
Distributed Graph Layout for
Scalable Small-world Network Analysis

George Slota
Computer Science and

Engineering
Pennsylvania State University

State College, PA
gslota@psu.edu

Kamesh Madduri
Computer Science and

Engineering
Pennsylvania State University

State College, PA
madduri@cse.psu.edu

Sivasankaran
Rajamanickam

Scalable Algorithms
Departement

Sandia National Laboratories
Albuquerque, NM

srajama@sandia.gov

ABSTRACT
The in-memory graph layout or organization has a consid-
erable impact on the time and energy efficiency of bulk-
synchronous distributed-memory graph computations (BSP
mode). It affects memory-hierarchical locality, inter-task
load balance, communication time, and overall memory uti-
lization. Graph layout could refer to partitioning or replica-
tion of vertex and edge arrays, selective replication of data
structures that hold meta-data, and reordering vertex and
edge identifiers. In this work, we present DGL, a fast, par-
allel, and memory-efficient distributed graph layout strat-
egy that is specifically designed for small-world networks
(low-diameter graphs with skewed vertex degree distribu-
tions). Label propagation based partitioning and a new
scalable BFS-based ordering are the main steps in the lay-
out strategy. We show that DGL layout can significantly
improve end-to-end performance of four challenging graph
analytics workloads: a parallel subgraph enumeration pro-
gram, tuned implementations of breadth-first search and
single-source shortest paths, and RDF3X-MPI, a distributed
SPARQL query processing engine. DGL improves the total
time for complex subgraph counting by 1.28× and RDF3X-
MPI query times by 1.05× for 16 parts, and the communi-
cation time for BFS and SSSP by 1.48× and 1.43×, respec-
tively, for 64 parts.

1. INTRODUCTION
Layouts of graphs and sparse matrices in distributed mem-
ory and shared memory have been well-studied for regular
graphs that arise in scientific computing domain. Various
partitioning methods, such as coordinate based partition-
ing [8,22], graph [3,31] and hypergraph partitioning [12] can
be used to partition the graphs between MPI ranks. In addi-
tion to partitioning, the actual ordering of vertex identifiers
can also have a significant impact on parallel performance of
graph algorithms [18,24]. Cuthill-McKee (CM) [20], Reverse

Cuthill-McKee (RCM), nested dissection [30], and Approx-
imate Minimum Degree (AMD) [2] orderings are a few ex-
amples of sparse matrix reordering strategies that were used
in the past. Several new open-source distributed-memory
graph processing frameworks have emerged in the past few
years (e.g., PowerGraph [25], Giraph [17], Trinity [41], PE-
GASUS [28]). The primary goal of these frameworks is to
analyze web crawls and online social networks, which are
low-diameter graphs with skewed vertex degree distribu-
tions. Most of these frameworks assume an initial topology-
agnostic vertex and edge partitioning. With these graphs in
mind, this paper attempts to answer the following questions:

1. Will the layout of the graphs impact the performance of
irregular, data-analytic frameworks ?

2. Can such a layout be computed in a scalable and efficient
fashion to be applicable in graph analytics ?

3. What kind of graph computations will be impacted by
the graph layouts and how ?

Using traditional layout strategies based on graph/hypergraph
partitioners and orderings for data layout of highly irregular
small-world graphs may not be ppropriate for the following
reasons:

1. Traditional partitioners and even some ordering meth-
ods, for example nested dissection, are heavyweight tools
that are expensive both in terms of memory usage and
time. They are appropriate when followed by even more
expensive linear solvers or when they can be computed
once and used for multiple solves. In contrast, graph ana-
lytic workloads are constantly evolving and each analytic
operations is typically much more cheaper than a linear
solver.

2. Previous ordering algorithms are designed for metrics ap-
propriate for linear solvers such as minimizing a band-
width [20] or minimizing the fill-in in a LU factoriza-
tion [2, 30]. In contrast, ordering methods that improve
the layouts in a shared memory context for small-world
graphs are needed.

3. The performance of distributed-memory graph algorithms
can be dependent on both local and global graph topol-
ogy. Global topology affects the number of parallel phases
and synchronization overhead, while local topological changes
impact per-phase load balance. Optimizing for aggregate
measures such as conductance or edge cut would ignore

SAND2015-0201C

local topology changes and may not account for dynamic
variations in per-phase execution.

Graph computations on highly irregular graphs require a
layout that depends on parallel partitioners and ordering
methods that are highly scalable for very large graphs. La-
bel propagation based partitioners are shown to be useful
for partitioning small-world graphs [34,44]. We utilize such
partitioning algorithms to compute the distributed memory
layout. Label propagation exploits the community structure
inherent in many real small-world graphs to quickly parti-
tion even multi-billion edge networks. Label propagation
also allows for optimization of various objectives under mul-
tiple constraints [44], which allows us to explore the impact
of these bjectives and constraints on total execution and
communication times for our various test analytics. In addi-
tion, we also introduce a breadth-first search based ordering
that is more scalable than other ordering schemes and suit-
able for small-world graphs in the shared-memory layout.
In case of distributed graph processing, we consider vari-
ous partitioning-ordering possibilities, a simultaneous global
partitioning and ordering of all vertices, and a local ordering
of vertices after the partitioning phase.

In short, we propose a “distributed-memory graph layout”
based on vertex partitioning using label propagation and a
BFS-based parallel ordering strategy. The proposed DGL
(Distributed Graph Layout) is a fast, memory-efficient, and
scalable graph layout strategy. We demonstrate the new
DGL layout scheme is about 10-12× times faster to com-
pute than METIS partitioning [30], and about 2.3× faster
to compute than RCM-based orderings. Throughout the pa-
per we use the term DGL to also refer our new partitioning
and ordering strategies depending on the context.

We demonstrate the impact of DGL and present detailed
analysis on the end-to-end performance of four distinct graph
analytic workloads. The graph analysis routines include
subgraph counting, breadth-first search (BFS), single-source
shortest paths (SSSP), and resource description framework
(RDF) queries. The four algorithms were chosen to be
representative of the diversity in modern graph analytics.
We chose a recent algorithm for subgraph counting [42, 43]
which is a randomized parallel algorithm to generate ap-
proximate counts of tree-structured subgraphs. Recent re-
lated work [15, 16] primarily looks at strong scaling of BFS
and related computations on massive synthetic Graph 500
networks. Our work optimizes the subgraph counting al-
gorithm, an analytic that is computationally very differ-
ent from BFS. We also do an in-depth evaluation of BFS
and SSSP performance. The fourth benchmark evaluates
distributed-memory implementation of the popular RDF store
RDF-3X [36]. We use the end-to-end graph analysis times
for partitioning-ordering-workload in both single-threaded
(MPI) and multi-threaded (MPI+OpenMP) distributed pro-
gramming models. We primarily consider real-world rather
than synthetics graphs in our study. We use tuned imple-
mentations, all developed by us, in order to ensure consis-
tency. We also analyze trade-offs between partitioning qual-
ity on computational load balance and communication over-
head for several large real-world networks. The following are
the key contributions of this workload analysis.

1. A comprehensive study of the performance of the four an-
alytics with several partitioning-ordering combinations.

2. We show that DGL layout improves subgraph counting
performance by 1.28× in comparison to random parti-
tioning. Partitioning with DGL would enable end-to-end
processing (partitioning & computation) of the counts of
ten vertex subgraphs on the 2 billion edge Twitter graph
to complete in under fifteen minutes on 16 nodes of Blue
Waters.

3. DGL layout improves the communication time of BFS
and SSSP by 1.48× and 1.43× in comparison to random
partitioning.

4. An informed topology-aware graph layout benefits exter-
nal memory computations as well, improving the per-
formance by 1.05× when compared to a random parti-
tioning, as we show with RDF3X-MPI, our distributed-
memory implementation of the popular RDF store RDF-
3X [36].

5. A cross-analytics comparison reveals new and interest-
ing trade-offs of communication time, load balance, and
memory utilization for various graphs.

We finally mention that DGL is not inherent to the MPI
processing models considered in this work, and can therefore
be utilized as a preprocessing step while running under other
graph engines and parallel execution environments.

2. DISTRIBUTED GRAPH LAYOUT
In this section, we discuss the distributed graph layout us-
ing label propagation based partitioning and BFS based or-
dering methods. We define a distributed graph layout as
the pair of partitioning×ordering. The partitioning part of
the layout affects the number of parallel phases and syn-
chronization overhead in a graph computation. It is impor-
tant to balance the computation in different parallel phases
as well as minimize the communication overhead. We ex-
plore trade-offs in work and memory balance and commu-
nication minimization between tasks with different parti-
tioning strategies. Work performed and memory utilization
per-task roughly correlates with the number of vertices and
adjacent edges stored on each task. The communication
requirements roughly correlates with the number of inter-
task edges, or edge cut resulting from partitioning. The or-
dering part of the layout affects the per-phase computation
time in graph computations. We ideally want to increase
intra-node memory access locality to reduce cache misses
and improve execution times. In order to be practical the
partitioning×ordering pair must be computed in parallel,
scalable fashion.

2.1 Partitioning
We utilize three partitioners in this work. We use a random
partitioning to establish a baseline for benchmarking. We
use the well-known METIS [30] partitioner. We also utilize
our implementation of label propagation based partitioner,
which is specifically optimized to partition the small-world
graphs we are considering in this work. We consider bal-
ancing partitions for vertices as well as vertices and edges.
We attempt to minimize total edge cut for both DGL and
METIS. Additionally, for DGL, we also attempt to balance
communication among parts by minimizing the maximal
number of cut edges coming out of any single part.

The DGL partitioner is based off of the community detec-
tion label propagation algorithm [38,44]. Label propagation
methods are attractive as they have low computational over-
head, low memory utilization, and they are easy to paral-
lelize. Weighted label propagation is utilized in three sep-
arate stages during execution of DGL. In the first stage,
we initialize data structures and create an initial partition-
ing of vertices into communities or clusters. The clusters
are balanced and refined iteratively in the second and third
stages.

Algorithm 1 DGL Multi-Constraint Multi-Objective Al-
gorithm

Initialize p random partitions.
Execute degree-weighted label propagation.
for k1 iterations do

for k2 iterations do
Balance partitions to satisfy constraint 1.
Refine partitions to minimize objective 1.

for k3 iterations do
Balance partitions to satisfy constraint 2

and minimize objective 2.
Refine partitions to minimize objective 1.

Algorithm 1 gives an overview of the DGL partitioner al-
gorithm. Here, we are considering our constraint 1 as the
maximal number of vertices per part and constraint 2 as the
maximal number of edges per part. Objective 1 is the to-
tal edge cut and objective 2 is the maximal per-part edge
cut. Slota et al. [44] describe a similar label propagation
based algorithm and demonstrate its effectiveness in terms
of cut quality and runtime with respect to other traditional
partitioners. However, it is critical to show that such label
propagation based partitionings are not only easy to com-
pute, but they improve the end-to-end runtimes of graph
analytic applications. With DGL we are able to utilize such
a partitioner in the layout strategy and demonstrate its ap-
plicability for the first time.

2.2 Ordering
For a distributed graph computation, a good graph par-
titioning will reduce inter-node communication cost. The
goal of on-node vertex ordering is to increase locality of
intra-node memory references, and thereby reduce intra-
node computation time. RCM is a commonly-used vertex
ordering strategy in sparse matrix and graph applications.
We propose a BFS-based ordering (see Algorithm 2) which
can be considered an approximation to RCM. It avoids the
costly sorting step used in RCM where it tries to order the
nodes with the same parent in terms of the degree. Re-
cently, a similar ordering was proposed for improving the
matrix-vector multiply time and bandwidth reduction [29].
The primary focus of that approach was to arrive at parallel
orderings to improve the linear solver time. Our focus is to
improve the graph computations’ end-to-end timea. We ran-
domly choose a minimal-degree vertex as the root r. A BFS
from r adds vertices to a number of level sets L as they are
visited, as with RCM. We avoid explicit sorting by assuming
that each L1...l is mostly sorted in the order of decreasing
vertex degree, as there is a higher likelihood of encountering
high-degree vertices sooner than later for most real world
graphs. As we will show in the next section, this approach
performs better than both random and RCM orderings in
applications that have a high number of irregular memory
accesses.

Algorithm 2 DGL BFS-based vertex ordering algorithm.

Vid ← DGL-order(G(V, E))
for all v ∈ V do

Vid(v)← v

l← 0, r ← SelectRoot(), Q← r
B(1 · · ·n)← 0
while Q 6= ∅ do

l← l + 1
for all v ∈ Q do

Insert v into Ll
for all u ∈ N(v) do

if B(u) = 0 then
B(u)← 1
Insert u into Q

m← 0
for i = l · · · 1 do

for j = 1 · · · |Li| do
Vid(Li(j))← m
m← m + 1

With the five partitioning methods (random, METIS (sin-
gle constraint and multi-constraint) and DGL (multiple con-
straint, multiple objective and multiple constraint and single
objective) and three ordering methods (random, RCM and
DGL) we evaluate all the combinations of partitioning×ordering
pairs and demonstrate that the DGL layout with DGL par-
titioner and DGL based ordering performs the best in irreg-
ular graph computations.

3. PARALLEL GRAPH COMPUTATIONS
3.1 Subgraph Counting
Subgraph counting is a computationally challenging task,
with the näıve approach scaling as O(nk), where n is the
number of vertices in a graph and k the number of vertices
in the subgraph being counted. The best known exact al-
gorithm [23] improves the exponent by a factor of α

3
, where

α is the exponent for fast matrix multiplication. Because
of these extremely high running time bounds, recent work
has focused on approximation algorithms. One such ap-
proach for counting tree-structured subgraphs utilizes the
color-coding technique of Alon et al. [1].

Algorithm 3 Subgraph counting Fully Partitioned Count-
ing Approach.

Partition subgraph S using single edge cuts
for it = 1 to Niter do

Color G(V, E) with k colors
for all Si in reverse order of partitioning do

Init Tablei,r for Vr (vertex partition on task r)
for all v ∈ Vr do . Thread-level parallelism

for all c ∈ Ci do
Compute all CountSi,c,v

〈N, I, B〉 ← Compress(Tablei,r)
Alltoallv exchange of 〈N, I, B〉
Update Tablei,r based on information received
for all d = 1 to NumTasks do

Nd, Id, Bd ← Compress(Tablei,r)
Send(d, Nd, Id, Bd)
Recv(d, Nr, Ir, Br)
Tablei,r ← Nr, Ir, Br

Countr+ =
VrP
v

CTP
c

CountT,c,v

Count← Reduce(Countr)
Scale Count based on Niter and colorful embed prob.

Prior work used fast parallel implementation of color-coding
subgraph counting in both shared-memory and distributed-
memory environments [42, 43]. We use their approach as a

staring point and further improve on the distributed count-
ing algorithm from [43] by fully partitioning and compress-
ing the memory-intensive dynamic programming table and
replacing MPI broadcasts with All-to-all exchanges. Fully
partitioning the table decreases memory requirement across
all tasks, and compressing the table during communication
reduces total transfer volume along with and all-to-all ex-
change in lieu of broadcasts. This improves scaling and en-
ables us to count subgraphs of 10 and 11 vertices on billion-
edge networks in minutes on a modest 16 node cluster. An
overview of the main subgraph counting algorithm as imple-
mented here is given in Algorithm 3. For more detailed dis-
cussion of the stages and execution of the algorithm, please
refer to [42, 43]. Our changes to the subgraph counting
method are both described in Algorithm 3.

3.2 SSSP and BFS
We also assess the performance impact of layout on tuned
implementations for parallel Breadth-First Search (BFS) and
Single-source shortest paths (SSSP) computation in this pa-
per. Our parallel BFS approach can take advantage of both
1D and 2D graph distributions [9–11]. We use a 1D dis-
tribution in this work, as it is easier to correlate commu-
nication time with edge cut after partitioning with a 1D
distribution. Recent BFS and SSSP implementations use a
1D partitioning and direction-optimizing search [4] for work-
efficient and highly scalable execution on Graph 500 test in-
stances. For an overview of the current state-of-the-art in
performance optimizations for these routines, we refer the
reader to [15,16].

We use an optimized parallel implementation [37] of the ∆-
stepping algorithm [33] for parallel SSSP in this paper. Each
BFS iteration and ∆-stepping phase comprise of three main
steps, local discovery, all-to-all exchange, and local update.
To aid adjacency queries, we use a distributed compressed
sparse row representation for a graph. The distance array is
also partitioned and distributed along with the distributed
vertices (for ∆-stepping). In the local discovery step, both
algorithms expand their frontiers by listing all corresponding
adjacencies and their proposed distance based on vertices in
a queue of recently-visited vertices (for BFS) or in a cur-
rent bucket (for ∆-stepping). Note that BFS visits each
reachable vertex only once while ∆-stepping may visit each
reachable vertex multiple times before it is settled.

Once all vertices in the queue are processed or the current
bucket is empty (with no more vertex reinsertions), all p
tasks exchange vertices in these generated lists to make them
local to the owner tasks. This step is the same for both
BFS and ∆-stepping, and uses an all-to-all collective com-
munication routine. At the end of each BFS iteration and
∆-stepping phase, each task locally updates the distance of
its own vertices using the exchanged information. The up-
date in BFS is only on unvisited vertices, while ∆-stepping
updates all vertices whose distance can be decreased. Thus,
the ∆-stepping algorithm performs more computation and
has a higher communication complexity.

Since our goal is to analyze and evaluate the effect of graph
partitioning and vertex reordering, we have not yet imple-
mented all the optimizations in [15, 16]. However, our ap-
proach has three new optimizations: (i) A semi-sort of vertex

adjacencies based on weights is used prior to execution of the
algorithm. (ii) Memory-optimized queues are used to repre-
sent the bucket data structure. This decreases the algorithm
memory requirement, while slightly increasing the running
time. (iii) An array of all local unique adjacencies is created
and locally used to track tentative distance of adjacencies.
This array improves efficiency by filtering out unnecessary
requests to be added in the new frontiers.

3.3 Distributed RDF Stores and SPARQL Query
Processing

RDF [39] is a popular data format for storing web data sets.
Informally, the RDF format specifies typed relationships be-
tween entities, and the basic record in an RDF data set is
a triple. There are a growing number of publicly-available
RDF data sets that contain billions of triples. Thus, database
methodologies for storing these RDF data sets, also called
triple stores [19, 40], are becoming popular. We have devel-
oped a distributed MPI-based implementation of an open-
source triple store called RDF-3X [36]. Our distributed RDF
store is called RDF3X-MPI.

An alternate approach to viewing an RDF data set is as a di-
rected graph with edge types. RDF data sets can be queried
using a language called SPARQL. We extend the distributed
RDF store methodology of RDF-3X to the SPARQL query-
ing phase as well. Thus our RDF3X-MPI tool has two
phases, a load phase and a query phase. In the load phase,
the given triple data set is partitioned into several indepen-
dent files, one per task, and each task then constructs an
index for helping answering SPARQL queries. It is possible
to parallelize some query evaluation in a purely data-parallel
manner (i.e., with no communication between tasks), pro-
vided there is sufficient replication of triples among par-
titions. Formally, if the triple partitions satisfy an n-hop
guarantee, then SPARQL queries in which all pairs of join
variables are at distance of less than n hops from each other
can be solved without any inter-task communication [27].
So the role of graph partitioning in this application is to
reorder vertices such that the number of triples that are
replicated between tasks after applying an n-hop guarantee
are minimized. If the number of triples that are replicated
is reduced, then the database indexes are smaller, making
them potentially faster to query. For this application, we
study the impact of partitioning on the number of repli-
cated triples. A smaller value of replication is desired, and
further, smaller index sizes should translate to faster query
times.

4. EXPERIMENTAL SETUP
We evaluate performance of our new partitioning and order-
ing strategy DGL and the graph analytics workload on a
collection of nine large-scale low diameter graphs, listed in
Table 1. LiveJournal, Orkut, and Twitter (follower network)
are crawls of online social networks obtained from the SNAP
Database and the Max Planck Institute for Software Sys-
tems [14, 45]. uk-2005 and sk-2005 are crawls of the United
Kingdom (.uk) and Slovakian (.sk) domains performed in
2005 using UbiCrawler and downloaded from the Univer-
sity of Florida Sparse Matrix Collection [6, 7, 21]. WebBase
is similarly a crawl obtained in 2001 by the Stanford Web-
Base crawler. We created the BSQM and LUBM graphs

from RDF data sets generated using the Berlin SPARQL
benchmark [5] and Lehigh University Benchmark [26] gen-
erators. DBpedia was created from RDF triplies extracted
from Wikipedia [35].

The Orkut graph is undirected and the remaining graphs are
directed. For the web and social graphs, we preprocessed the
graphs before executing BFS, SSSP, and subgraph counting.
Specifically, we removed all degree-0 vertices, multi-edges,
and extracted the largest (weakly) connected component.
Further, edge directivity was ignored when partitioning and
reordering the graphs using DGL and METIS. Table 1 lists
the sizes of these nine graphs after preprocessing.

Table 1: Test graph characteristics after preprocessing.

Graphs belong to three categories, OSN: Online social

networks, WWW: Web crawl, RDF: graphs constructed

from RDF data. # Vertices (n), # Edges (m), average

(davg) and max (dmax) vertex degrees, and approximate

diameter (eD) are listed. B = ×109, M = ×106, K = ×103.

Network Category n m davg dmax eD Source

LiveJournal OSN 4.8 M 42 M 18 39 K 21 [32]
Orkut OSN 3.1 M 117 M 76 33 K 9 [46]
Twitter OSN 44 M 2.0 B 37 750 K 36 [14]
uk-2005 WWW 39 M 781 M 40 1.8 M 21 [7]
WebBase WWW 113 M 844 M 15 816 K 376 [7]
sk-2005 WWW 44 M 1.6 B 73 15 M 308 [7]
BSBM RDF 16 M 67 M 8.6 3.6 M 7 [5]
LUBM RDF 33 M 133 M 8.1 11 M 6 [26]
DBpedia RDF 62 M 190 M 6.1 7.3 M 7 [35]

●

●

●

●

10

100

1000

1 2 4 8 16
Number of Nodes

To
ta

l B
an

dw
id

th
 (

G
B

/s
)

Benchmark ● AllGather AlltoAll RandomAccess StreamRead

Figure 1: Bandwidth of Blue Waters for various memory

and MPI benchmarks.

The scalability studies for subgraph counting, BFS, SSSP,
and RDF query processing were done primarily on Blue Wa-
ters, a large petascale cluster at the National Center for
Supercomputing Applications (NCSA). Each XE compute
node of Blue Waters is a dual-socket system with 64 GB
main memory and AMD 6276 Interlagos processors at 2.3
GHz. The system uses a Cray Gemini 3D torus intercon-
nect. We built our programs with the GNU C++ compiler
(version 4.8.2), using OpenMP for multithreading and the
-O3 optimization parameter during compilation. For the
pre-processing phases of DGL (partitioning and reordering)
and some scalability runs, we utilized Compton, a testbed
cluster. Compton has a dual socket setup with Intel Xeon
E5-2670 (Sandy Bridge) CPUs at 2.60 GHz and 64 GB main
memory. Due to the large memory requirements of parti-
tioning with METIS, we also had to use the large memory

nodes on Carver at NERSC for partitioning the larger net-
works (Twitter, uk-2005, Webbase, and sk-2005). Carver’s
large memory nodes have 1024 GB main memory and four
Intel Xeon X7550 (”Nehalem-EX”) CPUs at 2.00 GHz.

To give a relative sense of the intra-node data access and
inter-node collective communication performance on Blue
Waters, we present some memory and collective communi-
cation performance results in Figure 1 using micro bench-
marks These benchmarks include AllGather and AlltoAllv
MPI bandwidths and intra-node memory bandwidth sus-
tained for regular stride-1 reads and random memory ac-
cesses, as a function of processing nodes.

5. RESULTS AND DISCUSSION
5.1 DGL Performance Evaluation
We evaluate our DGL label propagation-based partitioning
methodology against METIS partitioning by examining to-
tal running time for generating 16 and 64 partitions. We
consider two versions of both DGL and METIS. For DGL,
we have an implementation that has both maximal vertex
and edge balance constraints and minimizes both total edge
cut and maximal per-part edge cut. We consider this our
baseline implementation, and label it in figures as DGL-
MOMC (DGL multi-objective multi-constraint). We also
have a dual constraint version that only attempts to min-
imize the total edge cut, which we call DGL-MC. Simi-
larly for METIS, the dual constraint single objective ver-
sion is termed METIS-MC, while the single constraint (ver-
tex balance) and single-objective version is termed simply
as METIS. METIS-MC and DGL-MC are solving the same
problem. However, DGL-MOMC uses the multi-constraint,
multi-objective mode, instead of the single-constraint, single-
objective mode of METIS. For our constraints, we fix the
maximal vertex imbalance ratio at 1.10 and the edge im-
balance ratio at 1.50. The results show multi-constraint,
multi-objective mode is important for irregular graph com-
putations.

Table 2 shows the partitioning time of DGL-MOMC running
on Compton along with METIS-MC. Due to METIS’s large
memory requirements (close to 500GB for Twitter), only
LiveJournal, Orkut, and the RDF graphs were partitioned
on Compton. The larger web graphs and Twitter were all
partitioned on Carver. We also report the relative speedup
of DGL to METIS. From Table 2 we observe considerable
speedup for DGL, with a geometric mean speedup of 12.4×
for 16 parts and 10.1× for 64 parts.

The partitioning quality in terms of both vertex and edge
balance constraints and edge cut and maximal per-part edge
cut objectives for the different partitioners is shown in Ta-
ble 3. In terms of the total edge cut (EC), the single-
constraint, single-objective METIS does the best, but it per-
forms poorly in the maximum per-part edge cut (ECmax)
and edge balance (Emax). DGL also performs better than
all the methods in the ECmax metric without sacrificing a
lot in EC and still respecting the vertex balance and edge
balance constraints. Also note the much larger Emax of
single constraint METIS. As we will demonstrate, this can
have a considerably impact of execution time for the appli-
cations in our benchmarks. Note that while METIS does
better in #CC, it does not affect the graph analytic appli-

Table 2: DGL-MOMC and METIS-MC partitioning

time with 16-way and 64-way partitioning. DGL-

MOMC uses multi-constraint multi-objective partition-

ing. METIS-MC uses multi-constraint single-objective

partitioning.

16-way partitioning 64-way partitioningNetwork
METIS DGL METIS DGL
time (s) time (s)

Speedup
time (s) time (s)

Speedup

LiveJournal 75 7.4 10× 74 7.3 10×
Orkut 156 10 16× 197 13 15×
Twitter 12348 530 23× 12484 565 22×
uk-2005 255 15 17× 353 80 4.4×
WebBase 539 39 14× 551 42 13×
sk-2005 465 39 12× 514 65 7.9×
BSBM 348 28 12× 395 32 12×
LUBM 707 88 8.0× 966 123 7.9×
DBpedia 898 133 6.8× 1001 133 7.5×

Table 3: Average partitioning characteristics across all

graphs. Geometric mean of vertex balance Vmax, edge

balance Emax, improvement over random partitioning for

edge cut ratio EC and max per-part edge cut ECmax, and

the mean improvement (decrease) in the average total

number of connected components for all parts are shown.

The best values for each of the last three columns are in

bold font.

Partitioning Vmax Emax EC(imp) ECmax(imp) #CC(imp)

Random 1.15 1.70 1.00 1.00 1.00
DGL-MC 1.10 1.50 5.50 2.10 72.0
DGL-MOMC 1.10 1.50 5.00 3.18 22.9
METIS-MC 1.10 1.50 4.40 2.16 62.1
METIS 1.10 3.88 7.71 2.39 202

cations. Traditional partitioners tend to look for fully con-
nected components. In small-world graphs and applications
that use them this does not necessarily translate into better
performance.

Table 4: DGL distributed reordering time with 16-way

and 64-way partitioning.

16-way partitioning 64-way partitioningNetwork
RCM DGL RCM DGL

time (s) time (s)
Speedup

time (s) time (s)
Speedup

LiveJournal 2.3 1.0 2.3× 2.3 1.0 2.3×
Orkut 3.9 1.9 2.1× 3.9 1.9 2.1×
Twitter 50 24 2.1× 61 29 2.1×
uk-2005 16 8.4 1.9× 17 7.6 2.2×
Webbase 33 13 2.5× 35 17 2.1×
sk-2005 24 11 2.2× 23 11 2.1×
BSBM 5.1 2.3 2.2× 4.7 2.3 2.0×
LUBM 5.7 1.7 3.4× 5.7 1.7 3.4×
DBpedia 16 6.1 2.6× 17 6.9 2.5×

We additionally compare our DGL vertex ordering strategy
to RCM. Table 4 gives the average running times of both
DGL and RCM in serial across all three partitioning strate-
gies for reordering the vertices within each partition. DGL
reordering results in a 2.3× average speedup compared to
RCM for reordering both 16 and 64 parts. This reduction
is due to the avoidance of explicit sorting required by RCM.
There does not seem to be a large dependence of running
times on the number of partitions, although with a greatly
increased partition count for a fixed graph, it would be ex-
pected that running time decreases due to a lower diameter

BFS search and overall increased cache utilization. Both
these methods can be parallelized as DGL can use a par-
allel BFS and RCM can be implemented using the parallel
version [29]. However, their timings are insignificant in the
end-to-end performance of our primary subgraph counting
benchmark.

5.2 Subgraph Counting Performance
We next compare the impact of various partitioning and or-
dering strategies with regards to the running times of our
subgraph counting implementation. The performance of our
subgraph counting implementation for counting a 10-vertex
template and using 16 partitions across 16 nodes of Blue
Waters with fixed random ordering and the five partition-
ing strategies, as well as the same code with DGL-MOMC
partitioning and utilizing the three reordering strategies, is
given in Figure 2. We also look at total end-to-end execu-
tion time for the five partitioning strategies with random
ordering in terms of total time spent in the communication,
computation, and partitioning steps. Note that the results
with single constraint METIS for the uk-2005 and WebBase
graphs are absent. This is due to execution times taking
longer than 24 hours for these instances.

Several trends can be observed in Figure 2. The top subfig-
ure gives the speedup of the communication phase of sub-
graph counting for each of the partitioning strategies relative
to random partitioning. We note considerable speedup for
all partitioners. We note our DGL methods give the best
improvement for four out of the six tested graphs. Since
subgraph counting is a communication-dominant applica-
tion (the Twitter graph requires compression and transfer
of several terabytes of data in total for the counts table ex-
changes between tasks), these results are significant in terms
of total execution time.

The middle subfigure of Figure 2 gives the speedup rela-
tive to random ordering for the DGL and RCM reorder-
ing strategies with DGL-MOMC partitioning. We again
note that DGL reordering demonstrates the highest speedup
for four out of the six test instances. Note that DGL or-
dering can both be computed faster than RCM and can
also result in better application performance. The reorder-
ing makes more noticeable impact on the larger graphs,
where the importance of cache efficiency is higher, as is ex-
pected. Note that this improvement due to reordering only
makes an impact when considering a pure MPI paralleliza-
tion. With threading enabled, random partitioning performs
optimally due to better work balance between threads. A
good reordering strategy for an MPI+OpenMP paralleliza-
tion model is future work.

Finally, the bottom subfigure of Figure 2 shows the total
end-to-end execution times for initial partitioning plus run-
ning of the subgraph counting application. We further split
subgraph counting into the sum of time spent in each of its
computation and communication phases. We observe that
our DGL partitioning strategies result in the fastest end-
to-end running times for all test instances. The time spent
for partitioning is considerable relative to execution time for
METIS, as is the extra communication costs that result with
random partitioning. However, we note that these results
are application and runtime parameter-dependent.

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0
2.5

0.0

0.5

1.0

1.5

0

2

4

0

1

2

3

0

2

4

6

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

Partitioner

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0

50

100

150

200

0

100

200

300

0

5000

10000

15000

0

1000

2000

3000

0

2000

4000

0

1000

2000

3000

4000

5000

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

 R
andom

 D
G

L−
M

C

 D
G

L−
M

O
M

C

 M
E

T
IS

−
M

C

 M
E

T
IS

Partitioner

E
nd

−
to

−
en

d
E

xe
cu

tio
n

T
im

e

Step Computation Communication Partitioning

Figure 2: Speedups achieved with subgraph counting for total communication time of the various partitioning strate-

gies relative to random partitioning, all with random ordering. Additionally, the speedups for the RCM and DGL

orderings relative to random ordering with DGL multi objective partitioning. The bottom plot gives total end-to-end

execution time in terms of the initial partitioning, total computation time, and total communication time.

To further visualize the performance of DGL on total exe-
cution time, we give an execution timeline in Figure 3 of a
single run of counting a 10 vertex template on the LiveJour-
nal graph. We used the Compton system for this test and
random, single-constraint METIS, multi-constraint METIS,
and multi-objective DGL partitioning (from left to right,
respectively) with random ordering. We note first the two
extreme cases. Random shows the lowest total computation
times at a high cost of communication, while single objective
METIS results in low communication times but high total
times during the execution stages. This is due to unbal-
anced work among each task, which is directly proportional
to the edge balance among each part. We observe that DGL-
MOMC partitioning gives the best tradeoff in terms of work
balance and communication requirements.

5.3 SSSP and BFS Performance
In this section, we analyze the performance of our SSSP
and BFS implementation when using the different layouts.
While the running time of distributed subgraph counting is
dominated by large-scale data transfers during the commu-
nication phases, SSSP depends on intra-node computation
for small number of tasks. Figure 4 shows the speedups
for communication and computation for SSSP performance
with 64 MPI tasks. The top subfigure of Figure 4 shows the
communication speedups relative to random partitioning for

all other partitioners with a random ordering. Due to the
less complex and lower overall communication requirements
for this SSSP implementation, we observe lower speedups
relative to what was observed in Figure 2 with subgraph
counting. However, we still observe speedups for computa-
tion times on the larger graphs with the various ordering
strategies, with DGL ordering giving the best speedups on
four out of the six graphs when used with DGL partitioner.
The two subfigures of Figure 5 give the speedup in communi-
cation time with different partitioners and random ordering
and speedups in computation time with different orderings
and DGL partitioning, for the BFS implementation. We
notice similar trends to SSSP in these plots.

5.4 SPARQL Query Processing
In this section, we study the impact of partitioning and
ordering on the performance of RDF stores and SPARQL
querying. In Table 5, we report replication ratios observed
with 16-way and 64-way MPI tasking when an undirected
2-hop guarantee is enforced. The results compare DGL-
MOMC with METIS-MC and random partitioning. Out of
the 6 total graph-part count scenarios, DGL-MOMC ap-
proach shows the lowest replication ratio for half of them.
Note that none of these partitioners are explicitly optimizing
for this metric, so the performance of DGL in this instance
is indirect.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

Figure 3: Subgraph counting execution timeline (single color-coding iteration with a 10-vertex template) on 16 tasks

and 32 threads with (left to right) random, single and multi-constraint METIS, and DGL partitioning strategies.

Random ordering was used in all cases.

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

0.0

0.5

1.0

0.0

0.4

0.8

1.2

0.00

0.25

0.50

0.75

1.00

0

2

4

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

Partitioner

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

Figure 4: Communication time of SSSP implementation on 16 nodes with various partitioning options (top) and

computation time of SSSP with various ordering strategies (bottom).

Table 5: Distributed RDF store replication ratios
using various partitioning strategies. An undirected
2-hop guarantee is enforced. Lower values are better
and best value for each graph and parts count is in
bold.

16-way 64-wayNetwork
Random DGL METIS Random DGL METIS

Berlin 5.847 4.418 4.795 15.482 14.408 19.445
LUBM 5.825 5.600 5.041 16.036 21.774 19.924
DBpedia 2.603 2.728 3.493 4.010 3.320 12.048

In Table 6, we report the speedup of query times of RDF3X-
MPI averaged over the Berlin, LUBM, and DBpedia data
set. The speedups are relative to the random partitioning,
random ordering combination. We use the 16 part partitions
for this test. DGL-MOMC partitioning with random order-
ing yields the best performance. We note that since DGL
is faster and much more memory-efficient than METIS, this
is a promising result. Future work can attempt to optimize
DGL for the one and two hops replication ratio metrics,
in order to further improve upon these results. Addition-
ally, the lack of improvement with the ordering strategies is
noted, and will be further investigated.

Table 6: Query time speedups relative to random
partitioning-random ordering for the various parti-
tioning and ordering strategies, averaged over all 3
graphs for 16 parts.

OrderingPartitioning
Random BFS RCM

Random 1.00 0.696 0.717
DGL-MC 1.04 0.742 0.755
DGL 1.05 0.737 0.877
METIS-M 0.794 0.773 0.726
METIS 0.913 0.667 0.798

6. CONCLUSIONS
In this paper, we present DGL, a new methodology for dis-
tributed graph layout (partitioning, vertex ordering). The
partitioning method in DGL is based on the label propa-
gation community detection method that is scalable. The
partitions produced are comparable in quality to the k-way
multilevel partitioning scheme in METIS, but only take a
fraction of the execution time. Our vertex layout strate-
gies can also improve computational performance of graph
computations that consist of a high proportion of irregu-
lar accesses. To conclude we answer the three questions we
started with in Section 1.

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

0

1

2

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

 R
andom

 P
U

LP
M

 P
U

LP

 M
E

T
IS

M

 M
E

T
IS

Partitioner

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

Figure 5: Communication time of BFS implementation on 16 nodes with various partitioning options (top) and

computation time of BFS with various ordering strategies (bottom).

1. The layout of the graphs, both partitioning and ordering
impact the performance of irregular, data-analytic frame-
works considerably.

2. DGL can compute such a layout in fraction of time com-
pared to traditional partitioners and improve end-to-end
performance of graph analytics.

3. The graph computations that benefit the most are com-
munication intensive. Simpler applications might exhibit
this behavior at scale.

Acknowledgments
This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Sci-
ence Foundation (awards OCI-0725070, ACI-1238993, and
ACI-1444747) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign and
its National Center for Supercomputing Applications. This
work is also supported by NSF grants ACI-1253881, CCF-
1439057, and the DOE Office of Science through the FAST-
Math SciDAC Institute. Sandia National Laboratories is a
multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

7. REFERENCES
[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. J.

ACM, 42(4):844–856, 1995.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm
837: AMD, an Approximate Minimum Degree
ordering algorithm. ACM Trans. Math. Softw.,
30(3):381–388, Sept. 2004.

[3] D. A. Bader, H. Meyerhenke, P. Sanders, and
D. Wagner. Graph partitioning and graph clustering,
10th DIMACS implementation challenge workshop.
Contemporary Mathematics, 588, 2013.

[4] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. In Proc.
Supercomputing (SC), 2012.

[5] C. Bizer and A. Schultz. The Berlin SPARQL
benchmark. Int. J. Semantic Web Inf. Syst.,
5(2):1–24, 2009.

[6] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: A scalable fully distributed web crawler.
Software: Practice & Experience, 34(8):711–726, 2004.

[7] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth
International World Wide Web Conference (WWW
2004), pages 595–601, Manhattan, USA, 2004. ACM
Press.

[8] E. G. Boman, K. D. Devine, V. J. Leung,
S. Rajamanickam, L. A. Riesen, M. Deveci, and
U. Catalyurek. Zoltan2: Next-generation
combinatorial toolkit. Technical report, Sandia
National Laboratories, 2012.

[9] E. G. Boman, K. D. Devine, and S. Rajamanickam.
Scalable matrix computations on large scale-free
graphs using 2d graph partitioning. In Proceedings of
SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis,
page 50. ACM, 2013.

[10] A. Buluç and K. Madduri. Parallel breadth-first
search on distributed memory systems. In Proc. Conf.
on High Performance Computing, Networking, Storage
and Analysis (SC), 2011.

[11] A. Buluç and K. Madduri. Graph partitioning for
scalable distributed graph computations. In D. Bader,
H. Meyerhenke, P. Sanders, and D. Wagner, editors,
Graph Partitioning and Graph Clustering, chapter 6,
pages 81–100. AMS, 2013.

[12] U. V. Catalyürek and C. Aykanat. Patoh: a multilevel
hypergraph partitioning tool, version 3.0. Bilkent
University, Department of Computer Engineering,
Ankara, 6533, 1999.

[13] Ü. V. Catalyürek, M. Deveci, K. Kaya, and B. Uçar.
Umpa: A multi-objective, multi-level partitioner for
communication minimization. Contemporary
Mathematics, 588, 2013.

[14] M. Cha, H. Haddadi, F. Benevenuto, and K. P.

Gummadi. Measuring user influence in Twitter: The
million follower fallacy. In Proc. Int’l. Conf. on
Weblogs and Social Media (ICWSM), 2010.

[15] V. T. Chakaravarthy, F. Checconi, F. Petrini, and
Y. Sabharwal. Scalable single source shortest path
algorithms for massively parallel systems. In Proc.
IEEE Int’l. Parallel and Distributed Proc. Symp.
(IPDPS), 2014.

[16] F. Checconi and F. Petrini. Traversing trillions of
edges in real-time: Graph exploration on large-scale
parallel machines. In Proc. IEEE Int’l. Parallel and
Distributed Proc. Symp. (IPDPS), 2014.

[17] A. Ching and C. Kunz. Giraph: Large-scale graph
processing infrastructure on Hadoop. Hadoop Summit,
6(29):2011, 2011.

[18] G. Cong and K. Makarychev. Optimizing large-scale
graph analysis on multithreaded, multicore platforms.
Parallel and Distributed Processing Symposium,
International, 0:414–425, 2012.

[19] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. T.
Groth, A. Haque, A. Harth, F. L. Keppmann, D. P.
Miranker, J. Sequeda, and M. Wylot. NoSQL
databases for RDF: An empirical evaluation. In
H. Alani, L. Kagal, A. Fokoue, P. T. Groth,
C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy,
C. Welty, and K. Janowicz, editors, International
Semantic Web Conference (2), volume 8219 of Lecture
Notes in Computer Science, pages 310–325. Springer,
2013.

[20] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proc. 1969 24th Nat’l.
Conf., ACM ’69, pages 157–172, New York, NY, USA,
1969. ACM.

[21] T. A. Davis and Y. Hu. The University of Florida
sparse matrix collection. ACM Transactions on
Mathematical Software, 38(1):1–25, 2011.

[22] M. Deveci, S. Rajamanickam, K. Devine, and
Ü. Çatalyürek. Multi-jagged: A scalable parallel
spatial partitioning algorithm. IEEE Transactions on
Parallel and Distributed Systems (In revision), 2014.

[23] F. Eisenbrand and F. Grandoni. On the complexity of
fixed parameter clique and dominating set. Theoretical
Computer Science, 326(1–3):57–67, 2004.

[24] M. Frasca, K. Madduri, and P. Raghavan.
NUMA-aware graph mining techniques for
performance and energy efficiency. In Proc.
Supercomputing (SC), 2012.

[25] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In Proc. USENIX
Conf. on Operating Systems Design and
Implementation (OSDI), 2012.

[26] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Web Semantics:
Science, Services and Agents on the World Wide Web,
3(2-3):158–182, 2005.

[27] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB,
4(11):1123–1134, 2011.

[28] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
PEGASUS: A peta-scale graph mining system
implementation and observations. In Proceedings of

the 2009 Ninth IEEE International Conference on
Data Mining, ICDM ’09, pages 229–238, Washington,
DC, USA, 2009. IEEE Computer Society.

[29] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J.
Garzarán, and K. Pingali. Parallelization of reordering
algorithms for bandwidth and wavefront reduction. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’14, pages 921–932. IEEE Press, 2014.

[30] G. Karypis and V. Kumar. MeTis: A software package
for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of
sparse matrices. version 5.1.0. http://glaros.dtc.
umn.edu/gkhome/metis/metis/download, last
accessed Apr 2014.

[31] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[32] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural
cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[33] U. Meyer and P. Sanders. ∆-stepping: a parallelizable
shortest path algorithm. J. Algs., 49(1):114–152, 2003.

[34] H. Meyerhenke, P. Sanders, and C. Schulz.
Partitioning complex networks via size-constrained
clustering. CoRR, abs/1402.3281, 2014.

[35] M. Morsey, J. Lehmann, S. Auer, and A.-C. N.
Ngomo. DBpedia SPARQL benchmark - performance
assessment with real queries on real data. In L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal,
N. F. Noy, and E. Blomqvist, editors, International
Semantic Web Conference (1), volume 7031 of Lecture
Notes in Computer Science, pages 454–469. Springer,
2011.

[36] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J.,
19(1):91–113, 2010.

[37] T. Panitanarak and K. Madduri. Performance analysis
of single-source shortest path algorithms on
distributed-memory systems. In Proc. SIAM Workshop
on Combinatorial Scientific Computing (CSC), 2014.

[38] U. N. Raghavan, R. Albert, and S. Kumara. Near
linear time algorithm to detect community structures
in large-scale networks. Physical Review E,
76(3):036106, 2007.

[39] RDF primer, W3C recommendation, 2004.
http://www.w3.org/TR/rdf-primer.

[40] S. Sakr, A. Liu, and A. G. Fayoumi. The family of
mapreduce and large-scale data processing systems.
ACM Comput. Surv., 46(1):11, 2013.

[41] B. Shao, H. Wang, and Y. Li. Trinity: A distributed
graph engine on a memory cloud. In Proceedings of the
2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 505–516,
New York, NY, USA, 2013. ACM.

[42] G. Slota and K. Madduri. Fast approximate subgraph
counting and enumeration. In Proc. Int’l. Conf. on
Parallel Processing (ICPP), 2013.

[43] G. Slota and K. Madduri. Complex network analysis
using parallel approximate motif counting. In Proc.

IEEE Int’l. Parallel and Distributed Proc. Symp.
(IPDPS), 2014.

[44] G. M. Slota, K. Madduri, and S. Rajamanickam. Pulp:
Scalable multi-objective multi-constraint partitioning
for small-world networks. In Big Data (Big Data),
2014 IEEE International Conference on, pages
481–490. IEEE, 2014.

[45] Stanford large network dataset collection.
http://snap.stanford.edu/data/index.html, last
accessed Apr 2014.

[46] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth. In Proc.
12th IEEE Int’l. Conf. on Data Mining (ICDM),
pages 745–754, 2012.

