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Abstract—This paper outlines the calculations required to
estimate the maximum potential revenue from participation in
arbitrage and regulation in day-ahead markets using linear
programming. Then, we use historical Electricity Reliability
Council of Texas (ERCOT) data from 2011-2013 to evaluate the
maximum potential revenue from a hypothetical 32 MWh, 8 MW
system. We investigate the maximum potential revenue from two
different scenarios: arbitrage only and arbitrage combined with
regulation. This analysis was performed for each load zone over
the same period to show the impact of location and to identify
trends in the opportunities for energy storage. Our analysis shows
that, with perfect foresight, participation in the regulation market
would have produced more than twice the revenue compared to
arbitrage in the ERCOT market in 2011-2013. Over the last
three years, there has been a significant decrease in the potential
revenue for an energy storage system. We also quantify the
impact of location on potential revenue.

I. INTRODUCTION

With the advent of modern power electronics and an in-
creased demand for renewable generation like wind and solar,
there has been a renewed interest in grid-scale electricity
storage devices. Potential uses of electricity storage include
firming of variable renewable generation (e.g. wind and solar),
shifting renewable energy from low demand periods to high
demand periods, and increased grid reliability (e.g. voltage
support and frequency regulation). Potential societal benefits
include reduced fossil fuel use and reduced emissions. A
complete discussion of potential benefits appears in [1], [2].

Regardless of the application or benefit, in deregulated
electricity markets storage is ultimately only as valuable as
the revenue stream generated by the storage device. This
revenue stream comes from participating in markets for energy
and ancillary services (e.g. frequency regulation, operating
and contingency reserves) [3]. In regulated regions, vertically
integrated utilities must invest in technologies that provide
reliable electricity to the consumer at the lowest cost. In this
scenario, electricity storage must be compared to the cost of
competitive technologies that provide the capabilities required
by the utility. An additional source of revenue is government
incentives designed to guide future investment decisions based
on the public good.

The two potential revenue streams considered in this paper
are energy arbitrage and participation in the regulation market.
Arbitrage involves purchasing (charging) energy when prices
are low, e.g. during times of low demand, and selling (dis-
charging) energy when prices are high, e.g. during times of
peak demand.

Regulation up (RegUp) and down (RegDown), sometimes
combined into a single regulation product, are ancillary ser-
vices designed to maintain frequency stability. If the load
increases while generation is held constant, the frequency will
drop. In order to maintain tight tolerances on the frequency,
generation must be constantly dithered so that load and
generation are equal. Depending on the market, a balancing
authority or vertically integrated utility will control generation
on a second by second basis to track the load. The balancing
authority must reserve enough regulation capacity to meet
expected variations in load. Current practice is to reimburse
regulation providers based mainly on capacity reserved along
with compensation for any electricity that is purchased or sold.

Motivated by FERC order 755 [4], the industry is evolving
towards “pay for performance” where compensation is based
on the amount of work performed by a device, i.e., payment
must reflect the device’s accuracy when following a regulation
signal. ERCOT, though not under the jurisdiction of FERC,
is contemplating the introduction of a the Fast Responding
Regulation Service (FRRS) in response to order 755 [5], [6].
A summary of the results of the pilot program are found at
[7]. The analysis in this paper is based on the current renu-
meration methodology in ERCOT, but can be easily modified
to accommodate compensation schemes arising from FERC
order 755.

This paper outlines a framework for calculating the maxi-
mum revenue from an electricity storage system that partici-
pates in a day-ahead market, i.e., energy arbitrage, and in a
regulation market. The approach is designed to calculate the
“best-case” scenario using historical data to simulate operation
with perfect day-ahead energy and reserve price forecasts.
This “best-case” scenario calculation is critical because it
provides an upper bound on the revenue that can be collected
by a storage facility and can be used to score other trading
strategies. Hence, it is useful in estimating an upper bound for
the value of an storage facility.

Our approach formulates the revenue maximization problem
as a linear program. The energy storage model and optimiza-
tion formulation builds on the results in [8], where the authors
present a stochastic framework for the valuation of electricity
storage. Revenue from energy arbitrage and the regulation
ancillary services market are only two of the potential benefits
of electricity storage devices. A complete review of potential
revenue streams is outlined in [1], [2]. An early summary of
potential arbitrage revenue in various markets is found in [9].
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TABLE I
STORAGE PARAMETERS

Symbol Storage Parameter

τ Time period length (e.g. one hour).
T Number of time periods in optimization.
q̄D Maximum energy sold in a single period (MWh).
q̄R Maximum energy bought in a single period (MWh).
S̄ Maximum energy storage capacity (MWh).
γS Storage efficiency over one period (%).
γC Conversion efficiency (%).

This report is organized as follows: Section II presents
the energy storage model that is used throughout this paper.
Section III provides the revenue maximization problem for-
mulation. Section IV presents results for a hypothetical 32
MWh, 8 MW energy storage system located in each load zone.
Concluding remarks are found in Section V.

II. ELECTRICITY STORAGE MODEL

Common energy storage mechanisms include mechanical,
electrical, chemical, and thermal [1]. Examples of mechani-
cal storage mechanisms are pumped hydro, compressed air,
and flywheels. Superconducting magnetic energy storage and
capacitors are examples of electrical storage mechanisms.
Batteries are the most common type of chemical energy
storage. The most prevalent form of thermal storage is ice.

The key parameters that characterize a storage device are:
1) Power Rating: [MW] The maximum power of the stor-

age device (charge and discharge).
2) Energy Capacity: [Joules or MWh] The amount of

energy that can be stored.
3) Efficiency: [%] The ratio of the energy discharged by

the storage system divided by the energy input into the storage
system. Efficiency can be broken down into two components:
conversion efficiency, γC , and storage efficiency, γS . Conver-
sion efficiency describes the losses encountered when input
power is stored in the system. Storage efficiency describes the
time-based losses in a storage system.

4) Ramp Rate: [MW/min] the ramp rate describes how
quickly the storage device can change its power level.

For the analysis in this paper, we are concerned with the
quantity of energy charged or discharged during each time
period for each potential activity (e.g. arbitrage or regulation).
For arbitrage, the device will maintain a constant output power
over each time period. For regulation, it is assumed that the
device is capable of tracking the regulation signal. We also
assume the ramping time is negligible (i.e., energy storage
ramp rates are high). If the ramp rate is slow compared to the
time period this approximation does not hold and a model that
incorporates ramp rate must be employed.

The parameters in Table I are those involved in storage
system constraints. Thus, the maximum quantity that can be
sold/discharged in a single period is equivalent to:

q̄D = (Maximum discharge power level)× τ (1)

Likewise, the maximum quantity that can be bought/recharged
in a single period is equivalent to

q̄R = (Maximum recharge power level)× τ (2)

For a storage device that provides only one service there
are two decision variables in the optimization: the energy
sold qDt (discharged) at time t, and the energy purchased qRt
(recharged) at time t in MWh. They are assumed to be non-
negative quantities. In this case, the state of charge (SOC) St

at any time t is given by:

St = γsSt−1 + γcq
R
t − qDt ∀t ∈ T (3)

which states that the SOC at time t is the SOC at time t− 1
adjusted for storage losses plus any net charging (adjusted
for conversion losses) minus the quantity discharged during t.
Additional constraints include:

0 ≤St ≤ S̄, ∀ t ∈ T (4)

0 ≤qRt ≤ q̄R, ∀ t ∈ T (5)

0 ≤qDt ≤ q̄D, ∀ t ∈ T (6)

For a device that is participating in arbitrage and the
regulation market, a few additional parameters must be added
into the storage device model. Additional decision variables to
handle separate RegUp and RegDown markets are: the energy
offered into the RegUp market qRU

t at time t, and the energy
offered into the RegDown market qRD

t at time t in MWh.
These decision variables are assumed to be non-negative
quantities. In regulation markets, there is no guarantee that
the capacity reserved will actually be deployed. Fortunately,
since frequency regulation is concerned with the short-term
balance of load and generation to maintain system frequency,
actual regulation signals are usually zero mean over longer
time periods. This time period varies depending on the market
characteristics. In CAISO, the regulation deployed can have
a non-zero mean for up to several hours while the PJM
regulation need is zero mean over most 1-hour intervals.

In order to quantify the change in SOC from participation
in the regulation market, it is useful to define the RegUp
efficiency γru as the fraction of the RegUp reserve capacity
that is actually deployed in real-time (on average). Similarly,
the RegDown efficiency γrd is the fraction of the RegDown
reserve capacity that is actually deployed in real-time (on
average). Another assumption is that the regulation signal
is allocated equally among participating regulation resources,
e.g. over any given time period the regulation signal for each
resource is proportional to the total regulation need. The scale
factor is the quantity offer by that resource divided by the
total quantity procured. Thus, the SOC at time t for a device
participating in arbitrage and regulation is given by:

St = γsSt−1 + γcq
R
t − qDt + γcγrdq

RD
t − γruqRU

t (7)



And it is complemented by the following constraints:

0 ≤St ≤ S̄, ∀ t ∈ T (8)

0 ≤qRt + qRD
t ≤ q̄R, ∀ t ∈ T (9)

0 ≤qDt + qRU
t ≤ q̄D, ∀ t ∈ T (10)

Participating in RegDown provides the opportunity to increase
the SOC subject to the RegDown efficiency and the conversion
efficiency. Participation in RegUp provides the opportunity
to decrease the SOC subject to the RegUp efficiency. The
quantities allocated to RegUp and RegDown reduce the max-
imum potential quantities allocated to arbitrage subject to the
charge/discharge constraints of the device.

III. MAXIMIZING STORAGE REVENUE

The problem of maximizing revenue from an energy storage
device is naturally formulated as an LP optimization problem
[10]. Next, the energy storage model presented above is
combined with a cost function to maximize the revenue in
two different scenarios: arbitrage and arbitrage combined with
participation in the regulation market.

A. Arbitrage

The objective function when the storage unit participates
only in arbitrage is given by:

max

T∑
t=1

[
(Pt − Cd)qDt − (Pt + Cr)qRt

]
e−rt (11)

where Pt is the price of electricity (LMP) at time t in
($/MWh), Cd is the cost of discharging at time t in ($/MWh),
Cr is the cost of recharging at time t in ($/MWh) and r is
the interest rate over one time period. This model assumes
continuous compounding. For this analysis, the cost terms are
assumed to be 0. If there are costs associated with charging
or discharging (e.g. the system has a limited cycle life so the
cost of charging or discharging can be quantified), this term
may be non-zero.

This objective function in combination with the storage
energy conservation model presented in (3) and variables
bounds presented in (4)-(6) form the optimization model that
maximizes revenue for the energy storage.

B. Arbitrage and Regulation

The objective function when the storage device participates
in arbitrage and regulation is given by:

max

T∑
t=1

[(Pt − Cd)qDt + (PRU
t + γru(Pt − Cd))qRU

t +

(PRD
t − γrd(Pt + Cr))qRD

t − (Pt + Cr)qRt ]e−rt (12)

where PRU
t is the price of RegUp at time t and PRD

t is the
price of RegDown at time t. In many areas, the net energy for
regulation is settled at the real-time price. This provides an
additional arbitrage opportunity between the day ahead price
and the real-time price. We assume that the price Pt represents
both, the regulation and energy prices in the day ahead and do

not take into account real-time revenue. While this does not
reflect the actual settlement process, it keeps the optimization
from incorporating any arbitrage between the day ahead and
the real-time market.

Constraints shown in (7)-(10) complete the optimization
problem for maximizing revenue from arbitrage and regu-
lation. The solution is the energy bought and sold at each
time step as well as the amount offered into the RegUp and
RegDown markets that maximizes the storage unit revenue.
For this analysis, we consider RegUp and RegDown as two
separate markets. When both types of RegUp and RegDown
are combined into a single product, the analysis is simplified.

When offering regulation services, some fraction of the
RegUp/RegDown offers are accepted. This is captured by
defining the RegUp efficiency γru and the RegDown efficiency
γrd. There are some constraints on γru and γrd that must
be observed, and are discussed in more detail in [11], [12].
Typically, the optimization solution is not sensitive to the
choice of γru and γrd, so the uncertainty in these parameters
does not significantly impact the accuracy of the results. A
sensitivity analysis is presented in [11].

The next section applies these optimization techniques to
estimate the maximum potential revenue for a hypothetical
32 MWh, 8 MW energy storage device at each load zone in
ERCOT using historical data from 2011-2013.

IV. RESULTS

The ERCOT day-ahead market for energy generates settle-
ment point prices (SPP’s) for each load zone, hub bus, and
resource node. A resource node is the electrical bus where
a physical generator is connected. A load zone consists of a
group of electrical buses that have been assigned to a load zone
for settlement purposes. A map illustrating the approximate
regions covered by each load zone is shown in Figure 1. A
hub bus is a group of electrical buses that have been assigned
to a hub (typically a 345 kV line). Hub buses are used for
trading purposes only. A list of the current hub buses and
load zones appears in Table II. This section presents results

TABLE II
SUMMARY OF ERCOT HUB BUSES AND LOAD ZONES

Hub Buses Load Zones
North 345 kV Hub North Load Zone
South 345 kV Hub South Load Zone
Houston 345 kV Hub Houston Load Zone
West 345 kV Hub West Load Zone
ERCOT Hub Average 345 kV Hub Rayburn (RAYBN) Load Zone
ERCOT Bus Average 345 kV Hub Lower Colorado River Authority

(LCRA) Load Zone
CPS Energy (CPS) Load Zone

(San Antonio)
Austin Energy (AEN) Load Zone

for every load zone for the following scenarios:
• arbitrage based on perfect knowledge: 2011, 2012, and

2013
• arbitrage and regulation based on perfect knowledge:

2011, 2012, and 2013
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Fig. 1. Illustration of ERCOT load zones.

Time (hours)
12AM 6AM 12PM 6PM 12PM

A
ve

ra
ge

 P
ric

e 
($

/M
W

h)

0

50

100

150

2011-2013 Average Hourly Locational Marginal Price ($/MWh)
ERCOT HB_BUSAVG Node

2011
2012
2013

Fig. 2. Average hourly LMP prices for the ERCOT hub bus average
(HB BUSAVG), day-ahead market, 2011-2013.

Financial data for the analysis was obtained from the ERCOT
website [13]. Average hourly LMP prices for 2011-2013 are
shown in Figure 2 for the hub bus average. The parameters for
a hypothetical energy storage system are shown in Table III.
These parameters are consistent with a state-of-the-art energy
storage facility and are loosely modeled after the ARRA
(American Reinvestment and Recovery Act) funded Tehachapi
Wind Energy Storage Plant in California.

TABLE III
ENERGY STORAGE SYSTEM PARAMETERS.

Parameter Value

q̄D 8 MWh
q̄R 8 MWh
S̄ 32 MWh
γS 1.0
γC 0.8
γru 0.5
γrd 0.5

A. Arbitrage with Perfect Knowledge

The arbitrage results for each load zone using perfect
knowledge for 2011-2013 data are summarized in Table IV.

The revenue was significantly higher for 2011, but this can
be largely attributed to two factors that significantly increased
energy prices. First, ice storms in February resulted in a loss
of generation and rolling blackouts that disrupted service and
resulted in a large price increase. Second, record heat over
the month of August, coupled with record load levels, yielded
extremely high wholesale prices. The larger diurnal swings in
2011, as shown in Figure 2, can be attributed to these two
events. It also should be noted that the location of the energy
storage system impacts maximum potential revenue. The West
load zone offered the most revenue opportunity, while the
remaining zones are roughly comparable. In all three years and
across all load zones, the system was charging or discharging
approximately 40 percent of the time to participate in energy
arbitrage (and idle the rest of the time).

TABLE IV
ARBITRAGE OPTIMIZATION RESULTS USING PERFECT KNOWLEDGE,

2011-2013.

Load Zone Year Revenue % Discharging % Charging

North
2011 $1,063,599.54 18.90% 23.62%
2012 $382,066.41 18.00% 22.50%
2013 $254,605.18 18.81% 23.52%

South
2011 $1,076,180.49 18.78% 23.47%
2012 $426,627.76 17.69% 22.11%
2013 $289,562.01 18.62% 23.28%

West
2011 $1,182,502.88 20.00% 25.00%
2012 $733,646.82 17.95% 22.44%
2013 $517,344.45 18.49% 23.11%

Houston
2011 $1,063,385.41 18.84% 23.56%
2012 $381,959.28 17.91% 22.38%
2013 $280,054.47 18.78% 23.48%

RAYBN
2011 $1,057,443.51 18.91% 23.63%
2012 $373,162.63 17.96% 22.45%
2013 $250,356.83 18.78% 23.48%

LCRA
2011 $1,055,417.81 18.89% 23.62%
2012 $449,793.75 17.97% 22.46%
2013 $276,481.46 18.84% 23.55%

CPS
2011 $1,061,561.72 18.82% 23.53%
2012 $391,876.86 17.99% 22.48%
2013 $287,515.07 18.89% 23.62%

AEN
2011 $1,043,716.52 18.76% 23.45%
2012 $368,224.91 17.92% 22.40%
2013 $289,537.70 18.84% 23.56%

B. Arbitrage and Regulation with Perfect Knowledge

The arbitrage and regulation results for all load zones using
perfect knowledge for 2011-2013 data are summarized in
Table V. Again, the revenue for 2011 was significantly higher
for the same reason discussed in the previous section (February
ice storm and August heat wave in 2011 increased energy and
ancillary service prices). In all three years across all regions,
the system was performing very little arbitrage (qD and qR

are both less than 3%) and participating in the regulation
market the majority of the time. This is consistent with results
observed in the CAISO market [11]. There is less differential
in maximum potential revenue over regions compared to the
arbitrage-only case. The West load zone still had the largest
potential revenue, but not by a significant margin. This is



due to the regulation services having a single price across
all of ERCOT at each time period in the day ahead market,
eliminating the impact of location on the regulation revenue
stream. Hence, differences in revenues can be attributed to the
arbitrage services only.

TABLE V
ARBITRAGE AND REGULATION OPTIMIZATION RESULTS USING PERFECT

KNOWLEDGE, 2011-2013.

Year Revenue % qD % qR % qRU % qRD

North Load Zone
2011 $2,370,777.09 0.11% 0.87% 69.63% 85.62%
2012 $933,260.45 0.11% 0.83% 63.59% 78.12%
2013 $843,543.43 0.10% 1.38% 62.77% 75.98%

South Load Zone
2011 $2,369,779.67 0.26% 0.99% 69.32% 85.36%
2012 $955,300.23 0.44% 0.94% 61.95% 76.67%
2013 $858,726.34 0.10% 1.35% 61.23% 74.11%

West Load Zone
2011 $2,438,594.42 0.010% 2.23% 69.01% 82.16%
2012 $1,163,443.68 1.86% 2.57% 51.25% 63.61%
2013 $1,007,779.09 0.98% 2.57% 54.16% 65.03%

Houston Load Zone
2011 $2,363,966.11 0.15% 0.85% 69.31% 85.37%
2012 $931,141.19 0.089% 0.78% 63.53% 78.09%
2013 $854,588.16 0.089% 1.30% 61.09% 73.99%

RAYBN Load Zone
2011 $2,367,663.02 0.11% 0.84% 69.71% 85.78%
2012 $928,295.59 0.11% 0.83% 63.73% 78.31%
2013 $840,455.24 0.10% 1.44% 62.92% 76.02%

LCRA Load Zone
2011 $2,362,665.58 0.17% 0.88% 69.24% 85.23%
2012 $982,249.28 0.61% 0.81% 61.34% 76.59%
2013 $853,824.74 0.10% 1.23% 61.40% 74.55%

CPS Load Zone
2011 $2,359,793.64 0.14% 0.87% 69.32% 85.31%
2012 $938,393.86 0.23% 0.84% 63.38% 78.14%
2013 $856,761.94 0.17% 1.43% 60.95% 73.77%

AEN Load Zone
2011 $2,355,535.66 0.14% 0.85% 69.73% 85.86%
2012 $925,236.23 0.10% 0.87% 64.26% 78.86%
2013 $862,277.62 0.12% 1.26% 60.38% 73.28%

V. CONCLUSION

In this paper we have outlined a linear programming op-
timization approach for estimating the maximum potential
revenue from an energy storage system participating in ar-
bitrage and the regulation market. If cost data is available, the
same approach can be used to estimate net revenue. Using
2011-2013 price data for the all ERCOT load zones (North,
South, West, Houston, RAYBN, LCRA, CPS, and AEN), we
calculated the maximum potential revenue from arbitrage and
arbitrage combined with regulation using perfect knowledge.
These estimates serve as an upper bound on revenue from the
two strategies. By looking at data from all load zones over
several years, we were able to identify several trends. First, the
increase in potential revenue in 2011 can largely be attributed
to ice storms in February and a heat wave in August which
resulted in price spikes for energy and ancillary services. The
potential revenue for 2012 and 2013 are on the same order of

magnitude and likely better represent a typical year. Location
has a significant effect on potential revenues from energy
arbitrage, with the West load zone offering the most potential.
When offering arbitrage and frequency regulation services,
the optimum strategy is to focus on frequency regulation.
Since there is one price for ancillary services in the ERCOT
day ahead market, and this is more profitable than arbitrage
alone, the impact of location is greatly reduced. The maximum
potential revenue in each load zone was roughly comparable,
with the West still offering slightly more opportunity.
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