
The Role of Container Technology in Reproducible
Computer Systems Research

Ivo Jimenez, Carlos Maltzahn (UC Santa Cruz)
(ivo|carlosm)@cs.ucsc.edu

Adam Moody, Kathryn Mohror (Lawrence Livermore National Laboratories)
(moody11|kathryn)@llnl.gov

Jay Lofstead (Sandia National Laboratories)
gflofst@sandia.gov

Remzi Arpaci-Dusseau (University of Wisconsin-Madison)
remzi@cs.wisc.edu

Abstract—Evaluating experimental results in the field
of Computer Systems is a challenging task, mainly
due to the many changes in software and hardware
that computational environments go through. In this
position paper, we analyze salient features of container
technology that, if leveraged correctly, can help re-
ducing the complexity of reproducing experiments in
systems research. We also discuss the benefits and
limitations of using containers as a way of reproduc-
ing research in other areas of experimental systems
research.

I. Introduction

A key component of the scientific method is the ability to
revisit and replicate previous results. Registering informa-
tion about an experiment allows scientists to interpret and
understand results, as well as verifying that the experiment
was performed according to acceptable procedures. Addi-
tionally, reproducibility plays a major roll in education
since the amount of information that a student has to
digest increases as the pace of scientific discovery accel-
erates. By having repeatable experiments, a student can
learn by looking at provenance information, re-evaluate
the questions that the original experiment answered and
thus “stand in the shoulder of giants”.

In applied Computer Science an experiment is carried out
in its entirety by a computer. Repeating a result doesn’t
require a scientist to rewrite a program, rather it entails
obtaining the original program and executing it (possibly
in a distinct environment). Thus, in principle, a well doc-
umented experiment should be repeatable automatically
(e.g. by typing make), however, this is not the case. Today’s
computational environments are complex and accounting
for all possible effects of changes within and across systems
is a challenging task [1,2].

Version control systems (VCS) are sometimes used to
address some of these problems. By having a particular ver-
sion ID for the software used for an article’s experimental
results, reviewers and readers can have access to the same
codebase [3]. However, availability of the source code does

not guarantee reproducibility [4] since the code might not
compile and, even if compilable, the results might differ,
in which case the differences have to be analyzed in order
to corroborate the validity of the original experiment.

Additionally, reproducing experimental results when the
underlying hardware environment changes challenging
mainly due to the inability of predicting the effects of
such changes in the outcome of an experiment. A Virtual
Machine (VM) can be used to partially address this issue
but the overheads associated in terms of performance (the
hypervisor “tax”) and management (creating, storing and
transferring them) can be high and, in some fields of
Computer Science such as Computer Systems research,
cannot be accounted easily [5].

Container technology [6] is currently employed as a way of
reducing the complexity of software deployment and porta-
bility of applications in cloud computing infrastructure.
Arguably, containers have taken the role that package
management tools had in the past, where they were used
to control upgrades and keep track of change in the
dependencies of an application [7]. In this work, we make
the case for containers as a way of tackling some of the
reproducibility problems in Computer Systems research.
Specifically, we propose to use the resource accounting and
limiting components of OS-level virtualization as a basis
for creating execution profiles of experiments that can be
associated with results, so that these can subsequently be
analyzed when an experiment is evaluated. In order to
reduce the problem space, we focus to local and distributed
storage systems in various forms (e.g., local file systems,
distributed file systems, key-value stores, and related data-
storage engines) since this is one of the most important
areas underlying cloud computing and big-data processing,
as well as our area of expertise.

The rest of this paper is organized as follows. We first
describe the distinct levels of reproducibility that can be
associated with scientific claims in systems research and
give concrete examples in the area of storage systems
(section II). We then analyze salient features of container

SAND2015-0271C

1

technology that are relevant in the evaluation of exper-
iments and introduce what in our view is missing in
order to make containers a useful reproducibility tool for
storage systems research (section III). We then follow with
a discussion about the benefits and limitations of using
containers in other areas of experimental systems research
(section IV). We finally discuss related work (section V)
and conclude (section VI).

II. Experimental Evaluation of Computer
Systems Research

An experiment in systems research is composed by a
triplet of (1) workload, (2) a specific system where the
workload runs and (3) results from a particular execution.
Respective to this order is the complexity associated to
the evaluation of an experiment: obtaining the exact same
results is more difficult than just getting access to the
original workload. Thus, we can define a taxonomy to
characterize the reproducibility of experiments:

1. Workload Reproducibility. We have access to the
original code and the particular workload that was
used to obtain the original experimental results.

2. System Reproducibility. We have access to hardware
and software resources that resemble the original
dependencies.

3. Results Reproducibility. The results of the re-
execution of an experiment are valid with respect
to the original.

In storage systems research, workload reproducibility is
achieved by getting access to the configuration of the
benchmarking tool that defines the IO patterns of the ex-
periment. For example, if an experiment uses the Flexible
IO Tester1 (FIO), then the workload is defined by the FIO
input file.

System reproducibility can be divided in software and
hardware. The former corresponds to the entire software
stack from the firmware/kernel up to the libraries used
by an experiment, whereas the latter comprises the set
of hardware devices involved in the experiment such as
specific the CPU model, storage drives or network cards
that an experiment ran on.

Reproducing results does not necessarily imply the regen-
eration of the exact same measurements, instead it entails
validating the results by checking how close (in shape or
trends) to the original experiment they are. Given this,
evaluating an experiment can be a subjective task. We
propose metrics within the domain of storage systems in
terms of resource utilization, specifically memory, CPU,
and bandwidth, as a way of having objective metrics that
do not give rise to ambiguity while comparing results.

1https://github.com/axboe/fio

III. Containers For Reproducible Systems
Research

Current implementations of OS-level virtualization (e.g.
LXC2 or OpenVZ3) include an accounting component
that keeps track of the resource utilization of a container
over time. In general, this module can account for CPU,
memory, network and IO. By periodically checking and
recording these metrics while an experiment runs, we
can obtain a profile of an experiment’s execution. This
profile is the signature of the experiment on the particular
hardware that it runs on. The challenge is to recreate
results on distinct hardware. By having the performance
profile along with the performance profile of the under-
lying hardware, we can provide enough information for
researches to use while evaluating a particular result. In
concrete, we propose the following mapping methodology:

1. Obtain the profile of the original hardware
2. Obtain the resource utilization configuration of each

container
3. Obtain the profile of the new hardware
4. Generate a configuration for the new hardware based

on 2-4

The hardware profile is composed of static (e.g. the output
of lshw) and dynamic information (e.g. the execution of
micro-benchmarks to characterize the bare-metal perfor-
mance of a machine).

Fig. 1. A userpace process running alongside the container manager
(LXC) that periodically probes the statistics of containers in order
to obtain an execution profile.

Using LXC as an example, we show in Figure 1 a mon-
itoring daemon running in as a userspace process in the
host. This process periodically dumps the content of the
cgroups pseudo-filesystem in order to capture the runtime
metrics of the containers running in the system.

An alternative for structuring this information is by defin-
ing the following schema: (IMAGE ID | EXECUTION ID
| HW PROFILE ID | CGROUPS CONF | EXECUTION
PROFILE). Where IMAGE ID corresponds to the image
where the container was instantiated from. EXECUTION ID
corresponds to a particular execution of the experiment
with associated timestamps. HW PROFILE ID, as mentioned

2https://www.kernel.org/doc/Documentation/cgroups
3https://wiki.openvz.org/Proc/user_beancounters

https://github.com/axboe/fio
https://www.kernel.org/doc/Documentation/cgroups
https://wiki.openvz.org/Proc/user_beancounters

2

above, captures the bare-metal specification of the ma-
chine where the container executes.
The execution database can be located remotely in a
central repository that serves as the hub for managing
experiments in a distributed environment. For example,
this monitoring component could be implemented as a
submodule of CloudLab [8]. For experiments consisting of
multiple hosts and container images, orchestration tools
such as Mesos [9] can also be extended to incorporate this
profiling functionality.

IV. Discussion

We discuss other benefits and limitations of containeriza-
tion, as well as general reproducibility guidelines when
working with containers.

A. Cataloging Experiments

By storing profiles of experiments, we can create categories
of container metrics that describe in a high-level what the
experiment’s goal is, for example:

• In-memory only
• Storage intensive
• Network intensive
• CPU intensive
• 50% of caching effects

Assume there is a central repository of experiments such
as CloudLab [8]. A scientist wanting to test new ideas in
systems research can look for experiments in this database
by issuing queries with a particular category in mind.

B. Can All Systems Research Be Containerized?

Based on previous performance evaluations of container
technology [10–13] we can extrapolate the following condi-
tions for which experimental results will likely be affected
by the implementation of the underlying OS-level virtual-
ization:

• Memory bandwidth is of significant importance (i.e. if
5% of performance will affect results).

• External storage drives can’t be used, thus having
the experiment perform I/O operations within the
filesystem namespace where the container is located.

• Network address translation (NAT) is required.
• Distinct experiments consolidated on the same host.
• For an experiment, containers with conflicting roles

need to be co-located in the same physical host
(e.g. two database instances on the same host).

• Kernel version can’t be frozen.

Any experiment for which any of the above applies should
be carefully examined since the effects of containerization
can affect the results. The design of the experiment should
explicitly account for these effects.

C. Other Lessons Learned So Far

We list some of the lessons that we have learned as part of
our experience in implementing experiments in containers:

• Version control the experiment’s code and its depen-
dencies, leveraging git subtrees/submodules (or alike)
to keep track of inter-dependencies between projects.
For example, if a git repository contains the definition
of a Dockerfile, make it a submodule of the main
project.

• Refer to the specific version ID that a paper’s results
were obtained from. Git’s tagging feature can also
be used to point to the version that contains the
codebase for an experiment (e.g. “sosp14”).

• When possible, add experimental results as part of
the commit that contains the codebase of an experi-
ment. In other words, try to make the experiment as
self-contained as possible, so that checking out that
particular version contains all the dependencies and
generated data.

• Keep a downloadable container image for the version
of the experiment codebase (e.g. use the docker reg-
istry and its automated build feature).

• Whenever possible, use CI technologies to ensure
that changes to the codebase don’t disrupt the repro-
ducibility of the experiment.

• Obtain a profile of the hardware used (eg. making use
of tools such as SoSReport4), as well as the resource
configuration of every container and publish these as
part of the experimental results (i.e. add it to the
commit that a paper’s results are based on).

V. Related Work

The challenging task of evaluating experimental results in
applied computer science has been long recognized [14–
16]. This issue has recently received a significant amount
of attention from the computational research community
[1,17–21], where the focus is more on numerical repro-
ducibility rather than performance evaluation. Similarly,
efforts such as The Recomputation Manifesto [22] and the
Software Sustainability Institute [23] have reproducibility
as a central part of their endeavour but leave runtime
performance as a secondary problem. In systems research,
runtime performance is the subject of study, thus we need
to look at it as a primary issue. By obtaining profiles of
executions and making them part of the results, we allow
researchers to validate experiments with performance in
mind.

In [4], the authors took 613 articles published in 13 top-
tier systems research conferences and found that 25% of
the articles are reproducible (under their reproducibility
criteria). The authors did not analyze performance. In
our case, we are interested not only in being able to

4https://www.github.com/sosreport/sos

https://www.github.com/sosreport/sos

3

rebuild binaries and run them but also in evaluating the
performance characteristics of the results.

Containers, and specifically docker, have been the sub-
ject of recent efforts that try to alleviate some of the
reproducibility problems in data science [24]. Existing
tools such as Reprozip [25] package an experiment in a
container without having to initially implement it in one
(i.e. automates the creation of a container from an “non-
containerized” environment). Our work is complementary
in the sense that we look at the conditions in which
the experiment can be validated in terms of performance
behavior if it runs within a container.

VI. Conclusion

In this paper we have presented our proposal for com-
plementing container management infrastructure to cap-
ture execution profiles with the purpose of making these
available to experimental research reviewers and readers.
We are in the process of testing this ideas with concrete
published papers in several areas of systems research.

Acknowledgements: This work was partially supported
by NSF grant … We wish to thank …

VII. References

[1] J. Freire, P. Bonnet, and D. Shasha, “Computa-
tional reproducibility: State-of-the-art, challenges, and
database research opportunities,” Proceedings of the
2012 ACM SIGMOD international conference on man-
agement of data, New York, NY, USA: ACM, 2012, pp.
593–596.

[2] D.L. Donoho, A. Maleki, I.U. Rahman, M. Shahram,
and V. Stodden, “Reproducible research in computa-
tional harmonic analysis,” Computing in Science &
Engineering, vol. 11, Jan. 2009, pp. 8–18.

[3] C.T. Brown, “How we make our papers replica-
ble,” 2014. Available at: http://ivory.idyll.org/blog/
2014-our-paper-process.html.

[4] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran,
Z. Shi, and A. Warren, Measuring reproducibility in
computer systems research, Tucson, Arizona, United
States: University of Arizona, 2014.

[5] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Fin-
layson, J. Herne, and J.N. Matthews, “Xen and the
art of repeated research,” Proceedings of the annual
conference on USENIX annual technical conference,
Berkeley, CA, USA: USENIX Association, 2004, pp.
47–47.

[6] S. Soltesz, H. Pötzl, M.E. Fiuczynski, A. Bavier,
and L. Peterson, “Container-based operating system
virtualization: A scalable, high-performance alterna-
tive to hypervisors,” Proceedings of the 2Nd ACM

SIGOPS/EuroSys european conference on computer
systems 2007, New York, NY, USA: ACM, 2007, pp.
275–287.

[7] R. Di Cosmo, S. Zacchiroli, and P. Trezentos, “Pack-
age upgrades in FOSS distributions: Details and chal-
lenges,” Proceedings of the 1st international workshop
on hot topics in software upgrades, New York, NY, USA:
ACM, 2008, pp. 7:1–7:5.

[8] R. Ricci and E. Eide, “Introducing CloudLab: Scientific
infrastructure for advancing cloud architecturesand ap-
plications,”;login: vol. 39, Dec. 2014, pp. 36–38.

[9] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A.D. Joseph, R. Katz, S. Shenker, and I. Stoica,
“Mesos: A platform for fine-grained resource sharing
in the data center,” Proceedings of the 8th USENIX
conference on networked systems design and implemen-
tation, Berkeley, CA, USA: USENIX Association, 2011,
pp. 295–308.

[10] M. Xavier, M. Neves, F. Rossi, T. Ferreto, T. Lange,
and C. De Rose, “Performance evaluation of container-
based virtualization for high performance computing
environments,” 2013 21st euromicro international con-
ference on parallel, distributed and network-based pro-
cessing (PDP), 2013, pp. 233–240.

[11] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio,
“An updated performance comparison of virtual ma-
chines and linux containers,” technology, vol. 28, 2014,
p. 32.

[12] M. Xavier, M. Veiga Neves, and C. Fonticielha de
Rose, “A performance comparison of container-based
virtualization systems for MapReduce clusters,” 2014
22nd euromicro international conference on parallel,
distributed and network-based processing (PDP), 2014,
pp. 299–306.

[13] X. Tang, Z. Zhang, M. Wang, Y. Wang, Q. Feng,
and J. Han, “Performance evaluation of light-weighted
virtualization for PaaS in clouds,” Algorithms and ar-
chitectures for parallel processing, X.-h. Sun, W. Qu,
I. Stojmenovic, W. Zhou, Z. Li, H. Guo, G. Min, T.
Yang, Y. Wu, and L. Liu, eds., Springer International
Publishing, 2014, pp. 415–428.

[14] J.P. Ignizio, “On the establishment of standards for
comparing algorithm performance,” Interfaces, vol. 2,
Nov. 1971, pp. 8–11.

[15] J.P. Ignizio, “Validating claims for algorithms pro-
posed for publication,” Operations Research, vol. 21,
May. 1973, pp. 852–854.

[16] H. Crowder, R.S. Dembo, and J.M. Mulvey, “On re-
porting computational experiments with mathematical
software,” ACM Trans. Math. Softw., vol. 5, Jun. 1979,
pp. 193–203.

http://ivory.idyll.org/blog/2014-our-paper-process.html
http://ivory.idyll.org/blog/2014-our-paper-process.html

4

[17] J. Freire, D. Koop, E. Santos, and C. Silva, “Prove-
nance for computational tasks: A survey,” Computing
in Science Engineering, vol. 10, May. 2008, pp. 11–21.

[18] V. Stodden, F. Leisch, and R.D. Peng, Implementing
reproducible research, CRC Press, 2014.

[19] C. Neylon, J. Aerts, C.T. Brown, S.J. Coles, L. Hatton,
D. Lemire, K.J. Millman, P. Murray-Rust, F. Perez,
N. Saunders, N. Shah, A. Smith, G. Varoquaux, and
E. Willighagen, “Changing computational research:
The challenges ahead,” Source Code for Biology and
Medicine, vol. 7, Dec. 2012, pp. 1–2.

[20] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance
in databases: Why, how, and where,” Found. Trends
databases, vol. 1, Apr. 2009, pp. 379–474.

[21] R. LeVeqije, I. Mitchell, and V. Stodden, “Repro-
ducible research for scientific computing: Tools and
strategies for changing the culture,” Computing in
Science Engineering, vol. 14, Jul. 2012, pp. 13–17.

[22] I.P. Gent, “The recomputation manifesto,”
arXiv:1304.3674 [cs], Apr. 2013.

[23] S. Crouch, N. Hong, S. Hettrick, M. Jackson, A.
Pawlik, S. Sufi, L. Carr, D. De Roure, C. Goble,
and M. Parsons, “The software sustainability institute:
Changing research software attitudes and practices,”
Computing in Science Engineering, vol. 15, Nov. 2013,
pp. 74–80.

[24] C. Boettiger, “An introduction to docker for repro-
ducible research, with examples from the r environ-
ment,” arXiv:1410.0846 [cs], Oct. 2014.

[25] F. Chirigati, D. Shasha, and J. Freire, “ReproZip: Us-
ing provenance to support computational reproducibil-
ity,” Proceedings of the 5th USENIX conference on
theory and practice of provenance, Berkeley, CA, USA:
USENIX Association, 2013, pp. 1–1.

	Introduction
	Experimental Evaluation of Computer Systems Research
	Containers For Reproducible Systems Research
	Discussion
	Cataloging Experiments
	Can All Systems Research Be Containerized?
	Other Lessons Learned So Far

	Related Work
	Conclusion
	References

