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Project Goals ) e,

= One year internal R&D effort, 10/2013-9/2014

" Project goals:

= |dentify tracking algorithms that scale well to large numbers of targets
(e.g. 100’s — 1000’s of simultaneous tracks)

= |dentify high-performance computing architectures for large-scale
tracking

= Quantify the impact of target phenomenology and sensor
characteristics on vehicle detection and tracking in an urban
environment
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Evaluation Metrics )

Y. FP(t)+FN(t)+IDS(t)
Zt Ntruth(t)
= Mostly Tracked (MT): Percentage of targets that are tracked for more
than 80% of its detections regardless of identity switches

= Multi Object Tracking Accuracy (MOTA): 1 —

= Mostly Lost (MT): Percentage of targets that are not tracked for more
than 20% of its detections regardless of identity switches

= Mostly Singly Tracked (MST): Similar to MT, accounting for identity
switches (ie, 80% of detections are followed by a single track)

=  Mostly Singly Lost (MSL): Similar to ML, accounting for identity switches

= False Positives: The number of tracked observations that were not true
detections

= False Negatives: The number of true detections that were not associated
with a track

= |dentity Switches: The number of times a tracker switches between two
ground-truth targets



Data Sets ) p

= Algorithms were evaluated with the following data sets:
= Video from Sandia Peak (limited truth data)

= SUMO vehicle simulator (Socorro, NM data set with ~780 vehicles,
10Hz data, 6000 samples)
= Simulated intensity (based on heading)
= Simulated vehicle color (based on distribution of vehicle colors)

= AFRL UAV data (truth data available)
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Tracking Algorithms - PMHT ) .

" Probabilistic Multi-Hypothesis Tracker (PMHT) was the initial
approach
= Probabilistic detection to track association
= Scales well to large numbers of targets
= Batch-processing algorithm

= MATLAB simulations of the algorithm identified the following
concerns:
= Sensitivity to track initial conditions (e.g. impacts convergence)

= Poor convergence
= Lack of convergence, e.g. settles on false track

= Missed convergence, e.g. multiple tracks converge to the same track,
others missed altogether
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Tracking Algorithms - PMHT ) .
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Tracking Algorithms - PMHT ) .

"= There are some potential modifications to “fix” the PMHT

= Remove a track once it has converged
= Preprocessing to identify better initial conditions

= “PMHT: Problems and Some Solutions” by Peter Willet, Yanhua Ruan,
and Roy Streit go through a list of problems and potential solutions.
Also make the statement: “The probabilistic multihypothesis tracker
(PMHT) is a target tracking algorithm of considerable theoretical
elegance. In practice, its performance turns out to be at best similar to
that of the probabilistic data association filter (PDAF); and since the
implementation of the PDAF is less intense numerically the PMHT has
been having a hard time finding acceptance.”

= Based on our experience, and the comments of Peter Willet,
Yanhua Ruan, and Roy Streit, we concluded that PMHT is not
a viable solution. (Roy Streit invented the PMHT)
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Sandia

RANSAC: Random Sample Consensus$t .

u RANSAC video image
Input: a set of measurements

Randomly sample n measurements
Fit the n measurements to the model’s free parameters
Calculate how many measurements are inliers of the model

s wibhe

If an insufficient number of inliers, repeat at 2, if a sufficient
number of inliers, terminate.

m Sequential RANSAC video image

6. Remove all inliers in the consensus set, repeat from 1.

= Sequential RANSAC with measurement noise & missed
deteCtionS video image
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RANSAC: Random Sample Consensus$t .

= RANSAC parameters

®» Error tolerance: chosen based on measurement errors

= Max iterations: chosen based on number of measurements
= |nliers required: chosen based on gross errors (false positives)

= RANSAC also requires a model to be specified

= Examples: constant position, constant velocity, constant acceleration, ...

RANSAC (sequential)
error tol:0.1, max i:229, inliers requiered:05

u A ConSta nt VeIOCity mOdel Cannot 10 sets found:02, i:000, inliers found:00

generally describe a constant of
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RANSAC: Random Sample Consensus$t .

= Some large scale tracking applications are not constant
position / velocity / acceleration / jerk / ...
= e.g.carsdriving in a city

= More advanced dynamic models (e.g. a Dubin’s vehicle) require the
input to be known

= The input (e.g. desired turn rate, desired velocity) cannot be directly
measured

= Human drivers decide when to stop/start/accelerate/decelerate

= Small segments of a car’s trajectories can be approximated as
constant, then potentially connected at a higher level.

= This issue exists for parallel RANSAC implementations as well
(multiRANSAC & Recursive RANSAC)
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Proximity Tracker )

= Concern:
= Vehicles follow a nonlinear motion model
= Tracking methods typically employ a linear model for tracking

" Approach:
= Form pairs of detections based on nearest neighbor
= Merge points to form tracks based on tolerances for velocity
= Combine tracks

= Eliminate obviously poor links
= Span of 5 frames with max velocity 3.5
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Pairing Details ) e,

= Match pairs of detections based on proximity
= Within the expected maximum velocity (3.5)
= Within a range of frames (5)

= Find the closest two, because of the possibility of false alarms or other
close vehicles
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Merge Details ) e,

= Maintain active tracks
= |nitial pairs are the initial tracks if they are linked to a future frame (3 points)
= Subsequent pairs are merged with tracks or start new ones
= Tracks are terminated if no detections after specified number of frames (5)

= Tracklets are merged based on velocity (2.5) and direction (1.6)

(tolerances) s
= For higher velocities direction is useful E a il
= For low velocity direction is not very useful |
= Below lower limit not used (0.6) ol
= Between limits use scaled weighting -l _
= Above upper limit (0.8) use full tolerance R

= Need to resolve tracks pointing to the same detection
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Socorro Tracks )
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Good Track Example )
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Benchmark Results ) e,

= mota=0.7308

" mt =0.9117

= ml =0.0128

= mst =0.2394

= msl =0.1575

= gt =781

= total fp=0

= total fn=96598

= total ids=304338 (High value)
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Tracking Issues: Stopped Vehicles @

Truth Tracks
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Algorithm had breaks when venhicles stopped and restarted
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Long breaks caused breaks
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Comments rh)

= Algorithm was able to track most of the vehicles

= There are issues with this data set that caused tracks to be
broken
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Tracklet Influence from Factor Graphs ~ [@&z.

"= Tracklet-based method with a sliding window

= Use a factor graph to model appearance and motion
dynamics

= MAP inference on the factor graph yields tracklets

= Combine tracklets over sliding windows to form persistent
tracks

J. Prokaj, M. Duchaineau, G. Medioni, “Inferring Tracklets for Multi-Object Tracking”, Workshop of Aerial Video
Processing Joint w/ CVPR, 2011



High Level Algorithm over Sliding Window [z,

Construct
Networks

Infer
Tracklets




High Level Algorithm over Sliding Window [z,
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High Level Algorithm over Sliding Window [z,

— 1. Gather detections in window of length T

Construct 2. Form a Bayesian network rooted at each
Networks detection in the first frame of the window

— 3. Find MPE for all networks (get MAP estimate
for each detection)

Infer
Tracklets




High Level Algorithm over Sliding Window [z,

— 1. Gather detections in window of length T

Construct 2. Form a Bayesian network rooted at each
Networks detection in the first frame of the window

— 3. Find MPE for all networks (get MAP estimate
for each detection)

Infer
Tracklets -




High Level Algorithm over Sliding Window [z,

— 1. Gather detections in window of length T

Construct 2. Form a Bayesian network rooted at each
Networks detection in the first frame of the window

— 3. Find MPE for all networks (get MAP estimate
for each detection)

Infer — 4. Discover tracklets from MPE of networks

Tracklets — 5. Combine and prune tracklets within window

__ 6. Combine tracklets from current window with
previous windows




Construct a Bayes Network rooted at each
detection in the first frame of window
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Construct a Bayes Network rooted at each
detection in the first frame of window
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Construct a Bayes Network rooted at each
detection in the first frame of window
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Construct a Bayes Network rooted at each
detection in the first frame of window
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Construct a Bayes Network rooted at each
detection in the first frame of window
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Bayesian Network Formulation h .

= Bayesian network of binary variables, one for each
detection

* True = detection is valid (associated with root of network)
* False = detection is invalid (not associated with root of

network)
= Edge probability tables based on appearance and motion
dynamics
@ Frame 1
MPE (Most Probable Explanation) @j SRS Fame?

estimate finds the most likely state of all

variables
$ B
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Bayesian Network Edge Probabilities® .

Transition CPT
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Bayesian Network Edge Probabilities® .

Transition CPT
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Bayesian Network Edge Probabilities® .

Transition CPT
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Bayesian Network Edge Probabilities® .

Transition CPT
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Bayesian Network = Factor Graph @&

e

\ Cot=1

O’ﬂ y f_" ry i+1)
\ p(iyi Lyt vk D = Hp(yl i !

Now the detection network becomes a Factor Graph

Can solve MPE with Max-Product message passing algorithm




Inferring Tracklets from Factor Graph @)
Factor Graph

0{0}::‘:‘




Inferring Tracklets from Factor Graph @)=

Laboratories

MPE Result




Inferring Tracklets from Factor Graph @)=

Laboratories

Tracklet Discovery




Inferring Tracklets from Factor Graph @)
Tracklet Result




Prune and Combine Tracklets ) e,

= Delete any tracklets that don’t satisfy pruning conditions
= Minimum length
= Minimum smoothness
= Maximum acceleration ‘i:)'@ O

o

= Combine current tracklets with tracklets from previous
window




Results
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Factor Graph Tracklet Socorro
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mota = 0.6275
mt = 0.4191
ml = 0.0083
mst = 0.1120
msl =0.2739
gt =241
total fp=0

total fn=17746
total ids = 8314



Results )

Socorro Full Dataset

mota = 0.6200

mt = 0.3188

ml = 0.0013

mst = 0.0282

msl| = 0.7106

gt =781

total fp=0
total fn = 442151
total ids = 123769



Results
AFRL WPAFB Highway ROI

Factor Graph Tracklet ROl 2
frame index:00001, time stamp:001.0
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mota = 0.7041
mt = 0.6118
ml = 0.0824
mst = 0.5529
msl = 0.1059
gt=85
total fp =23
total fn =570
total ids =182



Algorithm Pros and Cons )

" Pros

= |ncorporates both appearance and motion in same framework
= Current results only utilize motion

= Elegantly handles merged detections
= Very parallelizable

= Cons

= Solving factor graph MPE problem is not straightforward

= Requires tuning of pruning parameters (length, smoothness, and
acceleration thresholds) and motion parameters

= Future
= |ncorporate appearance

= Combination with regression tracker to maintain track through
slowdowns and stops (CVPR ‘14)



Summary — Relative Performance

= Relative performance on Socorro data set:

PROXIMITY TRACKER

mota = 0.7308
mt =0.9117
ml =0.0128
mst =0.2394
msl = 0.1575
gt =781
total fp=0

total fn=96598
total_ids=304338 (High
value)

TRACKLETS FROM
FACTOR GRAPHS
mota = 0.6200

mt = 0.3188
ml = 0.0013
mst = 0.0282
msl = 0.7106
gt =781
total fp =0

total fn =442151
total _ids = 123769

RANSAC
mota = TBD
mt =TBD

ml =TBD
mst = TBD
ms|l = TBD

gt =TBD
total fp=TBD
total fn=TBD
total ids=TBD

Sandia
National _
Laboratories
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Backup ) e,
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Construct a Bayes Network rooted at each ) e,
detection in the first frame of window

Frame 1

Frame 2

... é@ Frame t




ROI 2 (highway driving with turn) @
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ROI 2 (highway driving with turn) @




ROI 3 (intersection) ) &,
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ROI 3
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Results

Factor Graph Tracklet ROl 3
frame index:00001, time stamp:001.0
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mota = 0.5531
mt = 0.3520

ml = 0.1920
mst = 0.2800
msl = 0.3200
gt =125
total fp=0
total fn = 2692
total ids = 298




High Level Algorithm over Sliding Window [z,

In each window:

1. Construct Bayesian networks of detections and find MAP
estimates

2. Infer tracklets from MAP estimates



