SAND2015-0185C

Re-evaluating Network Onload vs. Offload for the
Many-Core Era

ABSTRACT

This paper explores the trade-offs between onloaded versus
offloaded network stack processing for systems with varying
CPU frequencies. This study explores the differences of on-
load and offload using experiments run at different DVFS
settings to change the frequency, while measuring perfor-
mance and power. This allows for a quantitative compari-
son of the the performance and power and trade-offs between
onload and offload cards, with a wide range of CPU perfor-
mances. The results show that there is often a significant
performance increase in using offloaded cards especially at
lower CPU frequencies, with only a small increase in power
usage. This study also uses MPI profiling to analyze why
some applications see a larger benefit than others.

This paper’s contributions are an analytical, quantitative
analysis of the trade-offs between onload and offload. While
there has been debate to this question, this is the first, to
the authors’ knowledge, analytical evaluation of the perfor-
mance difference. The range of frequencies analyzed give
insight on how this MPI might perform on different archtic-
tures, such as the low frequency, many-core CPUs. Finally,
the power measurements allow for the study to provide fur-
ther depth in the analysis.

1. INTRODUCTION

Processor core frequency gains have declined significantly
since the beginning of the multi-core era. With the tran-
sition to many-core architecture, frequencies are expected
to remain essentially constant and may even decline. This
trend has significant implications for network subsystem de-
sign, for example onloading versus offloading network proto-
col processing. Onload systems seek to leverage excess on-
chip processors for protocol processing, while offload systems
seek to leverage specialized NIC processing. As a result, the
performance and power costs of host network protocol pro-
cessing significantly impact this tradeoff.

The onloaded approach assumes that the performance gap
between the available CPU cores and dedicated ASIC of-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

floading hardware is minimal, and where it is not, it can
be overcome by allocating more CPU cores. This assumes
that the performance of the networking stack can be greatly
improved through parallelization. While many networking
stack functions can be done in parallel, the semantics of
MPI enforce ordering that makes full parallelization diffi-
cult. Some approaches have been proposed [15] for methods
of improving the parallel performance of MPI, but the cur-
rent state of mutli-threaded MPI implementations illustrates
the difficulties of such approaches. Other work has declared
that multi-threaded MPI may not be a viable approach for
future HPC [18].

The emerging trend of many-core architectures does not
help address the networking issues arising from reduced core
frequencies. Using these cores for network stack process-
ing has further implications beyond lower core frequencies.
Many-core compute units are, by design, more simplistic
than modern x86 cores, with current generation many-core
architectures like the Intel Xeon Phi lacking support for out-
of-order processing. While future generations may include
expanded core features, such as support for out-of-order ex-
ecution, it is unlikely that the feature set supported by such
cores will approach that of the full-featured state-of-the-art
server class CPUs. Dedicating large power-hungry cores,
such as a Xeon x86 or AMD equivalent core, to network pro-
cessing has thus far been an acceptable compromise. How-
ever, this approach doesn’t address the increasing concerns
about power consumption.

In this paper, we present an initial evaluation of the im-
plications of host processing speed changes on onload vs.
offload network protocol processing. We do so by examin-
ing the network performance and power consumption when
running both onloaded and offloaded networking hardware
alongside a consumer-class AMD CPU operating at differ-
ent frequencies. By using identical systems where the only
changes are in the high performance networking cards used,
we isolate the differences between the two networking ap-
proaches and quantify the impact of processor frequency on
networking performance.

The remainder of this paper is organized as follows. In
Section 2, we discuss the background of onload and offload
protocol processing and architectural changes that motivate
this study. We then discuss our experimental setup and
methodology in Section 3 and present and analyze the re-
sults of these experiments in Section 4. We then discuss the
implications of these results in Section 5. Following this, we
discuss other related work in Section 6. Finally, we present
our conclusions and describe directions for future work in



Onload Network Request Processing Offload Network Request Processing

CPU Network Card CPU Network Card
Message Request Message Request
Message Processing D M ge Pr
Data Transfer Data Transfer

Figure 1: A high-level depiction of the differences between
onload and offload

Section 7.

2. BACKGROUND

Two competing models of high-performance networking,
onloaded and offloaded networking, have been adopted by
various vendors in systems over the years. InfiniBand, one
of the primary HPC networking architectures, has both of-
fload and onload network adapter (HCA) implementations.
For example, Mellanox InfiniBand HCAs provide full fea-
tured offload engines, while vendors such as QLogic sell
onload-based HCAs with simplified NIC hardware and a
full-featured software stack providing the remainder of the
functionality through the host CPU.

The high level differences between onload and offload are
depicted in Figure 1. The major difference is that offloaded
message processing is done by a dedicated chip on the NIC
while onloaded is done on the system’s CPU. The message
processing can include all levels of message processing, from
MPI to low level protocol processing. Offloading allows the
manufactures to make hardware optimizations to the dedi-
cated chip, to boost performance over onloaded NIC. It is
possible to hybrid these two approaches; for instance, some
offload infiniband cards do message matching onloaded on
the CPU.

During the time the onload model was developed, CPU
capabilities and speeds were increasing with each successive
generation. The end of Dennard scaling and the introduc-
tion of multi-core CPUs lead to further arguments in favor
of the onload model. In particular, onload proponents have
argued that such a model allows the use of other cores on a
system that might not be able to be fully taken advantage
of by an application, particularly during communication pe-
riods.

However, two recent trends are also potentially working
counter to this approach:

e The gradual flattening and even regression in core speeds

in traditional processors due to power and cooling is-
sues

e The emergence of many-core architectures such as the
Intel Xeon Phi with dramatically reduced single-core
performance

These two trends potentially limit the ability of these host
processors to keep up with the performance demands of on-
load HPC networking systems. For example, recent work
has shown that many-core Xeon Phi processors limit MPI
message processing rates in HPC systems [6].

Along with the Xeon Phi, researchers have also proposed
cluster architectures using low speed ARM cores, such as

FAWN [32]. This architecture focuses on creating power effi-
cient nodes, sacrificing node throughput to support a higher
node count. These systems are also subject to the trends
listed above and may suffer in terms of message rate.

In addition, large scale systems will be placed under power
and energy constraints in the future [31]. This further com-
plicates the offload/onload tradeoff space—general purpose
processors potentially draw more power than specialized net-
work oriented offload processors, but may also be able to dy-
namically change power draw in response to changing sys-
tem power caps. However, such changes could also cause
significant fluctuations in networking performance, to the
detriment of application performance.

As a result, it is important to understand the ramifica-
tions that power changes will have on network performance
and explore the tradeoffs between onloaded and offloaded
networks. It is similarly important to understand the po-
tential for power and energy savings during communication
phases. If such savings can be obtained without significant
performance impact, or if the performance impact is tolera-
ble, then leveraging the available savings will be important
to future supercomputer efficiency.

3. EXPERIMENTAL METHODOLOGY AND
SETUP

To evaluate the performance and power trade-offs between
onload and offload networking approaches, we conducted ex-
periments with both offload and onload InfiniBand cards.
These cards were placed in systems instrumented for power
collection, and host CPU power consumption was controlled
to understand the impact of CPU speed on network perfor-
mance and power consumption in different applications. In
the remainder of this section, we provide additional details
on our experimental setup; the hardware system on which
these results were gathered and the microbenchmarks and
applications used.

3.1 Hardware and Data Collection Setup

The evaluation of the onloaded vs. offloaded networking
approaches was performed on 4 nodes of a cluster, each with
a 3.8 GHz AMD Fusion APU, 16 GB of memory, and Linux
kernel version 2.6.32 (RHEL 6). For onload experiments, we
installed a QLogic 4X QDR InfiniBand HCA in each node,
while we used a Mellanox ConnectX-3 4X QDR InfiniBand
HCA for offload experiments. In both onload and offload
cases, a Qlogic 12200 36-port InfiniBand switch connected
the InfiniBand HCAs.

Power measurements for the experiments were collected
using a custom power measurement system installed in the
cluster. This power measurement system is an out-of-band
measurement device that collects fine grained samples for
multiple system components through the use of a mother
measurement board and risers on system components. They
enable the inline reading of system power on a per compo-
nent basis without impacting the performance or power con-
sumption of the node. All power information output by the
device used a separate out-of-band network to deliver the
information to a central collection node that was not partic-
ipating in the testing. Further detailed information on these
devices can be found in [1].

For the purposes of the this study, we collected power
data at 10 Hz for NETPIPE microbenchmarks and 1 Hz for



the application benchmarks. To accurately represent their
power usage, the microbenchmarks required a higher resolu-
tion. However, as the application benchmarks had runtimes
that were all greater than 5 minutes, a lower resolution was
sufficient for the comparison.

3.2 Benchmarks and Applications

To further compare the onloaded vs. offloaded networking
approaches, we analyzed the performance and power com-
parisons on benchmarks and applications. In particular, we
compared onloaded and offloaded runs in the MILC appli-
cation [5] and the LULESH [23] and netepipe [28] bench-
marks. Furthermore, we ran profiling runs, using MPIP, to
determine why these applications react to the network cards
differently.

The netpipe microbenchmark suite is a tool designed to
test the bandwidth and latency of a network. We ran the
streaming, streaming without cache effects, and send-recv
ping-pong tests over different message sizes ranging from
two bytes to one megabyte. The MIMD Lattice Computa-
tion (MILC) application was the first application benchmark
we used [14]. It was developed to study quantum chromody-
namics and uses four dimensional lattice computation using
a halo exchange communication pattern. We used an in-
put deck based on the weak scaling NERSC 6 acceptance
benchmarks [3]. In particular, each node has lattice of size
8x8x8x9. The Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics (LULESH) application is the second
large benchmark we used [22]. LULESH is designed to be
a representative application for larger hydrodynamics codes.
For all of our tests, we ran a 120® problem for 130 iterations.
There is a constraint on the number of MPI ranks used for
this code; it has to equal a cube of an integer. Because of
this, we fixed the number of MPI ranks at 8, adding an extra
OMP thread to each rank in the four node case.

MPIP is a lightweight profiling layer for MPI. When run-
ning, MPIP collects statistics including number of calls, type
of calls, and time spent in function calls. This information is
separated by each call written in the source code. We used
this information to analyze communication patterns.

All three benchmarks were run three times for combina-
tions of the following variables: InfiniBand card, number of
nodes, and CPU frequency. We used the InfiniBand cards
mentioned in section 3.1 to test both onload and offload.
The number of nodes varied between 1, 2, and 4 for MILC,
2 and 4 for LULESH, and was not a variable for netpipe.
The CPU frequency was modified using DVFS to 1.4GHz,
1.9GHz, 2.4GHz, 2.9GHz, 3.4GHz, and 3.8GHz. We col-
lected the overall runtime and power statistics of these ap-
plications as well as MPI profiling information on a couple
of separate runs.

4. EXPERIMENTAL RESULTS

4.1 Microbenchmark Evaluation

The netpipe microbenchmarks [28] were used to examine
the impact CPU frequency has on both the power draw and
performance of the different networking approaches. Fig-
ure 2 shows the stream bandwidths along with the power
consumption of both onloaded and offloaded networks. Aside
from the obvious protocol switching points (MPI eager to
rendezvous) causing plateaus and in some cases dips in per-
formance between messages sizes, the important observation

to make from these figures is the spread in performance be-
tween the highest CPU frequencies and the lowest. The
onloaded method expectantly loses some performance when
CPU frequency is lowered, resulting in an near halving of
bandwidth between the 3.8GHz and 1.4 GHz frequencies.
For the offloaded network, the reduction in CPU frequency
impacts network performance by a much smaller degree.
The only noticeable difference in behavior occurs when the
lowest CPU frequency is used. There is more variance in
the bandwidth curve than the other scaling points, suggest-
ing the microbenchmark may not be able to keep up with
the network events at this speed. The performance gaps
between the CPU frequencies remains relatively similar in
terms of percentage of performance loss for all message sizes,
including the smaller message size results.

Removing caching effects from the results as shown in Fig-
ure 3 has little impact on the offloaded case, except for a
slightly reduced throughput. This results in less of a gap
between the slowest speed (1.4GHz) and the other clock
speeds. The impact on the onloaded case is similar for
large messages. However, there are differences for small and
medium sized messages. The drop occurring after 8KiB mes-
sage sizes is caused by the eager-rendezvous protocol switch-
over in MPI. The drop occurring at 64KiB message sizes is
caused by the virtual maximum transmission unit (VMTU)
maximum of 64KiB, necessitating multiple calls to the on-
loaded networking stack.

Examining send-recv performance with bi-directional ping
pong (as opposed to the previous unidirectional streams),
Figure 4, shows that the results are similar to the stream
results with cache effects. The increase in throughput is due
to the bi-directional nature of the test, but generally aligns
with the unidirectional results, in that they are reasonably
within twice of the unidirectional throughput.

A key observation from these results is the relatively small
trade-off in throughput performance from transitioning be-
tween CPU frequencies for both onload and offload at 2.9GHz
and higher. We concentrate on the results including cache
effects for the purpose of this analysis, but the percentages
are similar for the case in which cache effects have been re-
moved. For the onload case 36.4% of the power consumption
can be saved while only losing 2.5% of throughput, while
for the offloaded case 22.5% of power can be saved while
only impacting performance by 0.5%. The offloaded net-
work provides better results in scaling frequency back below
the 2.9GHz level, providing power consumption savings of
approximately 30.5% while impacting performance by only
1.5% when switching from a 3.8GHz clock rate to 1.9GHz.
For the onloaded case, this is impractical, as using a lower
frequency such at 1.9GHz would result in a performance loss
of 35.1%. This emphasizes the potential issues that may
arise when using many-core systems with slower and less
powerful compute cores. It also highlights that if such net-
work onload approaches are to be practical on future many-
core systems, parallelism for communication will be a key
component in achieving performant network throughput.

Finally, Figure 5 shows the latency impacts from slower
CPU frequencies on the onloading and offloading approaches.
The latency penalties associated with lower CPU frequencies
occur for both onloaded and offloaded networking. How-
ever, the offloaded networking approach leads to conver-
gence of latencies for successively lowering CPU frequencies
at smaller message sizes, and all CPU frequencies eventually



Onload Stream Bandwidth (Put) With Power

Offload Stream Bandwidth (Put) With Power

25000 - 140 25000 - 140
130 7 120
20000 120 20000 / " 120
2 1o g - 110
15000 s 15000 s
= 100 £ 2 r “100 =
= 5 £ 5
g H 3 :
3 10000 IS 3 10000 I
5 5
[se] [+e]
5000 { 5000
T T e B % 5D S S % G 7 B Gy T S S 2 0 Zo, 2 S) W o % G 1 B 6 T e S
6 R TR T 0 % % Yy % % o T 16 0 N 0 e
Message Size (bytes) Message Size (bytes)
1aaH 290z 1.4 GHz power = 29 Gz power Jpre— 2901z 1.4 GHe power 29z power
i frr A 4 5380z bower i frrctd 16 G Bover 5381z bower
18— S — L& - 388K pover P §ad 1380 pover $88HE bover
(a) Onload (b) Offload
Figure 2: Onload stream vs. offloaded stream with varying CPU frequencies
Onload Stream Bandwidth (Put) With Power - No Cache Effect Offload Stream Bandwidth (Put) With Power - No Cache Effect
25000 - 140 25000 - 140
- 130
20000 20000 " 120
7 ? - 110
8 8
15000 s 15000 s
s L g = 3 ~100 £
£ 5 £ 5
o
E 3 e -9 3
€ 10000 < £ 10000 I
S s - 80
5000 5000 £~ ;70
- 60
0 L ¥ & 5 & 6 - Tn R Sy e % % & g Oy 6, 7y Pn Sy 7 ° R T O e Gy 6 Ty R S 2 % U § T By 6, Ty 2a S )50
6 R % QPG T F T 6 % g R, 6 R % Q% O G H H K 5 R %% Dy S O
> % o % % % 0 > % % % O oy B
Message Size (bytes) Message Size (bytes)
LaGHe 206Hs ——  14GHepower === 29GHzpower === LagH — 29GHs ——  14GHepower === 29GHzpower ===
ot — et JeaEbover ST SadEhover -oZ Jad frced Je8ikpne TIT fadneve TII
Pt $sat Pt st it S e prci feans —  da8lEpeve cIo o 3s8lEheve DI=
(a) Onload (b) Offload
Figure 3: Onload stream vs. offloaded stream with varying CPU frequencies without cache effects
Onload Bi-directional Ping-Pong Bandwidth with Preposted Recvs Offload Bi-directional Ping-Pong Bandwidth With Preposted Recvs
45000 - 140 45000 140
40000 40000 - 130
35000 35000 - 120
2 30000 2 30000 - 110
8 - S -
2 25000 g S 25000 100
= = = =
3 2 5 2
S 20000 3 S 20000 -9 3
'g o 'g o
8§ 15000 & 15000 - 80
10000 10000 { - 70
5000 5000 - 60
0 = 5 0 = 50
ST P G Ut r H % % /;b‘ré‘%‘ﬂ" ’94,}% ST S B G Nt h G %y (;@rég%}r ,;}rz%

Message Size (bytes)

1.4 GHz power === 29 GHz power ===
119 GHz power — = — 3.4 GHz power — = —
2.4 GHz power — — — 3.8 GHz power ===

(a) Onload

Message Size (bytes)
GHz power === Hz power ===

4 294
S GHz power — — — 3.4 GHz power — = —
4 GHz power — =~ 38 GHz power ===

(b) Offload

Figure 4: Onloaded vs. offloaded bi-directional ping-pong with send-recv and preposted recvs

converge at 1MiB message sizes. For small messages under
512 Bytes, the offloaded networking approach has a flat la-
tency curve, while the onloaded case has a upward slope at
smaller message sizes.

4.2 Application Benchmark Evaluation

We used application benchmarks to examine the perfor-
mance and power tradeoffs in realistic workloads. Using

MILC and LULESH, we measured the runtime and power
usage at different node counts and CPU speeds to compare
onload and offload. Then we ran MPI profiling tests to com-
pare the results of the two applications. It should be noted
that there was not much variance in either the runtime or
power of the application benchmarks; The standard devia-
tions of 80% of the runs were below 1% of the mean, only
2.5% of the runs had a standard deviation greater than 2%,



Onload Bi-directional Ping-Pong Latency With Power

Latency (us)
Power (W)

50
R XS Gy O Iy A S e % Y & e Oy 6, Iy % Sy 7
6‘976’0\%\/;—,4'4'4'4'6‘4,94,74,«3%\%\4_@4_%
Message Size (bytes)

1.4 GHz power === iz power ===
19 GHz power — = —

— o
2 — 2.4 GHz power — — — iz power ===

(a) Onload

Latency (us)

Offload Bi-directional Ping-Pong Latency With Power

Power (W)

o e Sy e % % & T O 6, Jn U S 7
%% %k H % o % %

Message Size (bytes)

Figure 5: Onloaded vs. offloaded bi-directional ping-pong latency

and the maximum standard deviation. was 2.81%.

4.2.1 Runtimes and Power

Figures 6a and 6b show the power and performance results
of MILC. The tests show the runtime change over the CPU
frequency for each of the different node counts. Because the
problem size is scaled to the number of nodes, the runtime
increases when adding nodes, for instance the four node,
onloaded case at 1.4GHz takes over 17 minutes more than
the one node, onloaded case. This can be attributed to a
combination of the extra computation at the boundary and
the communication time between the four nodes.

In all of the cases we measured, the offload version takes
less time than its onload counterpart. For four nodes, it
ranges from a 7.7% to a 10.6% difference between the two,
for two nodes, the range is from 5.3% and 7.8%, and even
the single node case had a small but consistent performance
benefit, ranging from 0.9% to 3.1%. These differences all
steadily decline when we increase the clock speed. This
shows that while the offload cards have a significant effect
on most of the test cases, they have a more significant per-
formance impact on low frequency cores. The power usage
of MILC has less significant differences. The offload HCAs
used between 1.1% and 3.2% more power than their onload
counterpart.

Figures 7a and 7b show the power and performance results
of LULESH. The tradeoffs are less distinctive here. The dif-
ference between runtime and power usage fluctuate around
0%. The change in performance ranges from 0.6% in favor
of offload and 0.6% in favor of onload. The power differences
are similarly low. Since LULESH is not significantly affected
by the InfiniBand card used, it interestingly contrasts with
MILC.

It is important to note that the impact of decreasing CPU
frequency is significant to the performance of the compute
portion of the proxy-applications under study. The goal
of these experiments is to examine systems known to have
little process variation induced performance impact while
limiting the differences between the systems to soley the
networking hardware. By using the same switch for both
onload and offload approaches, we have isolated other po-
tential performance and power related impacts due to fac-
tors not of interest to this study. In order to confirm the
results, we conducted some MILC experiments on the exact

same hardware with the network hardware swapped. These
experiments confirmed that process variation between the
servers used for the experiments was negligible.

4.2.2  Profiling The Applications

An interesting trend emerges when comparing these re-
sults. Offloading has a measurable performance benefit on
MILC but LULESH is nearly indistinguishable from the on-
loaded environment. To understand the difference between
these two applications, we profiled the two applications using
MPIP [33]. These tests were run at 3.8GHz on four nodes
with the QLogic onloaded InfiniBand cards. The pieces of
information we gathered are percentage of time the applica-
tion spent in MPI, the distribution of time within MPI, and
the number and distribution of function calls.

Both applications spent a fair amount of time in MPI;
MILC spent 15% of it’s runtime in MPI, while LULESH
spent 12%. However, the number of MPI calls was signifi-
cantly different. MILC called MPI 4,011,216 times over its
runtime, which ran for 1382.45 seconds on average. Compar-
atively, LULESH made substantially fewer calls, with 42,904
MPI calls over it’s runtime, which ran for an average of 81.64
seconds. This equates out to 2901.5 MPI calls per second for
MILC and 525.5 MPI calls per second for LULESH. Table 1
shows the distribution of MPI calls to specific functions. The
notable differences are MILC has larger percentage of wait
calls and the lower percentage of Allreduce calls, compared
to LULESH.

Table 2 shows the distribution of time within MPI calls.
The differences here are stark; MILC spends a reasonable

amount of time in Allreduce, Isend, and Wait however, LULESH

spends almost no time in Isend, mainly spending time in
Allreduce and Wait. The time spent in Irecv and Isend
in MILC illustrates that it is performing more significant
point-to-point communication than LULESH. MILC is a
memory bound code that can be sensitive to network per-
formance, as such it is not surprising that the performance
of MILC is impacted by lowering CPU frequency in an on-
loaded networking situation. LULESH is primarily depen-
dent on the performance of Allreduce for good network-
ing performance. These results show that Allreduce per-
formance doesn’t change significantly between the onloaded
and offloaded networking approaches.

These results indicate that the performance benefit of Of-



Call MILC | LULESH
Allreduce 1.15% 2.22%

Irecv 24.71% 30.34%
Isend 24.71% 30.34%
Wait 49.42% 30.34%
Waitall 0.00% 6.73%
Other 0.00% 0.04%

Table 1: Distribution of MPI Calls

Call MILC | LULESH
Allreduce | 29.86% 42.68%
Irecv 1.71% 0%
Isend 13.99% 0.2%
Wait 54.43% 54.02%
Other 0.01% 0.4%

Table 2: Distribution of Time Within MPI on a Standard
Run

floading is seen primarily in codes that have a large number
of small communication calls, rather than a few larger calls.
MILC and LULESH spent similar percentages of their run-
times in MPI, but MILC relies on a large number of small
point to point and collective operations and LULESH fo-
cuses on small number of large collectives that make up most
of its time in MPI.

5. DISCUSSION

This paper has shown that by using host CPUs to perform
network stack processing, networks incur CPU frequency
sensitivity. A logical conclusion from this is that changes in
CPU design, either through frequency reduction or through
migration to many-core architectures, which result in a de-
crease in core sophistication as well as frequency may lead to
network performance degradation over previous generations.
While it is expected that future multi-core server class CPUs
will continue to improve their aggregate performance, single-
thread performance is not expected to continue to improve
in proportion to aggregate performance increases. As such,
offloaded networking provides a viable alternative for future
generation systems as the networking ASIC approach can
continue to provide good networking performance regard-
less of CPU changes as long as future CPUs can continue to
provide low-latency networking requests.

While future systems will provide many compute cores
and rapid intra-node communication methods, the question
of how inter-node communications will be implemented re-
mains an open question. The results presented in this paper
demonstrate that the offloaded networking model will con-
tinue to provide excellent performance independent of the
number and capabilities of compute cores available on fu-
ture platforms. These results still rely on compute cores to
perform MPI-level message matching, which is possible to
offload to specialized hardware [7,11]. When offloading such
tasks to network hardware, network CPU frequency sensi-
tivity will be further reduced.

The onloaded networking approach has demonstrated that
it is more frequency sensitive than offloaded networking.
Utilizing multiple cores dedicated to networking processing
may provide better aggregate bandwidth than using a single
core, mitigating this sensitivity for bandwidth limited com-

munications. However, the latencies associated with slower
core frequencies and message processing will not be alle-
viated through the use of multiple dedicated communica-
tion cores. This lends further argument towards the use of
dedicated offloaded networking hardware, which can provide
both good bandwidth and latency.

Power consumption is also a concern for future capability-
class systems. The experiments performed in this paper have
demonstrated that networking performance for offloaded ap-
proaches can provide good network performance with major
reductions in the range of 30% with less than 2% or network-
ing performance loss. This reduction in power is significant
when operating power capped large-scale systems. For over
provisioned power-capped systems, the reduction in power
can be used to operate additional computational resources,
reducing application wall clock time. However, such savings
can only be realized during communication periods, which
for some applications may not be a large proportion of ex-
ecution time. Therefore, power savings may be limited by
application behavior and for applications capable of overlap-
ping communication and computation, such savings may not
be desirable. It is important to note that the power results
have demonstrated that offloaded vs. onloaded networks are
similar in their power consumption, thereby offering neither
approach an advantage in terms of raw power consumption.

Further application studies showed that onload and of-
fload networking approaches can diverge in performance at
lowered CPU frequencies for some applications while oth-
ers are less impacted by CPU frequency changes. This il-
lustrates that some applications are less frequency sensitive
with respect to network performance, and therefore a sub-
set of applications may be able to operate well with a fu-
ture onloaded network approach. However, the offloaded
networking approach performs well with both of the appli-
cations studied leading to the conclusion that offloaded net-
working provides several benefits over onloaded networking
while incurring very few negatives, aside from a slightly in-
creased latency for small messages when operating at full
CPU speeds.

6. RELATED WORK

The offload-versus-onload debate for high-performance in-
terconnects has been ongoing since network interfaces moved
from the memory bus to the I/O bus in early 1990’s [30].
Early distributed memory on massively parallel processing
machines where the network interface was on the memory
bus, such as the Intel Paragon, had multiple processors per
node and allowed one of these processors to be dedicated to
network protocol processing. With the advent programmable
network interface controllers (NICs), such as Myrinet [10]
and Quadrics [25], offloading a significant portion of network
protocol processing to a dedicated NIC processor became
possible. For MPI-based HPC applications, these networks
allowed offloading of latency-sensitive operations, such as
collective communication operations. However, the benefit
of offloading complex operations, such as tag matching and
queue traversals required for MPI point-to-point communi-
cation operations, has continued to be debated. Proponents
of onload have argued that the low performance of embed-
ded processors in the NIC is prohibitive and that dedicating
host processor cores is not only more efficient, but is also
more cost effective, especially as the number of cores per
node continues to grow.



MILC Onload Runtime with Power

5500

5000

4500
2 4000 g
> B
:
Z
S as00 S

3000

2500

2000

4
CPU Speed (GHz)
1 Node ——— 2 Noces 4 odes ———
T Nodes'Power —————= 2 Nodes Power 4 Nodos Powsr —————=
(a) Onload
Figure 6: Onload vs. offloaded
LULESH Onload Runtime with Power

2400

2200

2000

1800
@ 1600 g
°
E 1400 ]
£ 3
& 1200 I

1000

800

600

400

CPU Speed (GHz)

2 Nodes Power = ===

(a) Onload

2Node

4Nodes ———

Runtime (S)

MILC Offload Runtime with Power

5500

5000

4500

4000

Power (W)

3500

3000

2500

2000
7,

CPU Speed (GHz)
4 Nodes —————
4 Nodes Power —— ===~

(b) Offload

1 Node ————— 2Nodes
1 Nodes Power = = ===~ 2 Nodes Power

runs of the MILC application

Runtime (S)

LULESH Offload Runtime with Power
2400

2200
2000
1800
1600
1400
1200
1000

800

600

400

CPU Speed (GHz)

2Node

2Nodes Power ===~

(b) Offload

4Nodes ——— 4Nodes Power = ===

Figure 7: Onload vs. offloaded runs of the LULESH application

Most interconnects used in large-scale HPC systems today
incorporate some offload capability. IBM’s Blue Gene/Q [13]
and PERCS [4] networks both support offloading of MPI col-
lective operations. Likewise, Cray’s Gemini [2] and Aries [16]

networks support MPI collective communication offload. With

the ConnectX-2 [19] product, InfiniBand network adapters
from Mellanox also began supporting MPI collective com-
munication offload. However, these networks do not offload
the more complex tag matching and queue traversal mech-
anisms needed to handle MPI point-to-point communica-
tion operations. These networks rely on the MPI process
running on host processors for this capability. Techniques
like Cray’s Core Specialization [26] provide a mechanism for
dedicating host processor cores to running an MPI progress
thread. This technique has also been used to improve the
performance of TCP/IP protocol stack processing [27].
There have been a number of offloading attempts for com-
modity networks such as ethernet. TCP Offload Engines
(TOEs) are an offload scheme that processes the the major-
ity of TCP processing. Feng et al, did an in-depth study
of TOEs [17]. Large Receive Offload [20] is a receiver-side
offload scheme that aggregates messages on the NIC to pro-
vide data in fewer large chunks. Large Segment Offload [9]
is a sender side offload scheme that separates a large request
into a number of smaller chunks to send across the network.
More recently, power and energy efficiency of the inter-

connect has become an important consideration for large-
scale data centers [12,24] and HPC systems [21,29], provid-
ing a new perspective on the offload-versus-onload debate.
Other works have previously studied the impact that power-
efficient cores have on MPI message rate [8].

7. CONCLUSIONS AND FUTURE WORK

In examining the differences between onloaded and of-
floaded networks for varying host CPU frequencies, it has
been observed that the offloaded networking approach pro-
vides approximately equivalent or superior performance at
lower frequencies. While this finding cannot be used to
conclusively state that offloaded networking is key for fu-
ture many-core systems networking performance, it provides
important evidence to be used in future evaluation of net-
working approaches for future generation compute systems.
The microbenchmark results clearly illustrate the potential
benefits of network offloading, with power savings in the
20.5% range with only 0.5% performance loss and good per-
formance down to 1.5% performance loss and power reduc-
tions of 30.5%. While onloading can reap greater power
consumption drops, performance at the 1.4GHz level shows
that onloading results in a loss of over half of the available
throughput at higher CPU frequencies. This demonstrates
the tradeoffs in single thread communications performance
that would occur on systems with lowered CPU frequencies,



and can reasonably be expected to be even lower if more
simplified little-cores are used.

The conclusions reached from this study are somewhat
intuitive and while the high-performance computing net-
working community has pre-supposed that such outcomes
were likely, no study has yet addressed this issue. While
the results are straightforward, they provide the foundation
for discussions on the merits of onload versus offload for
next generation systems. These results clearly demonstrate
that single-thread performance of onloaded networking solu-
tions can be restrictive in emerging many-core architectures.
While multi-threaded approaches may alleviate some of the
negative performance implications that this study exposes in
single-threaded performance, the number of compute cores
needed to close this gap is an open question that is currently
being researched through studies into methods of providing
parallelism in MPI. We can therefore conclude that at the
current time, an offloaded networking approach can provide
good networking performance for slower frequency proces-
sors, while an onloading approach will not be viable with-
out further research and improvements to multi-core based
network processing for high-performance computing.

In the future, we plan to expand this study by examining
methods of improving multi-threading in MPI to explore if
onloaded networking can provide similar performance to of-
floaded networks in many-core architectures. If it is possible
to provide similar performance we will investigate the num-
ber of resources that need to be invested to provide offload
equivalent network performance.

8. REFERENCES

[1] Omited for blind review.

[2] R. Alverson, D. Roweth, and L. Kaplan. The Gemini
system interconnect. In High Performance
Interconnects (HOTI), 2010 IEEE 18th Annual
Symposium on, pages 83-87, Aug 2010.

[3] K. Antypas. Nersc-6 workload analysis and benchmark
selection process. Lawrence Berkeley National
Laboratory, 2008.

[4] B. Arimilli, R. Arimilli, V. Chung, S. Clark,

W. Denzel, B. Drerup, T. Hoefler, J. Joyner, J. Lewis,
J. Li, N. Ni, and R. Rajamony. The PERCS
high-performance interconnect. In IEEE Symposium
on High-Performance Interconnects, August 2010.

[5] C. Aubin et al. Fermilab lattice, milc, and hpged
collaborations. Phys. Rev. Lett, 94:011601, 2005.

[6] B. W. Barrett, R. Brightwell, R. E. Grant, S. D.
Hammond, and K. S. Hemmert. An evaluation of MPI
message rate on hybrid-core processors. International
Journal of High Performance Computing Applications,
28(4):415-424, 2014.

[7] B. W. Barrett, R. Brightwell, R. E. Grant,

S. Hemmert, K. T. Pedretti, K. Wheeler, K. D.
Underwood, R. Reisen, A. B. Maccabe, and

T. Hudson. The Portals 4.0.2 network programming
interface. Sandia National Laboratories, October 2014.
Technical Report SAND2014-19568.

[8] B. W. Barrett, S. D. Hammond, R. Brightwell, and
K. S. Hemmert. The impact of hybrid-core processors
on MPI message rate. In Proceedings of the 20th
FEuropean MPI Users’ Group Meeting, EuroMPI 13,
pages 6771, New York, NY, USA, 2013. ACM.

[9] J. S. Binder, G. W. Connery, G. Jaszewski, and W. P.
Sherer. Offload of tcp segmentation to a smart
adapter, Aug. 10 1999. US Patent 5,937,169.

[10] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
gigabit-per-second local area network. IEEE Micro,
15(1):29-36, Feb. 1995.

[11] R. Brightwell, K. T. Pedretti, K. D. Underwood, and
T. Hudson. Seastar interconnect: Balanced bandwidth
for scalable performance. Micro, IEEE, 26(3):41-57,
2006.

[12] J. Byrne, J. Chang, K. T. Lim, L. Ramirez, and
P. Ranganathan. Power-efficient networking for
balanced system designs: Early experiences with
PCle. In Proceedings of the 4th Workshop on
Power-Aware Computing and Systems, HotPower '11,
pages 3:1-3:5, New York, NY, USA, 2011. ACM.

[13] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger,
Y. Sugawara, S. Kumar, V. Salapura, D. L.
Satterfield, B. Steinmacher-Burow, and J. J. Parker.
The IBM Blue Gene/Q interconnection network and
message unit. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC '11, pages
26:1-26:10, New York, NY, USA, 2011. ACM.

[14] M. Collaboration et al. Mimd lattice computation
(milc) collaboration home page. Information available
at http://physics.indiana.edu/sqg/milc. html.

[15] J. Dinan, R. E. Grant, P. Balaji, D. Goodell,

D. Miller, M. Snir, and R. Thakur. Enabling
communication concurrency through flexible message
passing interface endpoints. volume 28, pages 390-405.
Sage Publishing, 2014.

[16] G. Faanes, A. Bataineh, D. Roweth, T. Court,

E. Froese, B. Alverson, T. Johnson, J. Kopnick,

M. Higgins, and J. Reinhard. Cray Cascade: A
scalable HPC system based on a Dragonfly network.
In Proceedings of the ACM/IEEE International
Conference on High-Performance Computing,
Networking, Storage, and Analysis (SC’12), November
2012.

[17] W.-c. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and
D. K. Panda. Performance characterization of a
10-gigabit ethernet toe. In High Performance
Interconnects, 2005. Proceedings. 13th Symposium on,
pages 58-63. IEEE, 2005.

[18] A. Friedley, G. Bronevetsky, T. Hoefler, and
A. Lumsdaine. Hybrid mpi: efficient message passing
for multi-core systems. In Proceedings of SC13:
International Conference for High Performance
Computing, Networking, Storage and Analysis,
page 18. ACM, 2013.

[19] R. Graham, S. Poole, P. Shamis, G. Bloch, G. Bloch,
H. Chapman, M. Kagan, A. Shahar, I. Rabinovitz,
and G. Shainer. ConnectX-2 InfiniBand management
queues: First investigation of the new support for
network offloaded collective operations. In Cluster,
Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on, pages
53-62, May 2010.

[20] L. Grossman. Large receive offload implementation in
neterion 10gbe ethernet driver. In Linuz Symposium,



[21]

[22]

[27]

[32]

[33]

page 195, 2005.

T. Hoefler. Software and hardware techniques for
power-efficient HPC networking. Computing in
Science Engineering, 12(6):30-37, Nov 2010.

I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen,
Z. Devito, M. Gokhale, R. Haque, R. Hornung,

J. Keasler, D. Laney, et al. Lulesh programming model
and performance ports overview. Lawrence Livermore
National Laboratory, Tech. Rep. LLNL-TR-608824,
2012.

I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates
and changes. Technical Report LLNL-TR-~641973,
August 2013.

G. Liao, X. Zhu, S. Larsen, L. Bhuyan, and

R. Huggahalli. Understanding power efficiency of
TCP/IP packet processing over 10GbE. In High
Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, pages 32-39, Aug 2010.

F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and

E. Frachtenberg. The Quadrics network:
High-performance clustering technology. IEEE Micro,
22(1):46-57, January/February 2002.

H. Pritchard, D. Roweth, D. Henseler, and P. Cassella.
Leveraging the Cray Linux Environment Core
Specialization feature to realize MPI asynchronous
progress on Cray XE systems. In Proceedings of the
Cray User Group Conference, May 2012.

L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
Isostack: Highly efficient network processing on
dedicated cores. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference,
USENIXATC’10, pages 5-5, Berkeley, CA, USA, 2010.
USENIX Association.

Q. O. Snell, A. Mikler, and J. L. Gustafson. Netpipe:
A network protocol independent performance
evaluator. 6, 1996.

E. Totoni, N. Jain, and L. Kale. Toward runtime
power management of exascale networks by on/off
control of links. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2013
IEEFE 27th International, pages 915-922, May 2013.
K. Underwood, R. Brightwell, and S. Hemmert.
Network interfaces for high-performance computing.
In A. Gavrilovska, editor, Attaining High-Performance
Communication: A Vertical Approach, pages 149-168.
CRC Press, 2009.

U.S. Department of Energy’s Office of Science. The
opportunities and challenges of exascale computing,
2010.

V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan,

J. Franklin, and I. Moraru. Energy-efficient cluster
computing with fawn: Workloads and implications. In
Proceedings of the 1st International Conference on
Energy-Efficient Computing and Networking, pages
195-204. ACM, 2010.

J. Vetter and C. Chambreau. MPIp: Lightweight,
scalable MPI profiling. URL: http://www. linl.
gov/CASC/mpiP, 2005.



