" ’ l L
Laboratories

Exceptional service in the national interest

IDC Reengineering Phase 2

Inception Iteration 12
Architectural Prototyping Review

Jonathen Kwok
January 27, 2015
SAND2015-XXXXXXX

/3“\ U.S. DEPARTMENT OF T YR T =)
‘i}@j} ENERGY ;ﬁ" v" m Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
. e e Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

Study: Service Identification =
Goal: identify if the USNDC can be built from services

= Granularity — ratio of how much computation is performed in
a single call to a service to its invocation overhead.
Higher ratio is better

= Autonomy - likeliness of a component’s results
independently meeting a need versus always used as an
intermediate step in a larger process.
Higher is better

= Modularity — component is described by a general interface
Higher is better

= Volume - indicates how often a component is used

Sandia

Sample Service ldentifications) e

Event location
Signal association
Event identification C H H M S

Discriminant calculations

SOA Study Status h) B,

Light interfaces: control flows between services; data flows through DB

Acquire Signal Event Write
Data Processing Processing Bulletin

Rich interfaces: control and data flow together between services

Acquire Signal Event Write
Data Processing Processing Bulletin

Optional: persist intermediate results
get additional parameters

Context: XML, direct COI access, no central pipeline controller

Results using other configurations are available

Sandia

SOA Study Status) .

1. Receive 1 min intervals of waveform data from a network
2. Immediately signal process waveforms to produce arrivals
3. Collect 45 minutes of arrivals then form network events
4. Immediately store events and associated detections to DB
1. 2. 3. 4,
Acquire Signal Event Write
Data Processing Processing Bulletin
N J \ J \ J
Y Y Y

1 minute of 40Hz data 1000 arrivals 61 origins and origerrs

50 stations (no arrays) (~45 minutes) 1000 arrivals and assocs

8-byte doubles w/ metadata CSS 3.0 CSS 3.0

= |IDCX data has on the order of 1000 arrivals in a 45 minute time interval
= A sample time period with 1000 arrivals produced 61 automatic events

SOA Study Status: Results)

Laboratories

Human readable XML; no central pipeline controller; direct access to COI

Acquire Signal Event Write .
Data Processing Processing Bulletin

1 min x 50 sta

Operation

M(X): Marshal X U(X): Unmarshal X GET(X): Query DB for X
PUT(X): Store X to DB

Machine Configurations

= Marshaling and unmarshaling: RHEL 6 server; Nehalem Xeon xx5570 processors
= Database: Solaris SunOS 5.10 server; SPARC processor

= Waveform NAS : NetApp FAS3240; 256GB cache

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

Sandia
m National
Laboratories

Study: Proof-of-concept

= Configure SOA technologies using SNL tools
= Gain working understanding of SOA for a simple system
= Look at:

= Configuring service directories
= Configuring messaging

= |mplications of mixing control flow and data flow

Process L :
0ogein
Monitoring gg, g
Tools service

Config. Controller
tool service

Processing components

Waveform Signal Event Event Write Result
Injection Processing Processing Relocation Bulletin Viewer
IDC Web app
Waveforms

ESB

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

E1: Common Object Interface) .

= E1focus
= Means for persisting data
= Abstraction of underlying data storage

= The COIl includes:

= Application data model: class model representation of data

= Application Programming Interface (API): provides SCRUD?
functionality via the application data model

" Search/Create/Read/Update/Delete

E1: Common Object Interface) .

= COI Goals

= Minimize dependencies between applications and data storage
solution

= Decouple logical data model (e.g. database schema) from application
data model

= Provide a query language independent of data storage solution
= Provide optimizations to support performance requirements

= Support storage solutions and application languages defined for the
system

" Search/Create/Read/Update/Delete
I ———————

E1l: Common Object Interface

Sandia
r.h National
Laboratories

Candidate .
Solution Type Summary Assessment -
(0]

pen JPA
Apache
Cayenne

Apache
Empire-DB

E o .
O
(o]

Java Object
Relational
Mapping
(ORM) OSS
Java ORM
0SS

Java ORM
0SS

Java RDBMS
Abstraction
0SS

Java ORM
0SS

C++ ORM
0SS

C++ ORM
0SS

Java

Advantages: Leading ORM candidate for Java. Hibernate Query Language (HQL) could provide both
application and researcher level access to underlying COI objects. JPA provider.

Disadvantages: A dependence on HQL could introduce a tight coupling to Hibernate.
Advantages: JPA provider.

Disadvantages: ORM features supported through embedded SQL. Not a prevalent software solution.
Advantages: Supports Remote Object Persistence

Disadvantages: CayenneModeler required for mapping. Not a prevalent software solution.
Advantages: Database interactions more easily optimized since interactions are at such a low level.

Disadvantages: Database abstraction layer (not an ORM). SQL-centric. Not a prevalent software
solution.

Advantages: Uses XML that describes the database schema, which avoids reliance on reflection.

Disadvantages: Requires that domain model extend Torque specific classes. Not a prevalent software
solution.

C++
Advantages: Leading ORM candidate for C++. Does not require manual entry of mapping code.

Disadvantages: Developed by Code Synthesis, located in South Africa. Does not provide C++ object
to relational database mapping for existing DB tables.

Advantages: Supports object relational mapping with MySQL, SQLite, PostgreSQL, Oracle, and SQL
Server databases.

Disadvantages: Market usage is unknown and documentation is limited.

Lower
database
solution
coupling

Higher
database
solution
coupling

Lower
coupling

Higher
coupling

E1: Common Object Interface) .

= E1 COI Conclusions

= Hibernate and ODB are OSS solutions that meet many of the goals
outlined for the COl in this prototyping effort including:

Minimizing dependencies between applications and data storage solution

Decoupling the logical data model (e.g. database schema) from
application data model

Providing a query language independent of the data storage solution
Providing optimizations to support performance requirements
Supporting storage solutions defined for the system

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

E1: Processing Control Framework @,

Advantages: Widely-used open standards with large development community. Provides a robust
| EE platform for development of scalable, fault-tolerant, distributed processing architectures.
ava
Enterprise Java Disadvantages: EJB standard prohibits use of native libraries and direct thread creation, limiting
Application design options supporting non-JVM languages.
Frameworks Advantages: Widely-used open-source solution with large development community. Provides a
robust platform for development of scalable, fault-tolerant, distributed processing architectures.

Spring Framework

Disadvantages: Not standards-based.

Advantages: Open-source solution with significant industry interest. Provides a robust platform for

development of scalable, fault-tolerant, distributed processing architectures. Supports multiple
Apache Storm development languages.

Disadvantages: New offering. Not standards-based.
Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed

Stream processing architectures.
Processors Apache Samza

Disadvantages: New offering that has yet to establish significant industry interest. Not standards-

based. Does not support multiple languages (Java only).

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
Apache S4 processing architectures. Supports multiple development languages.

Disadvantages: Little industry interest and development activity. Not standards-based.
Advantages: Provides a robust platform for integration of heterogeneous systems via

Enterprise Service standardized messaging as part of a service-oriented architecture.

WS02 ESB
Bus

Disadvantages: Design strengths not well aligned to the end-state US NDC modernized
architecture (US NDC is not a heterogeneous system of systems).

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures.

Complex Event
Processor

Esper
Disadvantages: Specialized, query-based architecture does not fit US NDC processing needs
particularly well. Not standards-based. Does not support multiple languages (Java only).

17

E1l: Processing Control Framework @J&:.

= Apache Storm
= The E1 Storm prototype demonstrates a flexible, robust, fault-tolerant distributed
processing architecture for the automated pipeline

= Storm is a recent offering (2011), but has generated significant interest in the open
source community and has seen significant commercial adoptions since its initial release

= Storm natively supports processing components built in multiple languages via the JSON
multilang protocol, including Java & C++

= JVM languages were easier to work with
= |tis not clear whether the multilang protocol provides a significant advantage over JNI or JNA

= Java EE / Wildfly
= The E1 Java EE prototype demonstrates a flexible, robust, fault-tolerant distributed
processing architecture for the automated pipeline built on widely-used open standards

= Wildfly server provides a stable, secure runtime environment for highly-available Java
EE applications

= Together the Java EE APIs and Wildfly server administration tools, documentation and
examples enable highly efficient application development

= Lack of support for direct invocation of non-JVM language software components is a
significant limitation

= Further investigation of options is necessary if Java EE is to be considered further

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

E2: OSD & PC Software Infrastructure

Sandia
National
Laboratories

Messaging COTS Investigation

Design Assumption: Two basic data distribution models considered:
1.

Notification: publish/subscribe distribution of data notifications where clients retrieve the
indicated data either from the database or distributed cache (TBD)

Direct Data Messaging (TBD): distribution of serialized data where clients receive the data
directly

2.

E2 Activities: Surveyed open-source messaging frameworks supporting both distribution models
= Focused on standards-based solutions: AMQP & DDS

Selected RabbitMQ as preferred AMQP messaging solution

— Feature set, cross-language support, performance, popularity

Notification Direct Data Messaging (TBD)
OoSsD osD
Messaging oty Messaging Send Data
Framework Subscribers Framework
Control Class ~gl| —
C |
- ggtsrso Control Class <& = - C(c;gtsrso I
Control Class il Pub/Sub Topics
Store
Retrieve / Published
Subscribed-for ™~ DAO Data DAO
Data ORM ORM
> S
DBMS/Cache DBMS/Cache

E2: OSD & PC Software Infrastructure
b= el s

Standards-Based
Cross-Language Support
Designed for low-latency, high-throughput with configurable

Sandia
fl‘! National

Laboratories

Open-source license is more restrictive than for other
solutions
Many features are only available in the commercial edition

DDS C, C++ .
JMS ci QoS Appears to be less popular than other solutions (based on
RTI DDS REST Java Flexible communication patterns & configurable transports Google Trends)
Open-source version available with commercial support from Configurable QoS introduces complexity relative to other
SOAP Ada .
RTI solutions
Generally considered to be higher performance than Past prototyping efforts have struggled with product
brokered solutions complexity
Java
C, C++
AMQP C# Standards-Based Appears to be less popular than other solutions (based on
JMS Rub Cross-Language Support Google Trends)
Perly Free OSS with community support 9
Python
Java
AMQP t; -B
S C, C++ Standards-Based Performance limitations at scale (Apollo subproject attempts
' STOMP Cross-Language Support .
ActiveMQ C# . . to address these, but is not yet a full-featured product)
REST Free OSS with community support) . .
| Apollo Ruby . . . Interest in ActiveMQ appears to be declining in recent years
XMPP Mature & highly stable (widely used since early 2000s)
IMS 1.1 Perl Highlv bopular (based on Google trends)
' Pythonl el ben
Standards-Based
Java
Cit Cross-Language Support
. AMQP .NET Free OSS, with commum?y support . Broker is implemented in Erlang (not necessarily a
RabbitMQ Commercial support available from Pivotal .
STOMP Ruby) . disadvantage)
Peri Highly popular (highest search term frequency on Google
Python Trends)
Favorable performance on a number of benchmarks
Java
++ -L rt
€ ¢ Cross angLfage Suppo. Not standards-based
C# Free OSS with community support)
None . . Appears to be less popular than other solutions (based on
Ruby Generally considered to be higher performance than
. Google Trends)
Perl brokered solutions
Python

21

E2: OSD & PC Software Infrastructure ([miE=,

= Design Assumption: The OSD will include data

caching facilities to support temporary storage
of non-persistent application data and Data Caching (TBD)
optimized access to data stored in the database 0sD |
Messaging Framework Notify
Control Subscribers
Class han
Control
= E2 Activities: Surveyed open-source data ﬁj = gees
caching & data grid frameworks piamndl
= Focused on cross-language, distributed caching solutions Caching/Data Grid e
Retrieve \)/ Data
Subscribed-for
= E3 Path Forward: TBD — The need for a caching e Caches
solution will be assessed during development of #
the executable architecture prototype in E3. DAO
ORM
o

E2: OSD & PC Software Infrastructure

Sandia
fl‘! National

Laboratories

m Client Language | o0 oe Disadvantages
DDOI'
[]

EHCache

Infinispan

Hazelcast

Java

C, C++

Java, Python Ruby
Perl

C#

Java

C++ &C#
(commercial
version)

C++
Java
Python
Ruby
C#

C, C++
Java
Perl
Python
Ruby
C#
Closure
Scala

Java

C++ &C#
(commercial
version)

Cross-Language Support
Free OSS with community support

Well established and mature
Widely used highly popular
Cross-Language Support

Free OSS with community support
Commercial support available

Cross-Language Support

Free OSS version available

Commercial support available from Terracotta
Strong feature set, including partitioning, replication,
transactions, security, etc.

Cross-Language Support

Free OSS with community support

Commercial support available from JBoss

Strong feature set, including partitioning, replication,
transactions, security, etc.

Widely used highly popular

Broad cross-Language Support

Free OSS with community support

Commercial support available from Pivotal

Strong feature set, including partitioning, replication,
transactions, etc.

Cross-Language Support

Commercial support available from Hazelcast
Strong feature set, including partitioning, replication,
transactions, security, etc.

Java only (no cross-language support)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

It is not clear whether commercial support is available

Limited feature set relative to other solutions surveyed

Does not support partitioning (only replication)

Popularity appears to be declining (based on Google Trends)

Many features are only available in the commercial edition
Limited cross-language support (and only in the commercial
edition)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

Popularity appears to be declining (based on Google Trends)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

Limited built-in security features

Many features are only available in the commercial edition
Limited cross-language support (and only in the commercial
edition)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

23

E2: OSD & PC Software Infrastructure (.

= E2 Goal: Identify OSD & Processing Control COTS for use in executable
architecture prototyping starting in E3

= E2 Results:

Identified AMQP standard-based messaging COTS for internal OSD data
distribution and processing control

= Evaluation of REST/HTTP for external COIl data access underway
Continuing with COTS ORM (Hibernate) to support the Java DAO
development, based on E2 prototyping results and pending performance
evaluation in E3
Surveyed data caching solutions for OSD data distribution

= Selection TBD pending COI design decisions during executable architecture

prototyping

Completed initial investigation of serialization COTS for cross-language direct
data distribution (student project)
Demonstrated Python access to Java APIs for scripting language access to
DAOs

Completed initial survey of Batch processing frameworks for processing
control

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

E1l: User Interface Framework

Sandia
rl'l National

Laboratories

Candidate Solution &
Widget toolkit Summary Assessment

Java (RCP)
Netbeans / Swing

Java (RCP)

Eclipse / Jface (SWT)

C++
Qt Creator / Qt

Java (RCP)
Netbeans / JavaFX2

C++
NA / wxWidgets

XML & Java
NA / XUL

Advantages: Netbeans is a dominant Java UIF candidate. Swing widgets integrate alongside
JavaFX code. OSGi open standard. Oracle supported. Large community.

Disadvantages: Oracle (the company) dependence.

Advantages: Eclipse is a dominant Java UIF candidate. OSGi open standard IBM supported. Very
stable. Large community.

Disadvantages: Eclipse learning curve is the most difficult. JFace/SWT is slightly dated compared
to Swing and JavaFX2. |IBM dependence.

Advantages: Qt is the leading C++ UIF candidate. GUI widgets are fast and native: strongest cross
platform GUI behavior.

Disadvantages: Not an RCP solution. Not OSGi. Smaller community than Java.

Advantages: Netbeans is the leading Java UIF candidate. JavaFX2 has most modern Java GUI
elements. OSGi open standard. Oracle supported. Large community.

Disadvantages: JavaFX2 2D plotting package is beautiful but has serious scaling issues. Oracle
dependence.

Advantages: Native mode widget toolkit, also contains inter-process communication layer

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Smaller
community.

Advantages: XML markup language for GUI construction. Quick study for web designers.

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Not a prevalent
solution.

26

Sandia
|I1 National

Laboratories

El: User Interface Framework

= Netbeans: Dockable and Floating Displays

| @ Fandeas 201302132200

Fie £l View Nemae Took Window Help

BococheAERE

Tree Window & |

@[Wavefoms - .y il NHOKTH AMERICA
[cwavisorm \ "
> L
[zwavironn
[} swaveronn
) awavironm
] swaverorM
[} ewavironn
[} 2waveronss
[Bwavirorn
[swavesonss

1
§

Timeime Vindow %

4
3
£
&
£
3
g
S
§
5
-
B
=
g
g
S
g
g
&

Showentre se - pon Trae Htary

o |

g
[g

a

&

&

2

&

&

&

E

&

&

0037 80 v7:00 38 000

2500
170612010

For Official Use Only

E1: User Interface Framework) s,

= Conclusions:

= Netbeans and the Swing widget kit proved to be very strong
candidates for feature breadth, customization, plugin support, with
very efficient code integration, reuse, and development

" Prototype goals in these areas were not only met but exceeded

= Exercised on multiple platforms

= Some difficulties were encountered when the mapping viewer required
some platform dependent OpenGL Java libraries — these issues are
deemed to be both resolvable and independent of the prototyped
Netbeans UIF and the Swing widget toolkit

Architectural Prototype Overview

= Service Oriented Architecture (SOA) Study Status

= Service Oriented Architecture (SOA) Proof of Concept
= E1 Prototyping: Common Object Interface

= E1 Prototyping: Processing Control Framework

= E2 Prototyping: OSD & PC Software Infrastructure

= E1 Prototyping: User Interface Framework

= E2 Prototyping: User Interface Framework

Sandia
National
Laboratories

E2: User Interface Framework) s,

= Browser-based Ul: OWF with Highstock Plots

E X @ » OZONEWidqetFramework

E2: User Interface Framework

= Browser-based Ul: SproutCore with D3 Plots

Wave-1

ID: 123
Station: USA

Sandia
National
Laboratories

Wave-2
ID: 456

Station: Germany

Wave-3
ID: 789

Station: Australia

Wave-4
ID: 1010

Station: Canada

Wave-5
D: 2020

Station: China

5 waves

X
1,800 E
1,400 4
£
1,200 <
1.000
8004
200 - |
400 4 |
2004
| thol ‘ P R 4d
Il At AT P AL b andlOHd -4 s
1HaM iy - oA ek’ o T
i &y
T T T T T T T T T T T — !
05:00 0e:00 07:00 08.00 09:00 10:00 11:00 12:00 12:00 14:00 15:00 18:00 17:00
A lL) i A
— + T T 7 T 7 7 7 T 7 T i 1
08:00 0800 07:00 08:00 08:00 10:00 11:00 1200 1300 1400 1500 16:00 17:00

Sandia

E2: User Interface Framework e

= Eclipse 4.x RCP

Waveforms Pick mode: P Pick mode:

Pick mode: Delete ~ [|| GeoView =

All Waveforms @ Selected Waveforms.

Selected
USRK:US_120_filter
R i

.0.50

2010msms 2052 2056 2100 2104 2108 2112 2118 2120

USRK:US_120_transform
R

150

128

100 {

75

50

2104 2108
USRK:US_120_trigger
1.0 { G S PKP
:me\ als
Arrivais
sta | chan | [azimuth (deg) delaz amp per(s) | sar iphase | FK obe oKt hon
lusrK lus_120 lot00 |10 |10 [0 [0 10 s ' Meralor Projecion [Probability Threshold %
lusrK lus 120 [2040-05-0524 4o BT 10 10 10 3 Bl Lat-Lon Projection %
lusrk | 0113442 95057243 [0217411 0525924 [025 [15.141020 |- | Sessokal Proecton 0 10 20 30 40 50 60 70 80 90100)
JusrK lo218215 |ooss04s |96.0s0236 [0.313100 1046357 0ss |sa72s28 | Mt el Propiclion
;USRK 0165711 |0042169 150340891 |0255163 |0437513 |025 5as8722 |- G Choose geotess file for probability of detaction Choose seismic history
JUSRK lus_1z0 izn%n-ns- 5 Lo Lo 1.0 0 |10 10 10 El

Date and mag query |custom query
From: [00:00:00 0512812013/

Choose geotess file for image overiay on map /M8 threshold

Execute query

elect * from origin whes

Execute query

32

E2: User Interface Framework

= Conclusions

= OWEF, SproutCore, and Eclipse RCP all support window management

and workspace customization

= Because OWF and SproutCore are browser based frameworks, there
were concerns related to how they would integrate with the
underlying system infrastructure. They also require expertise in web

development.

= While Eclipse 4 RCP is powerful, the lack of support and the
dependence on SWT/JFace made the Eclipse 4 RCP a less attractive
prototyping candidate than the NetBeans RCP.

Sandia
National
Laboratories

