaluation of REST/HTTP for external COI data access underway

 Continuing with COTS ORM (Hibernate) to support the Java DAO
development, based on E2 prototyping results and pending performance
evaluation in E3

 Surveyed data caching solutions for OSD data distribution

 Selection TBD pending COI design decisions during executable architecture
prototyping

 Completed initial investigation of serialization COTS for cross-language direct
data distribution (student project)

 Demonstrated Python access to Java APIs for scripting language access to
DAOs

 Completed initial survey of Batch processing frameworks for processing
control

24

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

25

E1: User Interface Framework

26

Candidate Solution &
Widget toolkit

Language Summary Assessment

Netbeans / Swing

Java (RCP) Advantages: Netbeans is a dominant Java UIF candidate. Swing widgets integrate alongside
JavaFX code. OSGi open standard. Oracle supported. Large community.

Disadvantages: Oracle (the company) dependence.

Eclipse / Jface (SWT)

Java (RCP) Advantages: Eclipse is a dominant Java UIF candidate. OSGi open standard IBM supported. Very
stable. Large community.
Disadvantages: Eclipse learning curve is the most difficult. JFace/SWT is slightly dated compared
to Swing and JavaFX2. IBM dependence.

Qt Creator / Qt

C++ Advantages: Qt is the leading C++ UIF candidate. GUI widgets are fast and native: strongest cross
platform GUI behavior.

Disadvantages: Not an RCP solution. Not OSGi. Smaller community than Java.

Netbeans / JavaFX2

Java (RCP) Advantages: Netbeans is the leading Java UIF candidate. JavaFX2 has most modern Java GUI
elements. OSGi open standard. Oracle supported. Large community.
Disadvantages: JavaFX2 2D plotting package is beautiful but has serious scaling issues. Oracle
dependence.

NA / wxWidgets

C++ Advantages: Native mode widget toolkit, also contains inter-process communication layer

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Smaller
community.

NA / XUL

XML & Java Advantages: XML markup language for GUI construction. Quick study for web designers.

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Not a prevalent
solution.

E1: User Interface Framework

27For Official Use Only

 Netbeans: Dockable and Floating Displays

E1: User Interface Framework

 Conclusions:
 Netbeans and the Swing widget kit proved to be very strong

candidates for feature breadth, customization, plugin support, with
very efficient code integration, reuse, and development

 Prototype goals in these areas were not only met but exceeded

 Exercised on multiple platforms

 Some difficulties were encountered when the mapping viewer required
some platform dependent OpenGL Java libraries – these issues are
deemed to be both resolvable and independent of the prototyped
Netbeans UIF and the Swing widget toolkit

28

Architectural Prototype Overview

 Service Oriented Architecture (SOA) Study Status

 Service Oriented Architecture (SOA) Proof of Concept

 E1 Prototyping: Common Object Interface

 E1 Prototyping: Processing Control Framework

 E2 Prototyping: OSD & PC Software Infrastructure

 E1 Prototyping: User Interface Framework

 E2 Prototyping: User Interface Framework

29

E2: User Interface Framework

 Browser-based UI: OWF with Highstock Plots

30

E2: User Interface Framework

 Browser-based UI: SproutCore with D3 Plots

31

E2: User Interface Framework

32

 Eclipse 4.x RCP

E2: User Interface Framework

 Conclusions
 OWF, SproutCore, and Eclipse RCP all support window management

and workspace customization

 Because OWF and SproutCore are browser based frameworks, there
were concerns related to how they would integrate with the
underlying system infrastructure. They also require expertise in web
development.

 While Eclipse 4 RCP is powerful, the lack of support and the
dependence on SWT/JFace made the Eclipse 4 RCP a less attractive
prototyping candidate than the NetBeans RCP.

33

