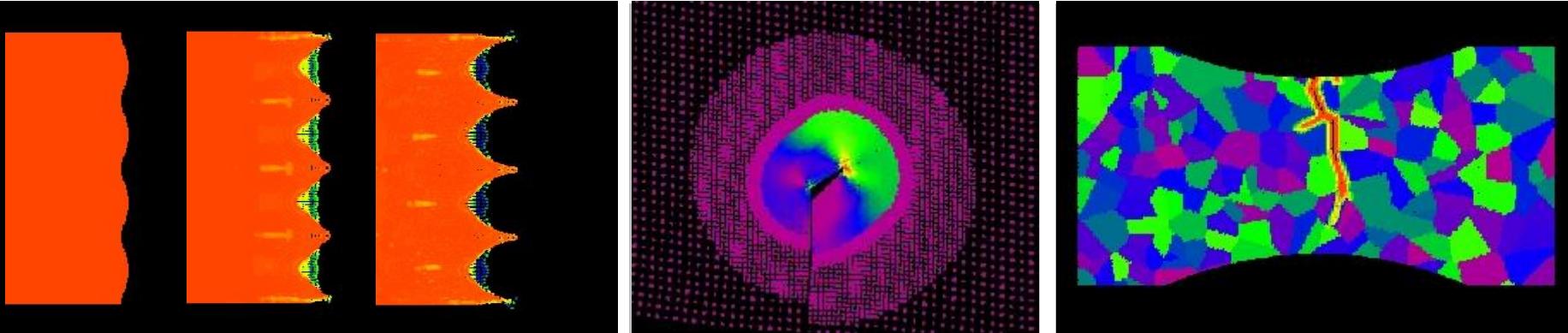


Exceptional service in the national interest



Peridynamics: Historical and future perspectives

Stewart Silling

Peridynamics MURI Meeting, December 13, 2015

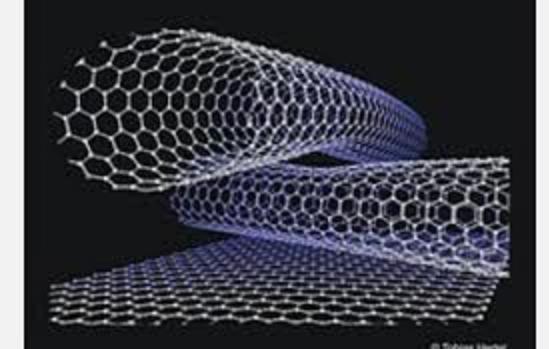
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Outline

- Purpose of peridynamics
- Basic equations
- Examples of capabilities
 - Success stories
- Strengths and weaknesses
 - Research priorities

What should be modeled as a classical continuum?

- Commercial finite element codes approximate the equations of classical continuum mechanics.
 - Assumes a continuous body under smooth deformation.
 - When is this the right approximation?



Carbon nanotubes (image: nsf.gov)

$$\nabla \cdot \sigma + b = 0$$

Augustin-Louis Cauchy, 1840
(image: Library of Congress)

Fragmented glass (image: Washington Glass School)

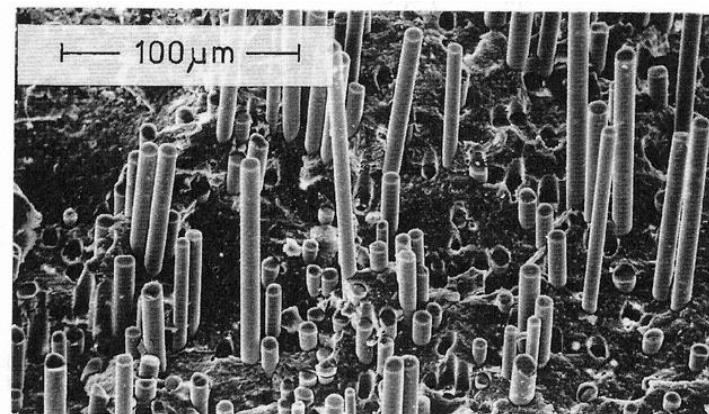
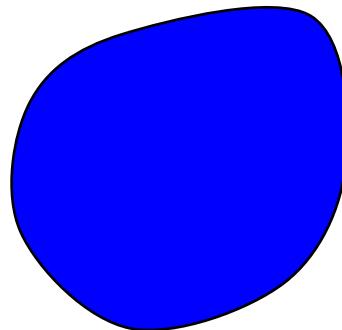


Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of 'Silceram' glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D. Rawlings.)

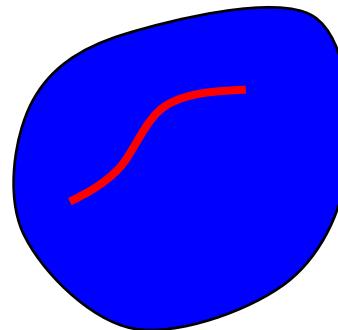
Complex failure progression in a composite

Purpose of peridynamics

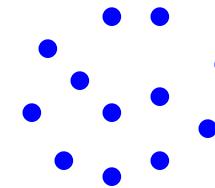
- To unify the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body



Continuous body
with a defect

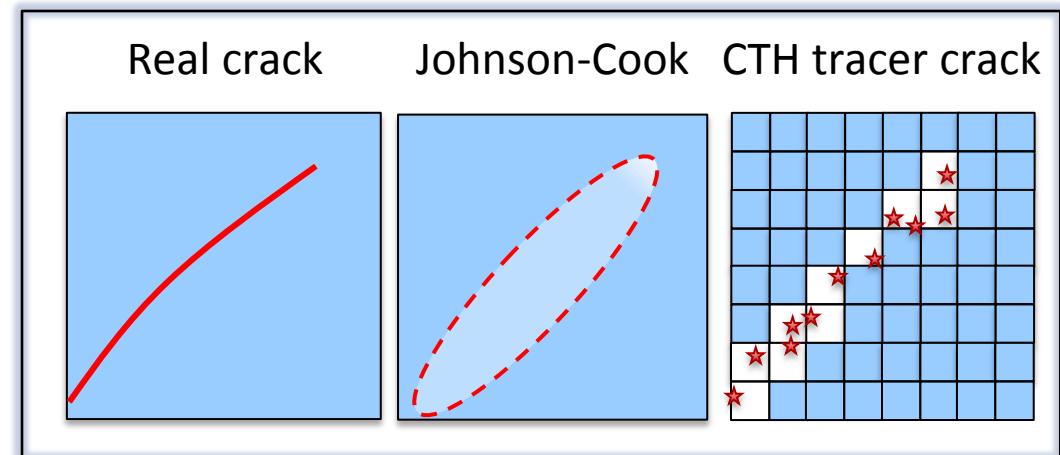


Discrete particles

- Why do this?
 - Avoid coupling dissimilar mathematical systems (A to C).
 - Model complex fracture patterns.
 - Communicate across length scales.

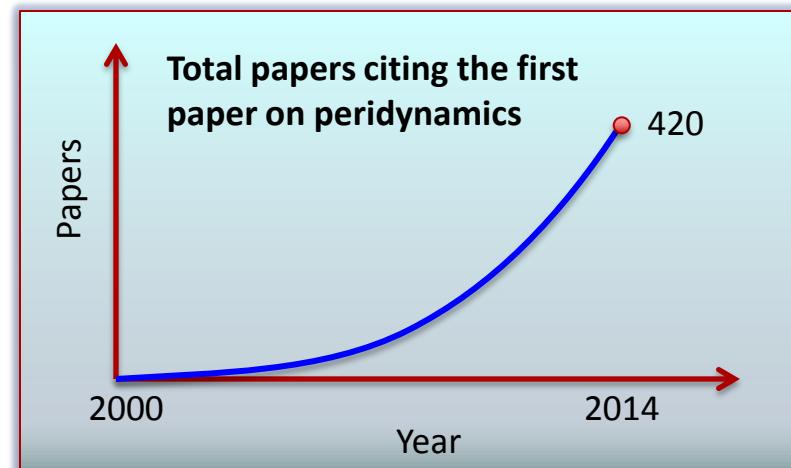
Personal view of PD history

- 1980's
 - Mathematical theory of singularities in elastic solids
- 1990's:
 - Johnson-Cook, similar models in CTH
 - Tracer crack & shear band model in CTH
 - 1998: "The realization"
- 2000's:
 - Bond-based peridynamics
 - Rush to applications
 - State-based peridynamics
 - Math, physics foundations
- 2010's:
 - Increasing interest worldwide
 - Sierra, Peridigm
 - Plasticity
 - Address practical issues
 - Wake-up calls
 - Thermodynamics
 - Shock waves
 - Multiscale
 - Multiphysics
 - LS-DYNA

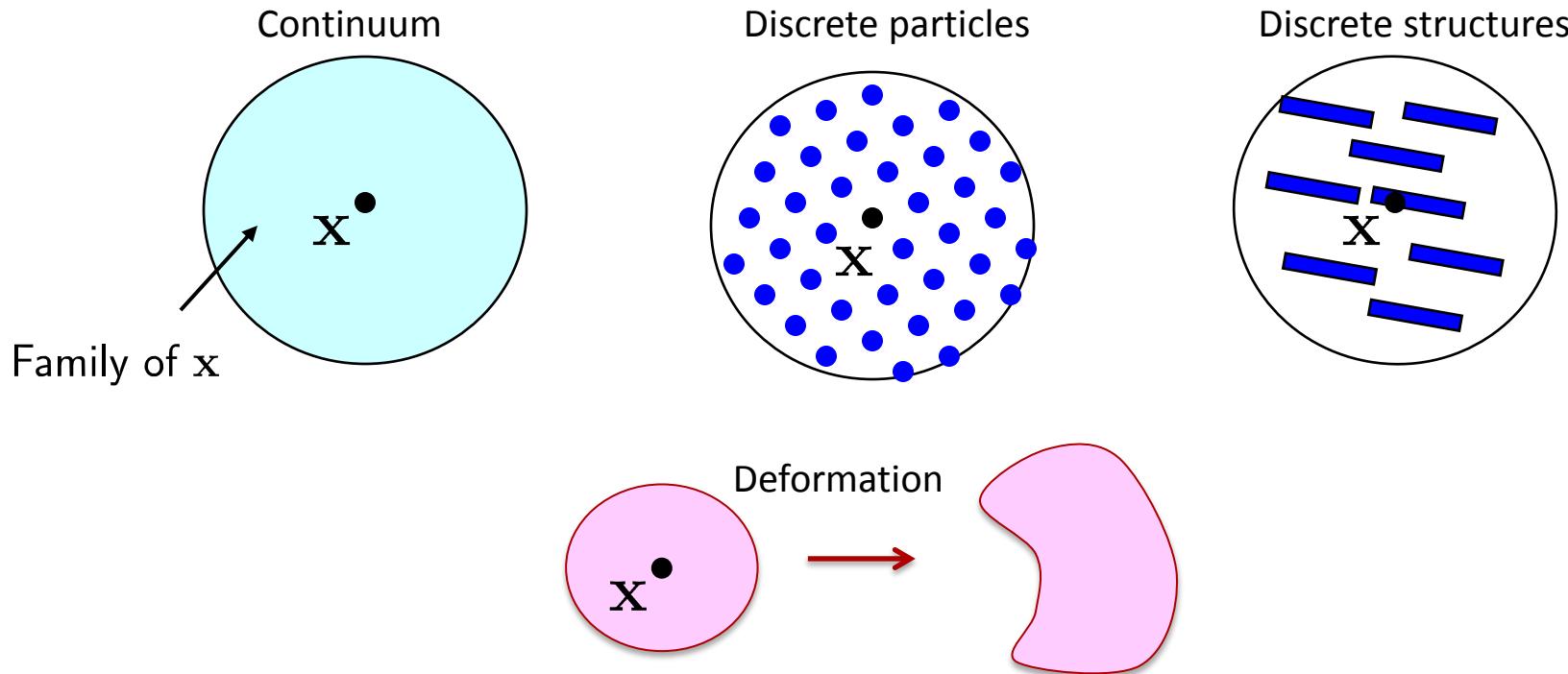


Peridynamics: Who's interested?

- Research has been conducted at:
 - MIT
 - Caltech
 - Harvard University
 - Northwestern University
 - University of Illinois, Urbana-Champaign
 - University of New Mexico
 - University of Arizona
 - University of California, Berkeley
 - University of Texas, San Antonio
 - University of Texas, Austin
 - Penn State University
 - Columbia University
 - University of Alabama
 - Louisiana State University
 - Carnegie Mellon University
 - Michigan State University
 - Florida State University
 - University of Nebraska, Lincoln
 - KAUST
 - ... others worldwide



Point of departure: Strain energy at a point

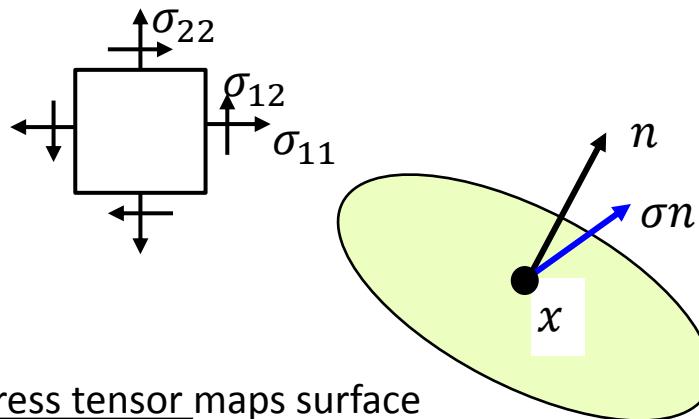


- Key assumption: the strain energy density at x is determined by the deformation of its family.

The nature of internal forces

Standard theory

Stress tensor field
(assumes continuity of forces)



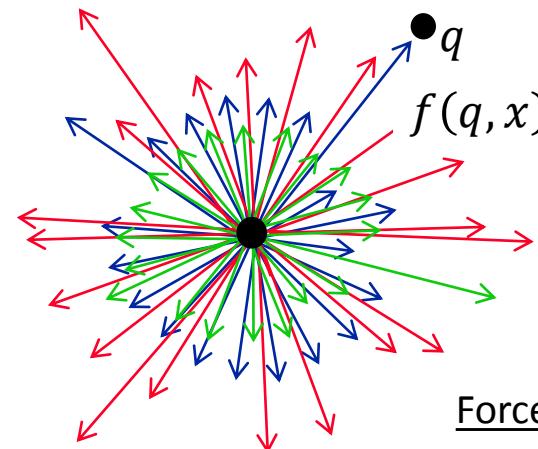
Stress tensor maps surface
normal vectors onto
surface forces

$$\rho \ddot{u}(x, t) = \nabla \cdot \sigma(x, t) + b(x, t)$$

Differentiation of surface forces

Peridynamics

Bond forces between neighboring points
(allowing discontinuity)



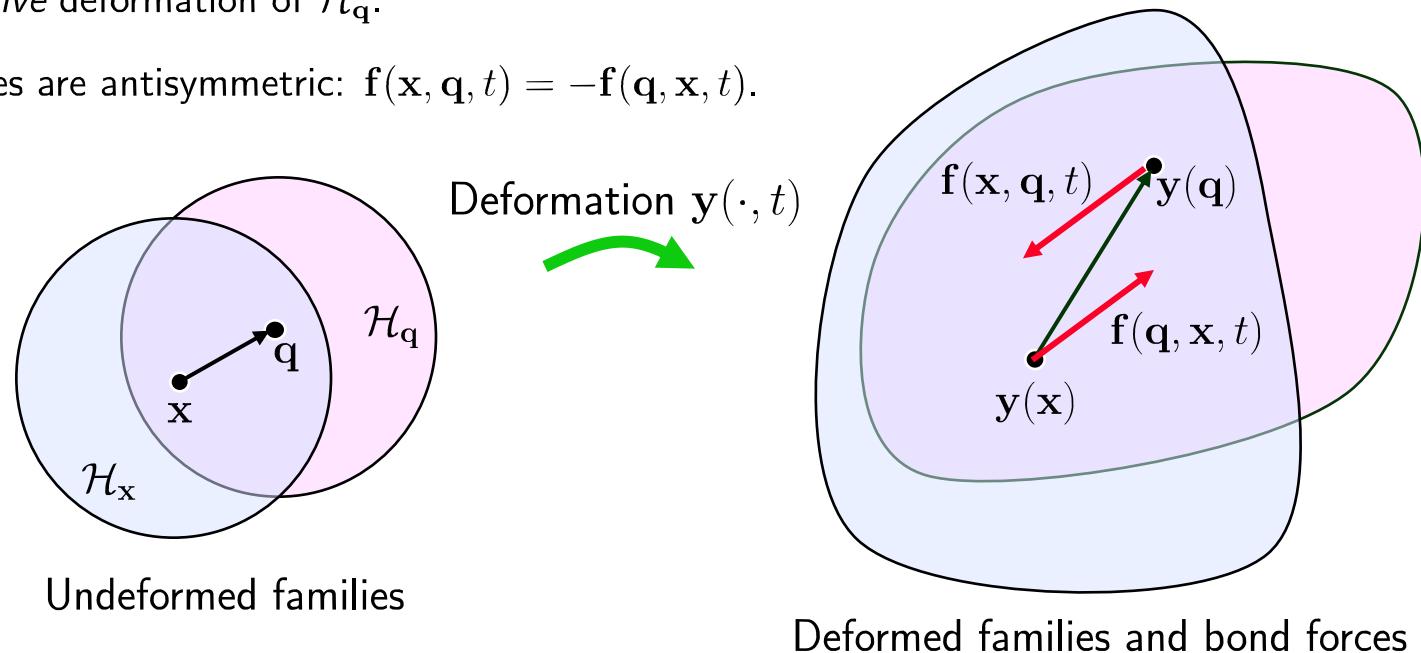
Force state maps bonds
onto bond forces

$$\rho \ddot{u}(x, t) = \int_{H_x} f(q, x) dV_q + b(x, t)$$

Summation over bond forces

Material modeling: What determines bond forces?

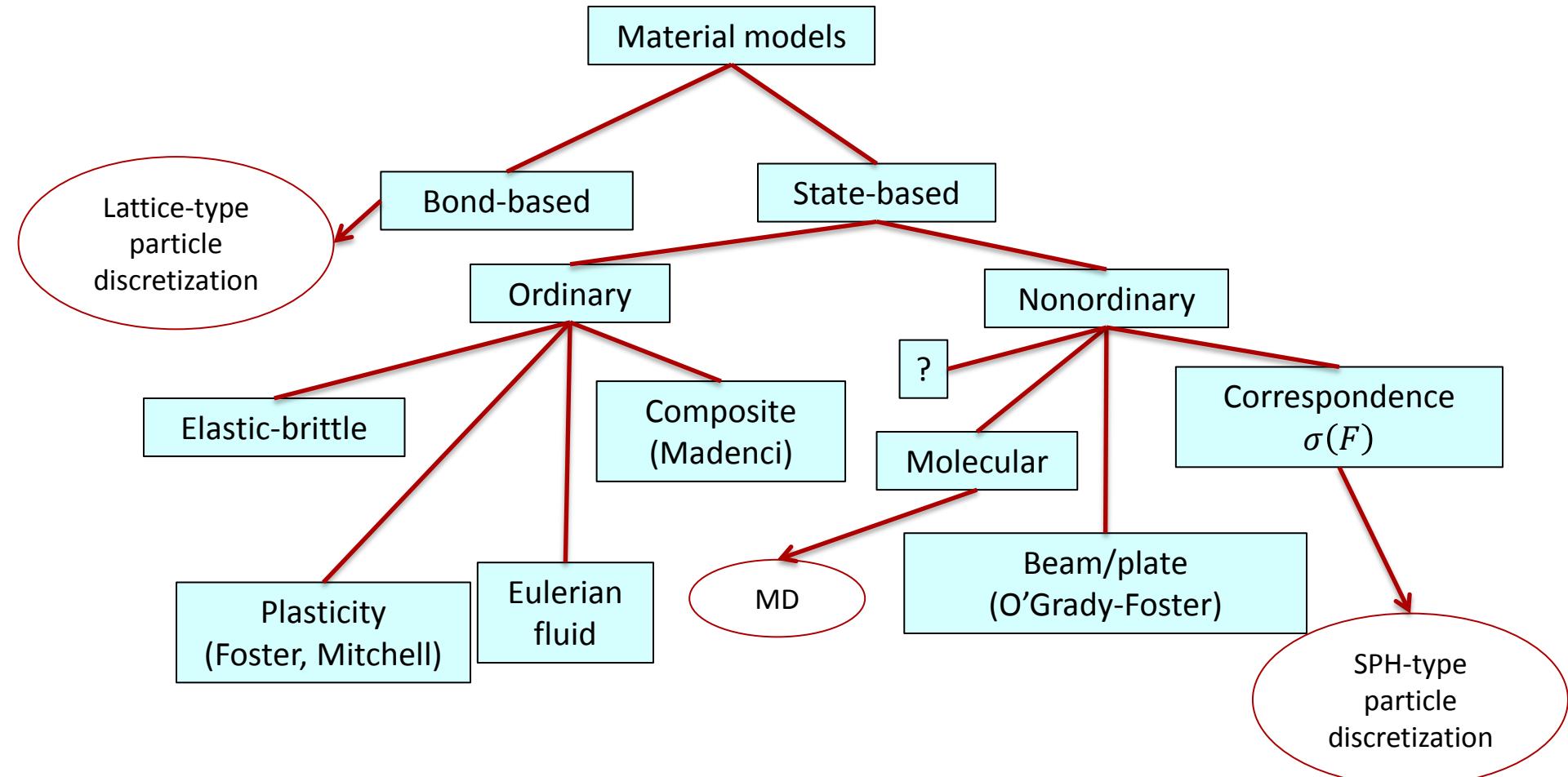
- Each pairwise bond force vector $\mathbf{f}(\mathbf{q}, \mathbf{x}, t)$ is determined jointly by:
- the *collective* deformation of \mathcal{H}_x , and
- the *collective* deformation of \mathcal{H}_q .
- Bond forces are antisymmetric: $\mathbf{f}(\mathbf{x}, \mathbf{q}, t) = -\mathbf{f}(\mathbf{q}, \mathbf{x}, t)$.



In state notation: $\mathbf{f}(\mathbf{q}, \mathbf{x}) = \mathbf{T}[\mathbf{x}] \langle \mathbf{q} - \mathbf{x} \rangle - \mathbf{T}[\mathbf{q}] \langle \mathbf{x} - \mathbf{q} \rangle$

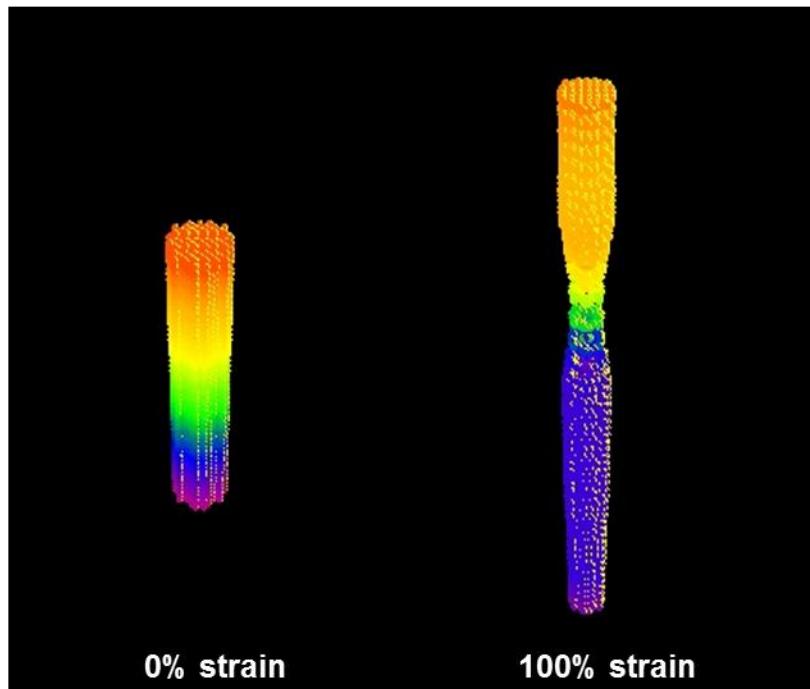
Types of material models

- A material model determines the bond forces in the family according to the deformation of the family.

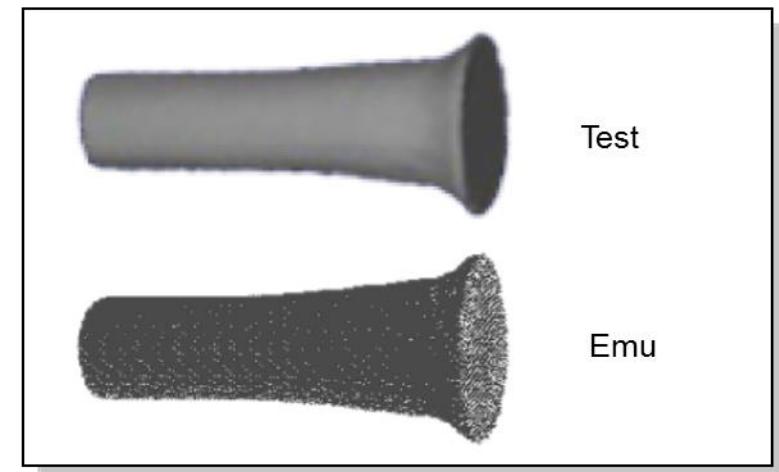


Any standard material model can be used in peridynamics

- Example: Large-deformation, strain-hardening, rate-dependent material model.
 - Material model implementation by John Foster.



Necking of a bar under tension



Taylor impact test

Peridynamic vs. local equations

- Peridynamic theory is similar in structure to the local theory but uses nonlocal operators.

State notation: State \langle bond \rangle = vector

<i>Relation</i>	<i>Peridynamic theory</i>	<i>Standard theory</i>
Kinematics	$\underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q}, \mathbf{x}) = \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}})$	$\boldsymbol{\sigma} = \hat{\boldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle dV_{\mathbf{q}} = \mathbf{0}$	$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$
Elasticity	$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}}$ (Fréchet derivative)	$\boldsymbol{\sigma} = W_{\mathbf{F}}$ (tensor gradient)
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$

$$\underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} := \int_{\mathcal{H}} \underline{\mathbf{T}}\langle \xi \rangle \cdot \dot{\underline{\mathbf{Y}}}\langle \xi \rangle dV_{\xi}$$

Peridynamic form of thermodynamics

- First law expression:

$$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + r + h$$

where ε is the internal energy density, r is the source rate, h is the rate of heat transport.

- Second law expression:

- SS & Lehoucq, Adv Appl Mech (2010)
- Oterkus, Madenci & Agwai, JMPS (2014)

$$\theta \dot{\eta} \geq r + h$$

where θ is the temperature and η is the entropy.

- Free energy:

$$\psi = \varepsilon - \theta \eta.$$

- Assume a material model of the form

$$\psi(\underline{\mathbf{Y}}, \theta)$$

- First + second laws imply (through Coleman-Noll or similar method):

Frechet derivative

$$\underline{\mathbf{T}} = \psi_{\underline{\mathbf{Y}}}, \quad \eta = -\psi_{\theta}.$$

Multiphysics: Nonlocal diffusion

- We can extend the dependence of free energy:

$$\psi(\underline{\mathbf{Y}}, \theta, z, \underline{\phi})$$

- Agwai, thesis, U.Ariz. (2011)
- Burch & Lehoucq (2011)
- Bobaru & Duangpanya, J.Comp.Phys. (2012)
- Du et al (2012)

where z is the concentration of a chemical species, and $\underline{\phi}$ is the *damage state*.

- Recall momentum balance:

$$\rho(\mathbf{x})\ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}, t) \, d\mathbf{x}' + \mathbf{b}(\mathbf{x}).$$

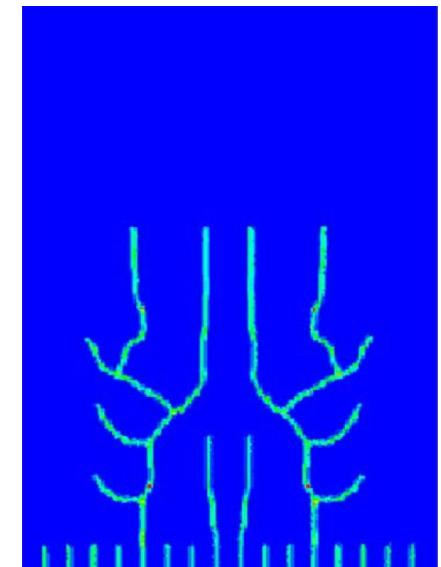
- Nonlocal forms of transport equations for heat, concentration:

$$C_v \dot{\theta}(\mathbf{x}, t) = \int_{\mathcal{H}} q(\mathbf{x}', \mathbf{x}, t) \, d\mathbf{x}' + r(\mathbf{x})$$

where C_v =specific heat, q =bond heat flux, r =energy source rate;

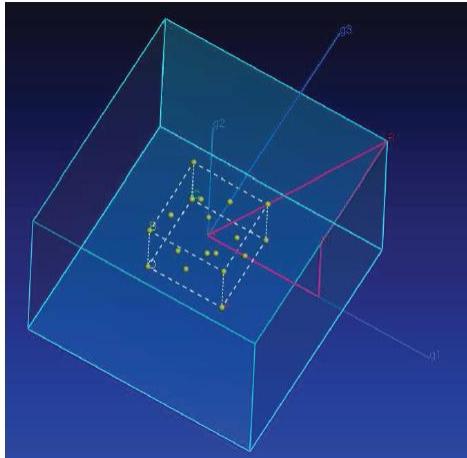
$$\dot{z}(\mathbf{x}, t) = \int_{\mathcal{H}} J(\mathbf{x}', \mathbf{x}, t) \, d\mathbf{x}' + s(\mathbf{x})$$

where J =concentration flux, s =source rate.

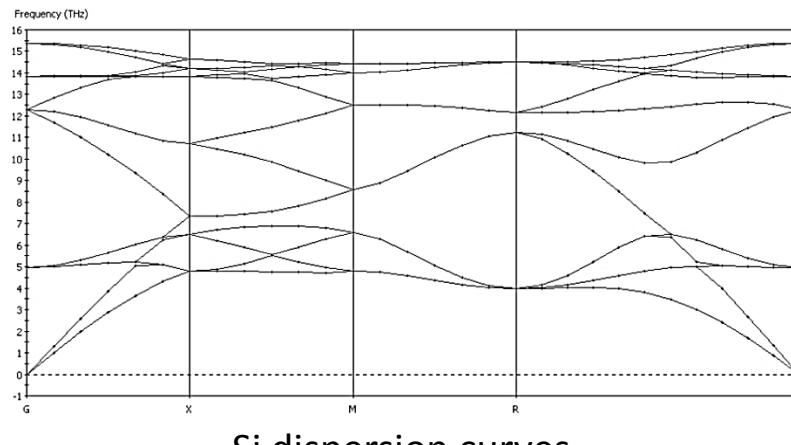
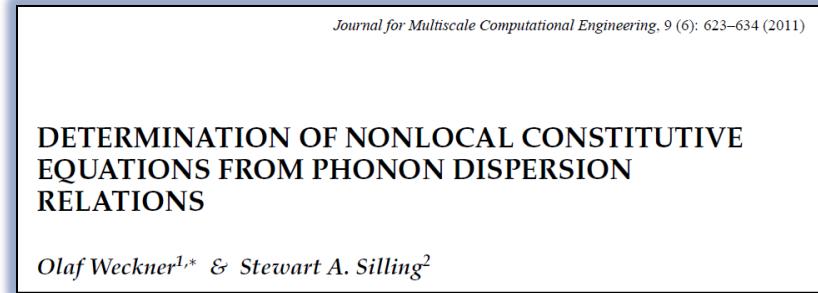
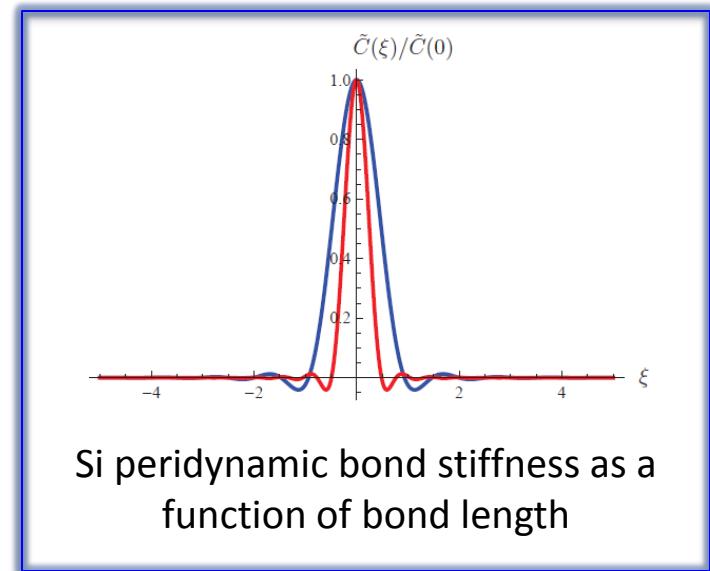


Simulated crack growth in a glass plate driven by thermal gradients
(Kilic & Madenci, 2009)

Bond response can be found from phonon dispersion curves

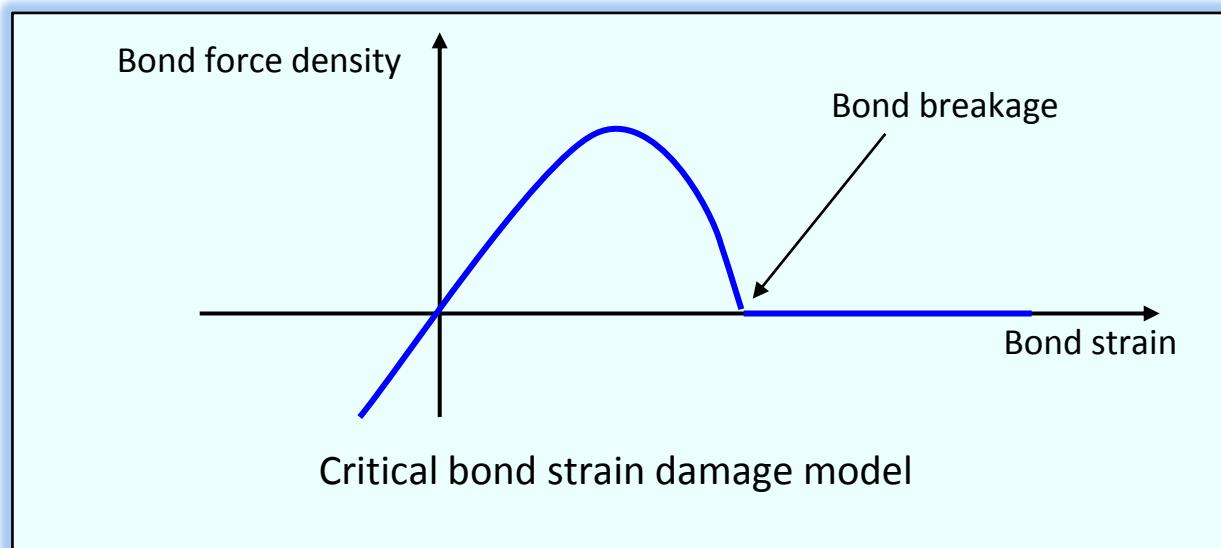


Si crystal structure

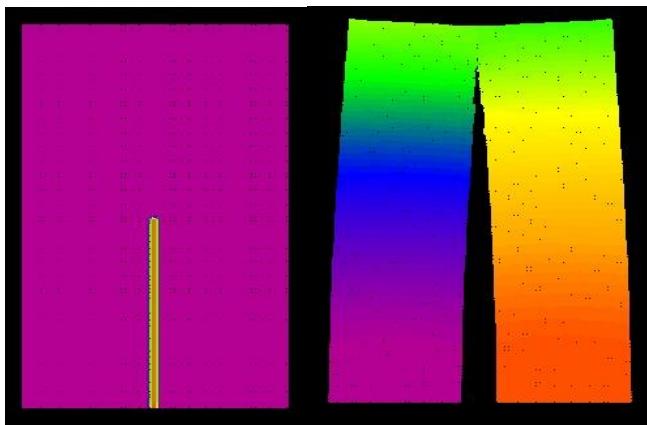


Damage due to bond breakage

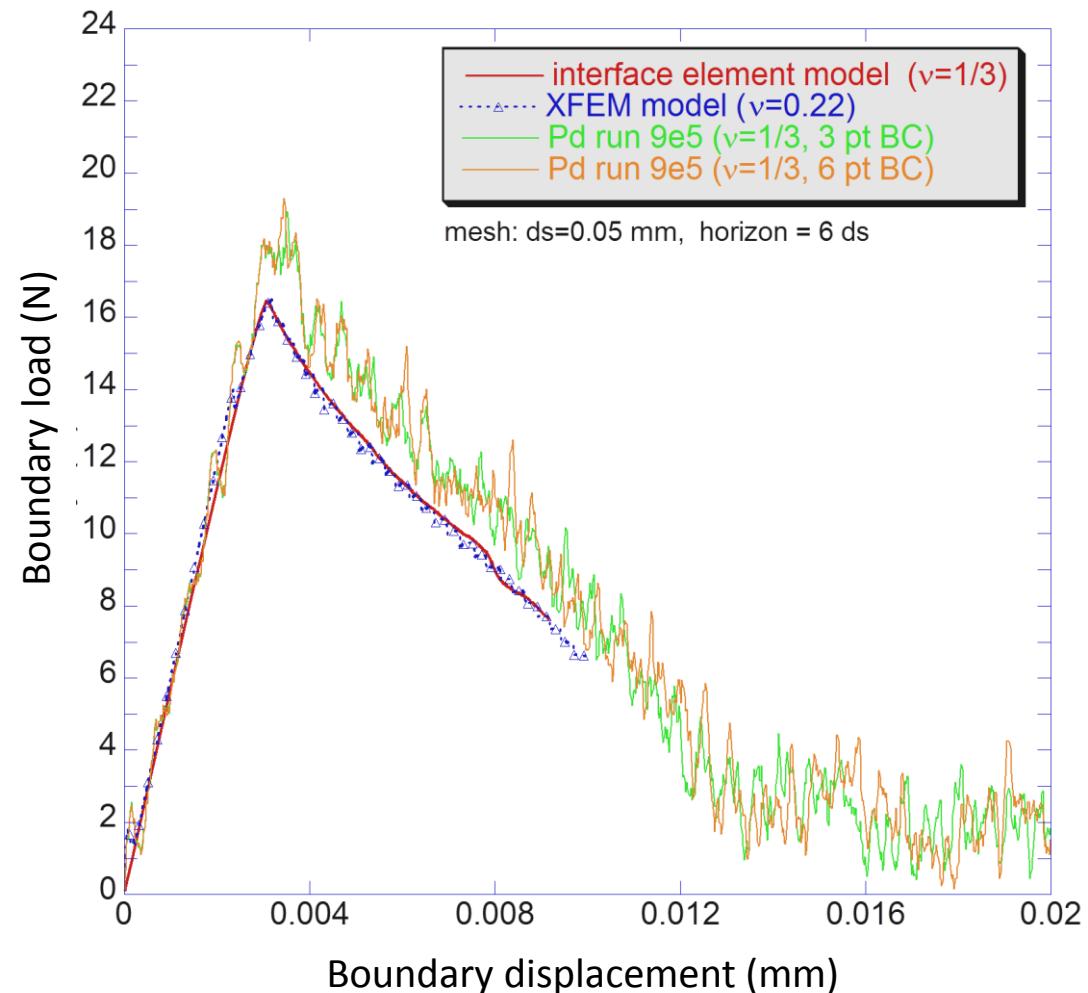
- Recall: each bond carries a force.
- Damage is implemented at the bond level.
 - Bonds break irreversibly according to some criterion.
 - Broken bonds carry no force.
- Examples of criteria:
 - Critical bond strain (brittle).
 - Hashin failure criterion (composites).
 - Gurson (ductile metals).



Peridynamics gives similar answers to XFEM and cohesive elements*

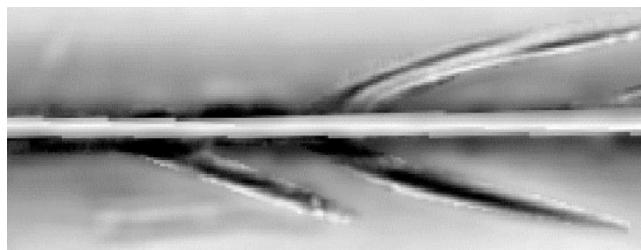


*SS and Jim Cox



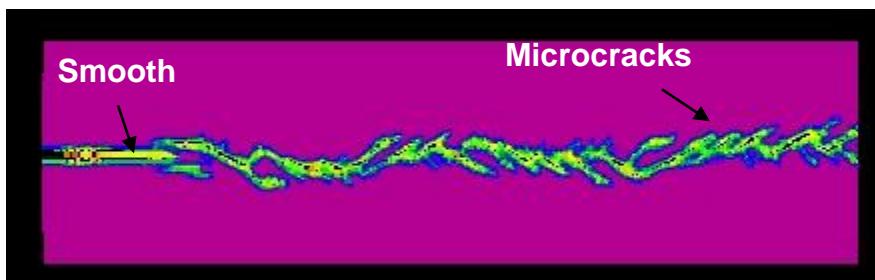
Dynamic fracture in PMMA

- Peridynamic simulation shows crack surface features related to fracture instability.
- These are difficult to reproduce with standard methods.

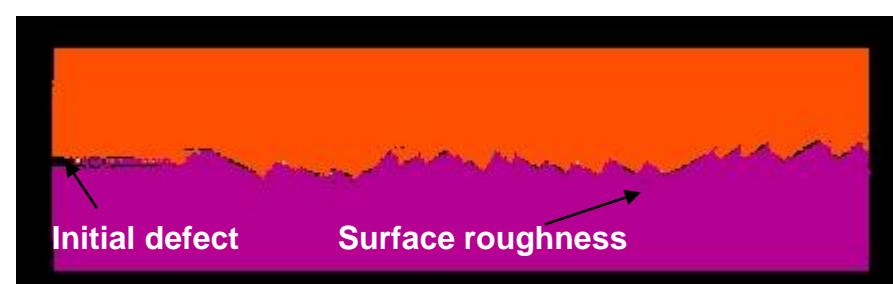


Microbranching

Mirror-mist-hackle transition*



EMU damage



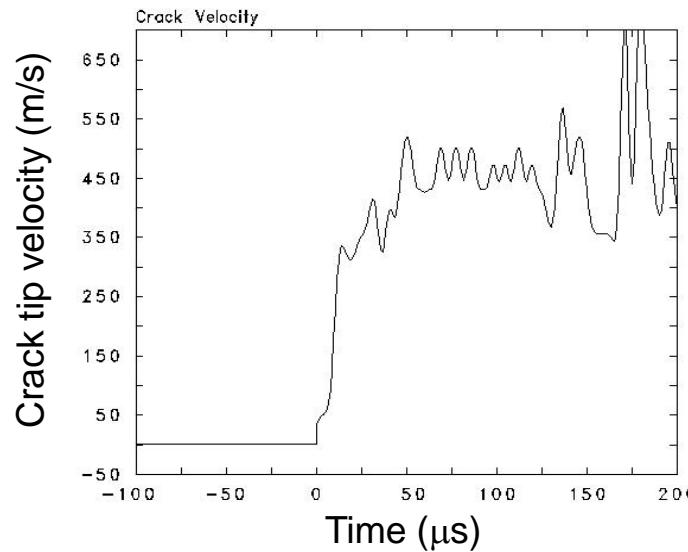
EMU crack surfaces

* J. Fineberg & M. Marder, *Physics Reports* 313 (1999) 1-108

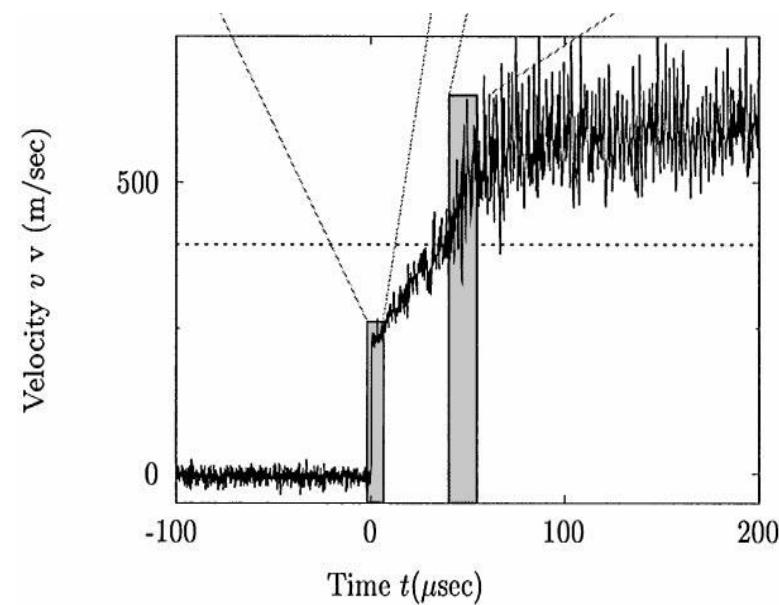
Dynamic fracture in PMMA, ctd:

Crack tip velocity

- Simulation reproduces the main features of dynamic crack velocity history.



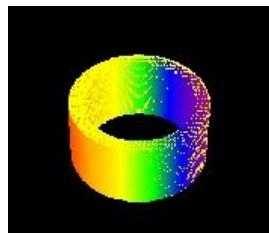
EMU



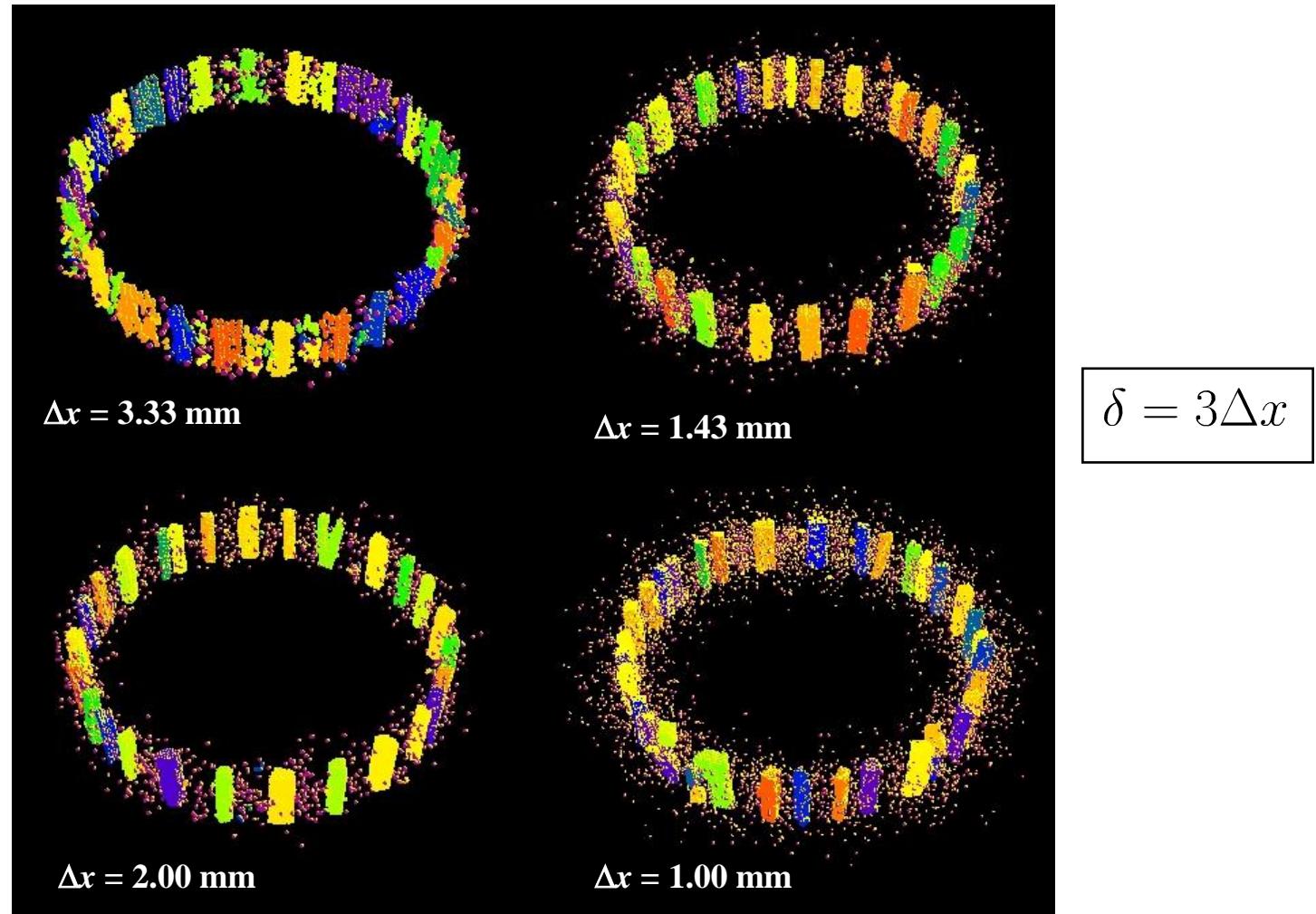
Experiment*

* J. Fineberg & M. Marder, *Physics Reports* 313 (1999) 1-108

Fragmentation is not strongly dependent on mesh spacing

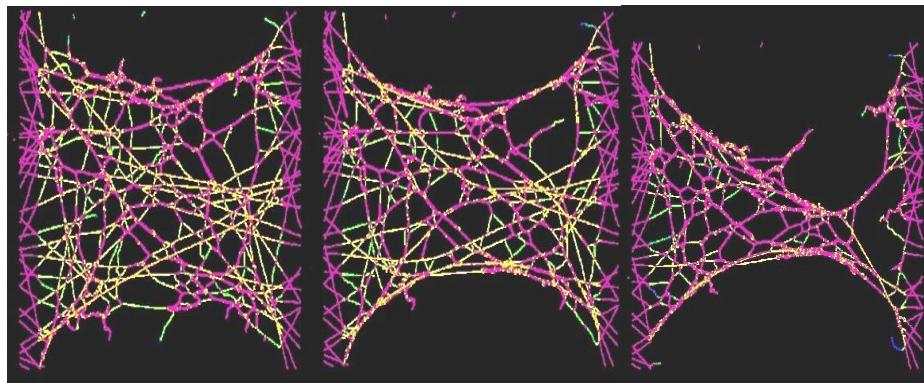


Brittle ring with
initial radial velocity

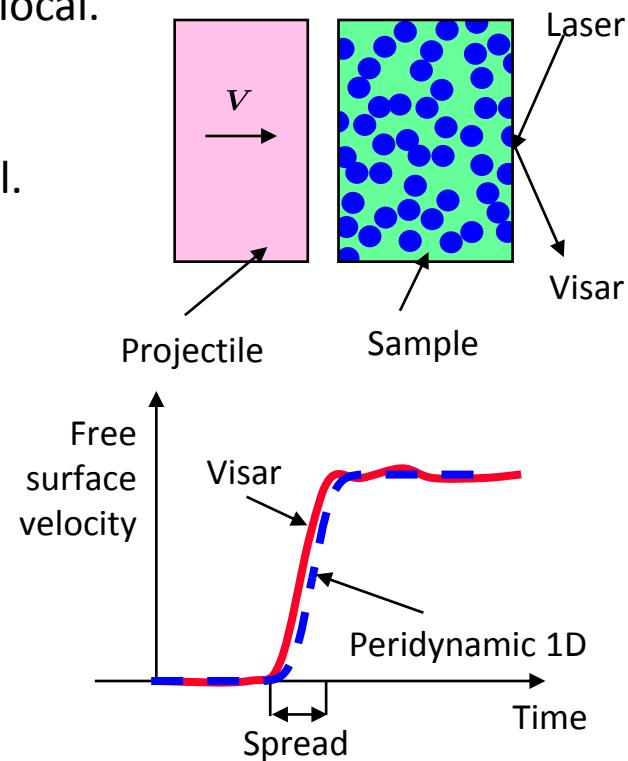


Importance of nonlocality

- Peridynamics is consistent with all laws of classical physics.
- It uses nonlocal interactions between material points.
 - The Cauchy theory is local.
 - Locality is often mistakenly assumed to be a law of physics.
- Molecular scale, nanoscale interactions are always nonlocal.
- Complex fluids are nonlocal.
- Any heterogeneous medium is nonlocal.
- Any discretized model of the local equations is nonlocal.



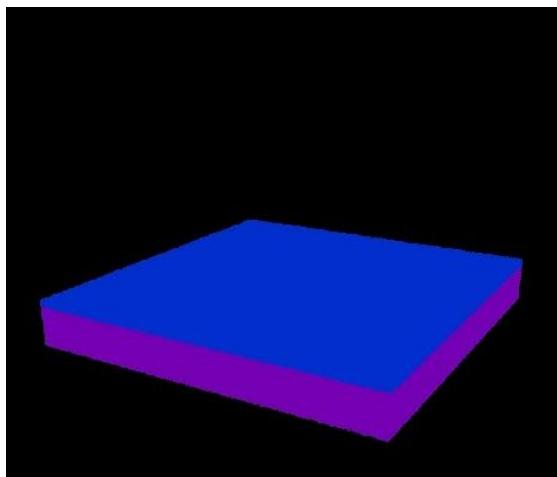
Peridynamic model of a nanofiber membrane
(F. Bobaru, Univ. of Nebraska)



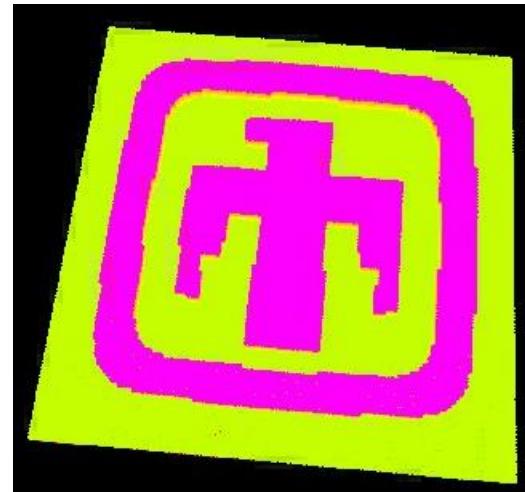
Local model would predict zero spread.

Method reveals subtleties in the mechanics of thin structures

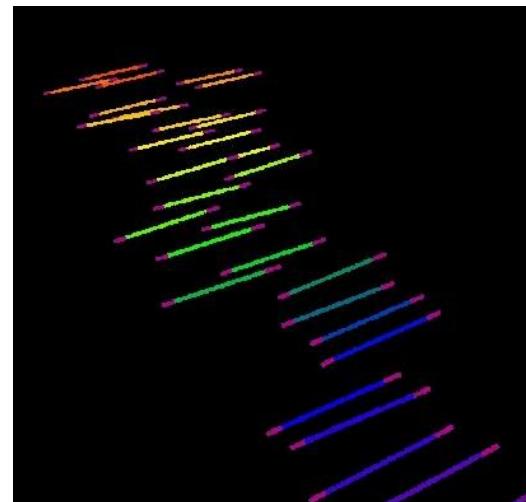
- Autonomous crack growth and long-range forces are crucial.



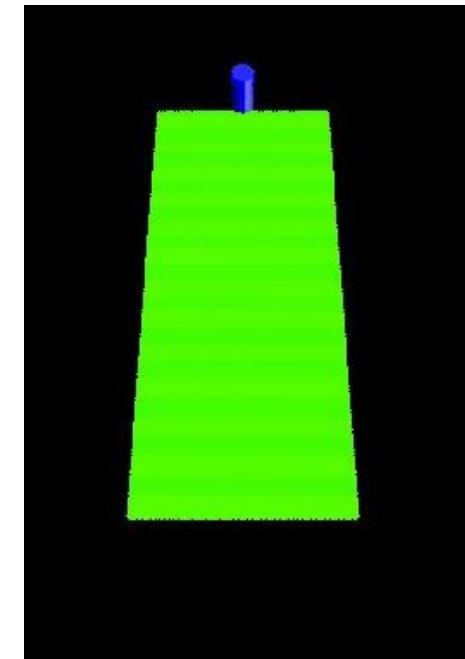
Membrane decohesion



Aging



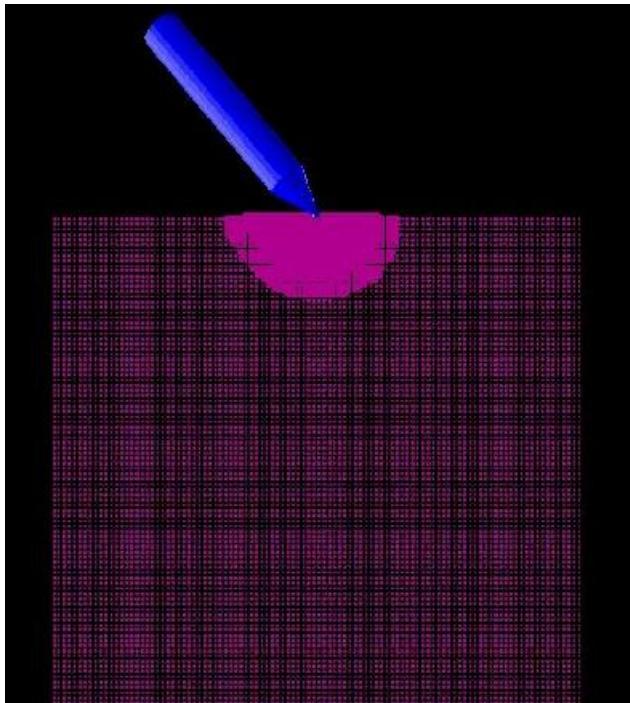
Self assembly



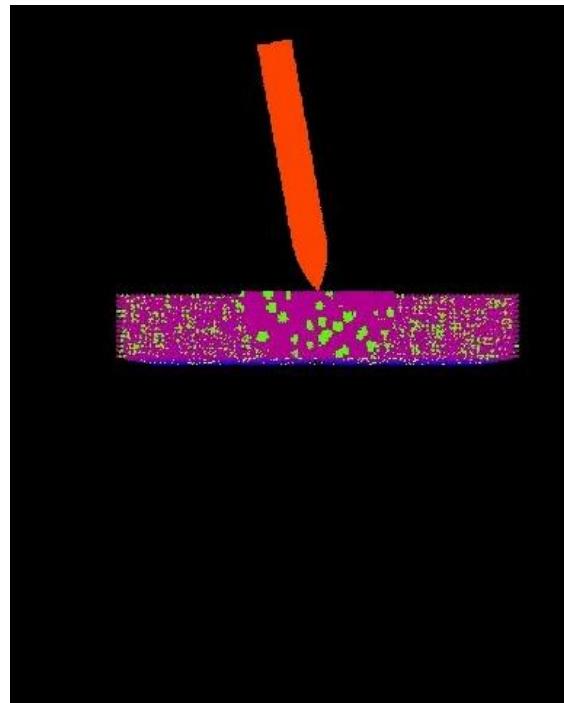
Oscillatory crack path

Examples: Impact and penetration (JMP)

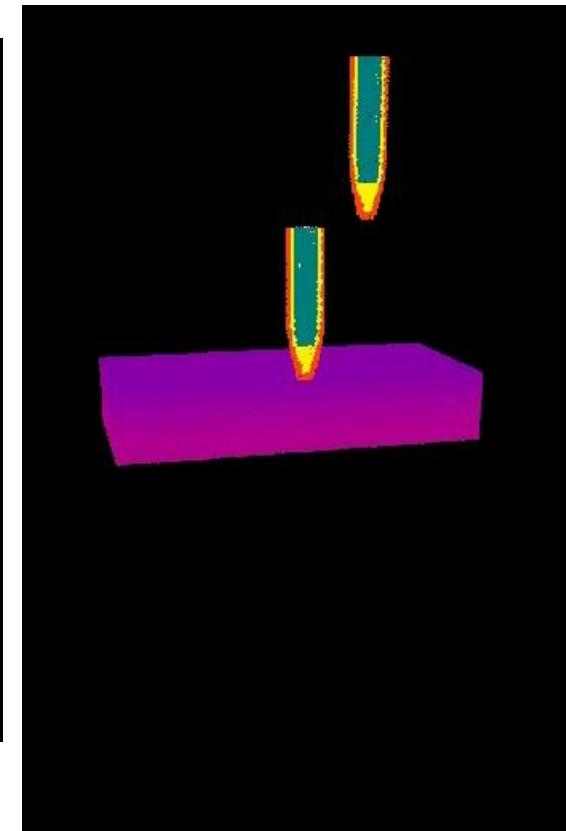
VIDEOS



Ricochet from
heterogeneous target



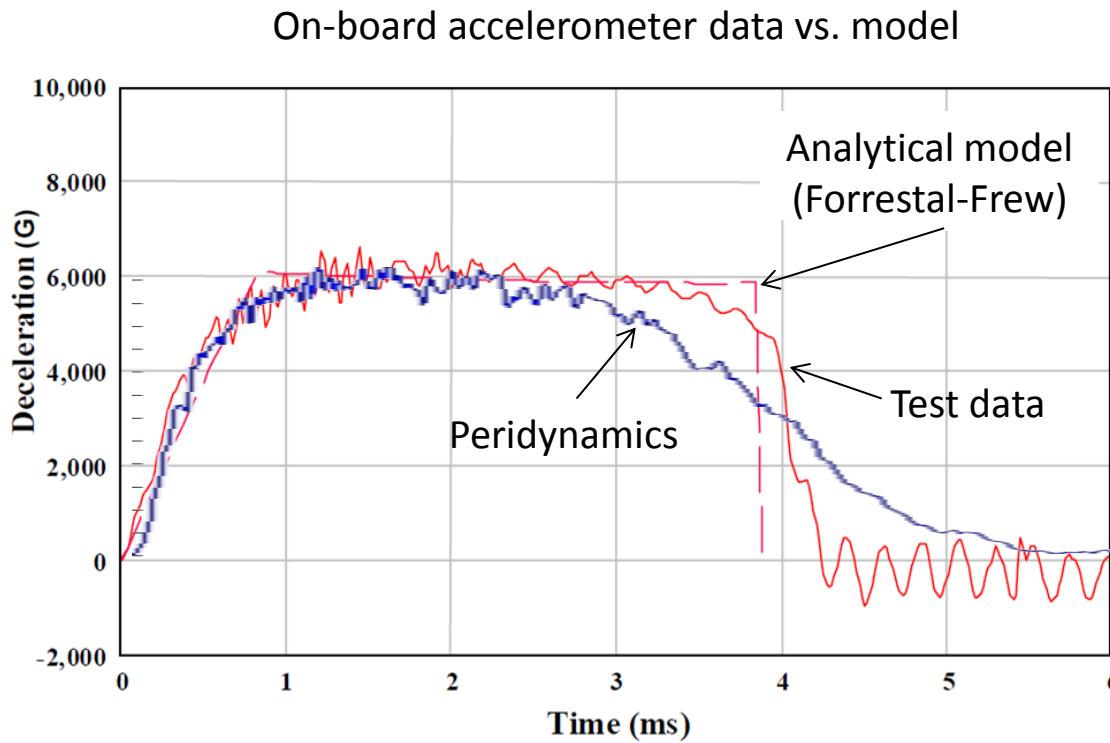
Tail slap in a deformable
penetrator



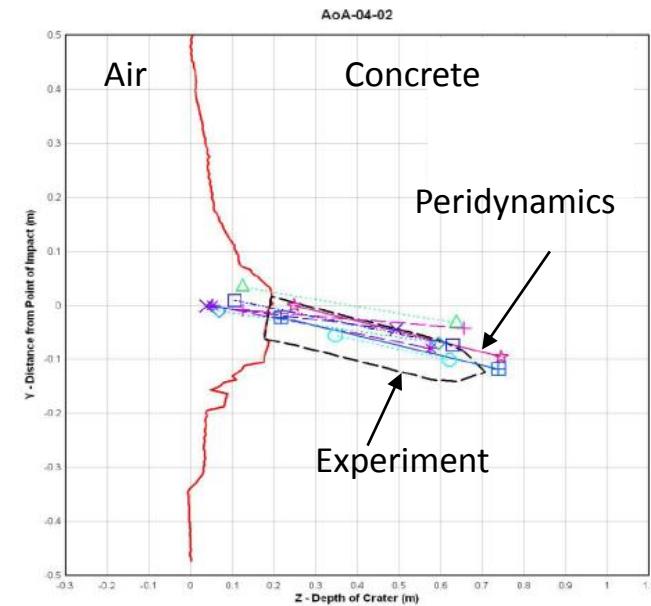
Small arms multihit

Earth penetrating munitions

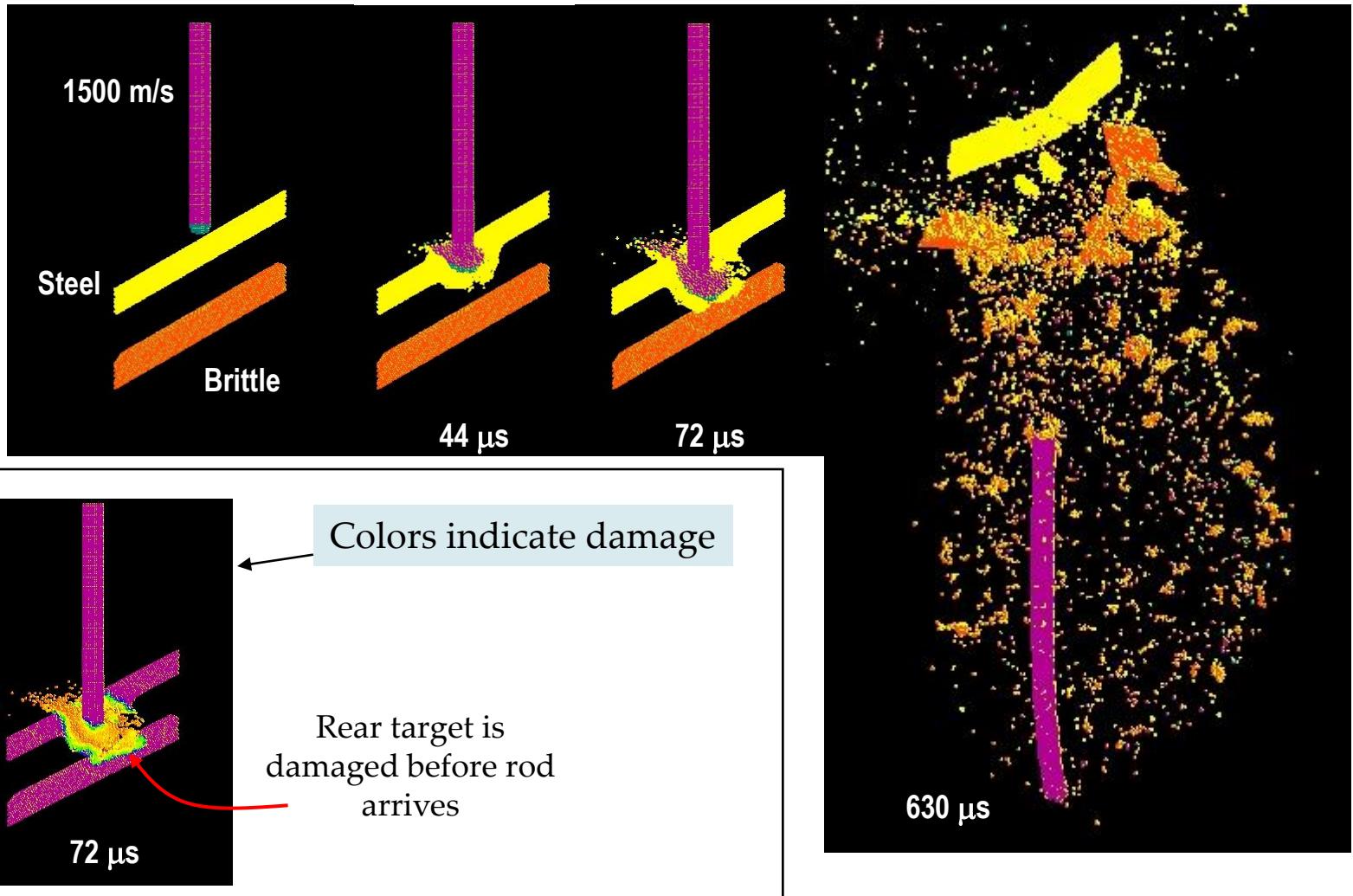
- Peridynamic simulations have been validated extensively under the JMP.
- Examples:



Final position of penetrator (true prediction)



Armor/anti-armor: Long rod penetrator & BAD

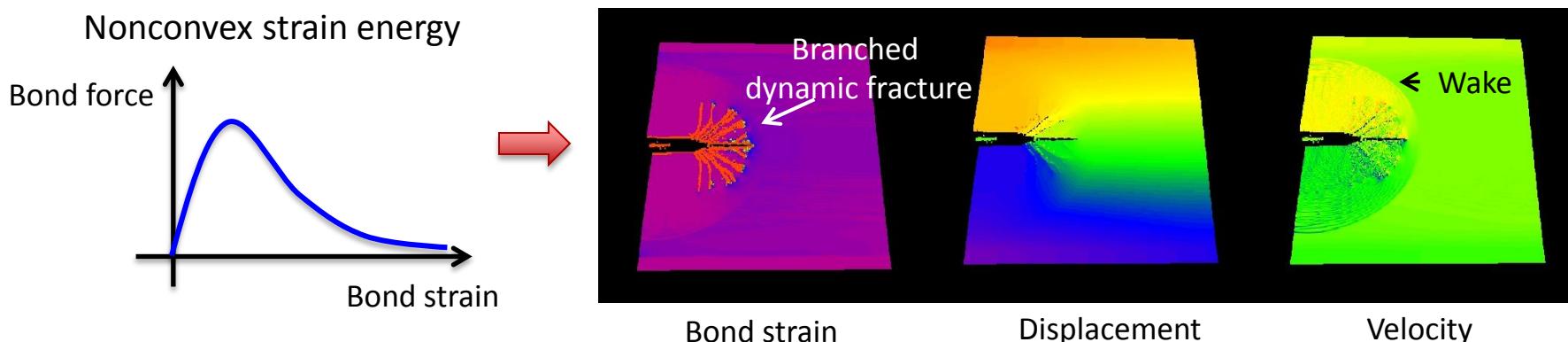


Some key theoretical milestones

- PD equations are well posed (Du, Gunzburger, Lehoucq, & Zhou, 2013).
- PD equations can be derived from statistical mechanics (Lehoucq & Sears).

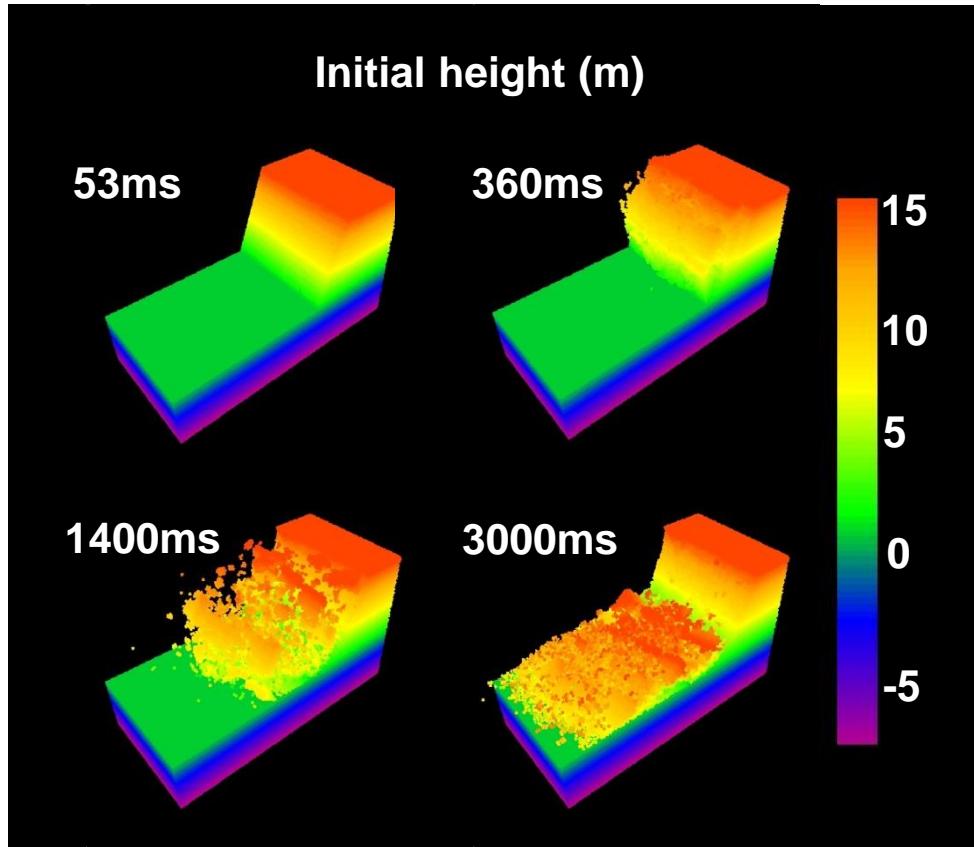
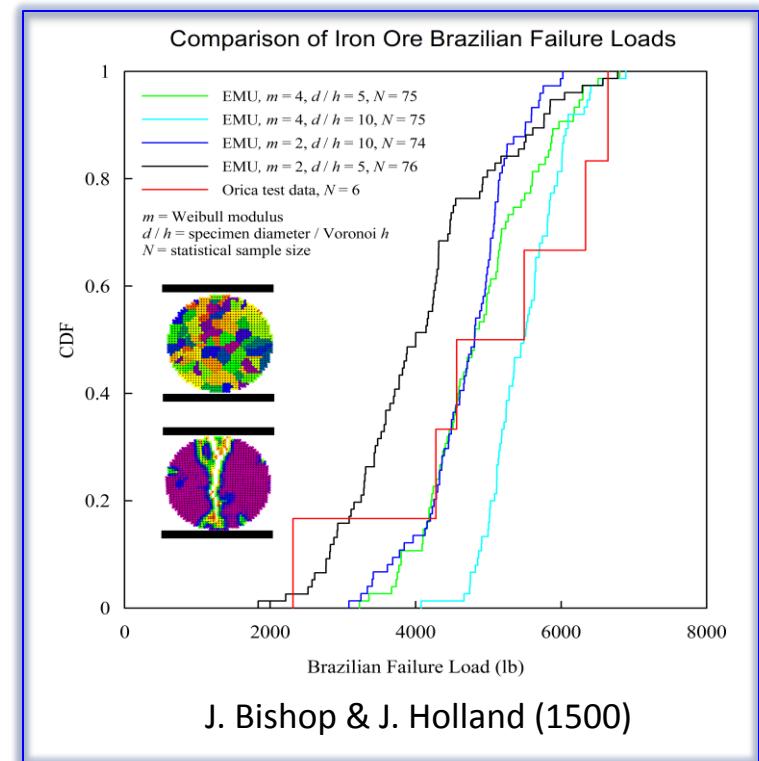
$$\frac{\partial}{\partial t} \langle \alpha \rangle = \left\langle \sum_i \frac{\partial \alpha}{\partial \mathbf{x}_i^\mu} \mathbf{v}_i^\mu \right\rangle - \left\langle \sum_i \frac{\partial \alpha}{\partial \mathbf{p}_i^\mu} \frac{\partial U}{\partial \mathbf{x}_i^\mu} \right\rangle \quad \rightarrow \quad \begin{aligned} \frac{\partial}{\partial t} \pi^\nu + \frac{\partial}{\partial \mathbf{x}^\mu} (\mathbf{v}^\mu \pi^\nu) \\ = \frac{\partial}{\partial \mathbf{x}^\mu} \sigma_K^{\mu\nu} + \int_{\mathbb{R}^3} [\mathbf{T}^\nu(\mathbf{x}, \mathbf{x}') - \mathbf{T}^\nu(\mathbf{x}', \mathbf{x})] d\mathbf{x}' \end{aligned}$$

- As $\delta \rightarrow 0$:
 - For a convex material, the solution to the PD equations converges that of the local PDEs (Emmrich & Weckner, 2007).
 - For a nonconvex material, it converges to a smooth field plus one or more dynamic Griffith cracks (Lipton, 2014).



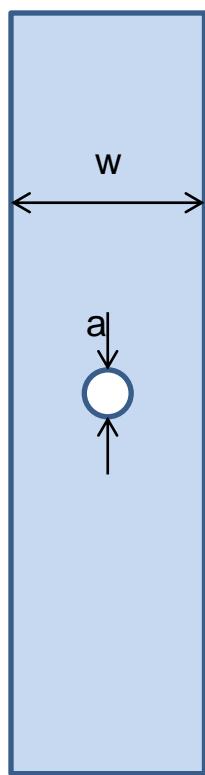
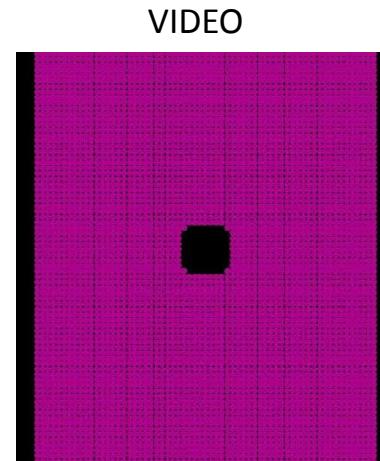
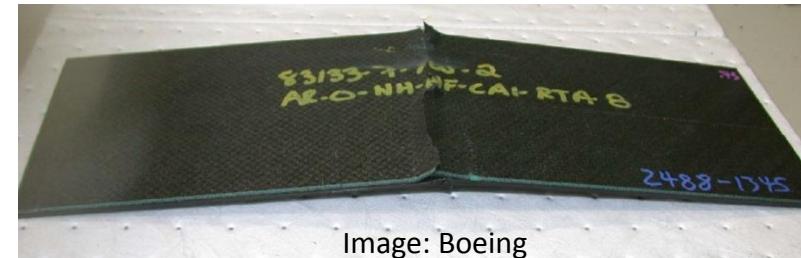
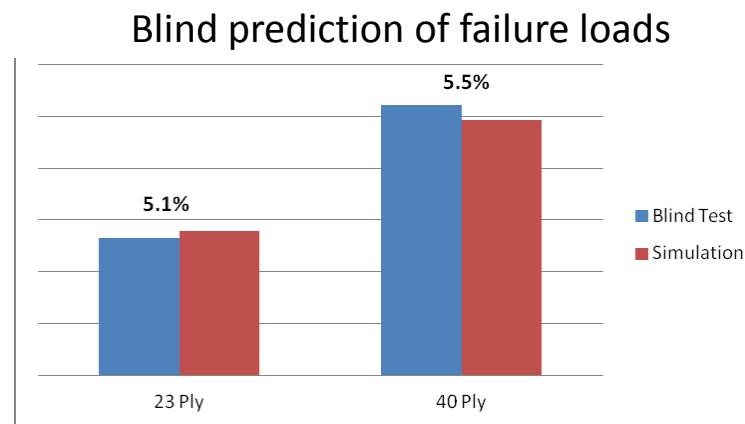
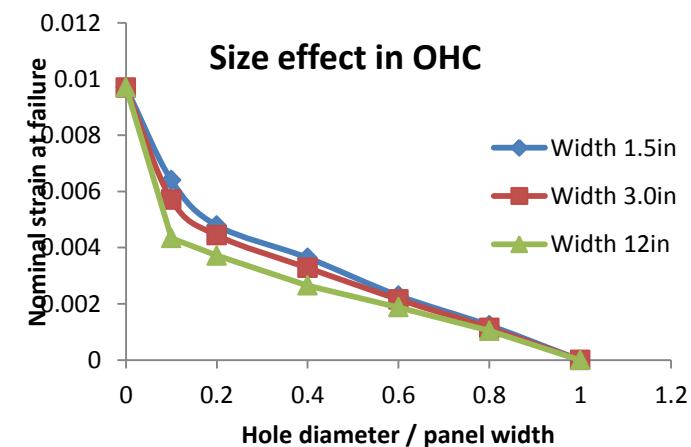
Success stories: Bench blasting

- Peridynamics correctly reproduces fragment size and velocity distributions in rock blasting (Orica USA Corp).



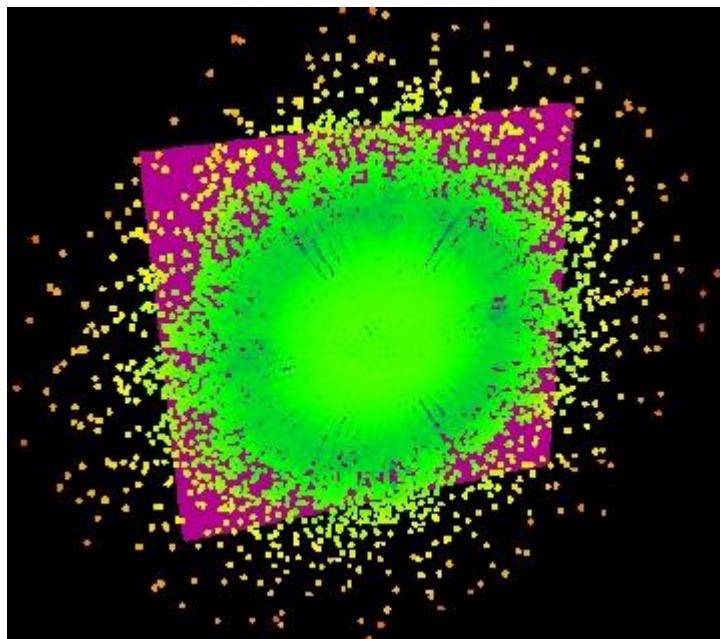
Success stories: Composite size effect

- Thanks to nonlocality, peridynamics correctly reproduces the size effect in composites: smaller samples are stronger (Boeing).

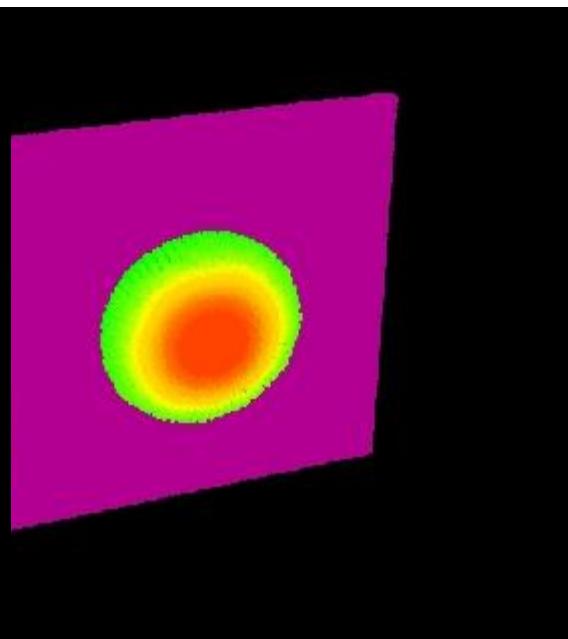


Success stories: Bird strike

- Bird simulant (gelatin) vs. heavy plate
- A material model that includes Eulerian fluid response and Lagrangian bond forces helps reduce the “spray” that is sometimes seen with SPH.

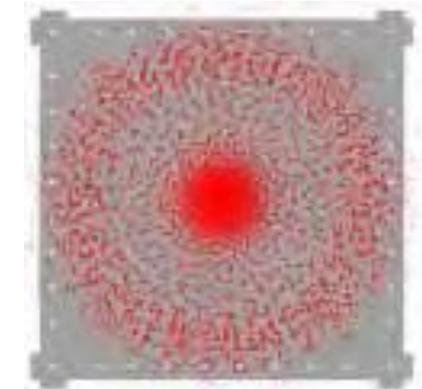


PD – Fluid only



PD – Fluid + bond forces

Test - LG 997



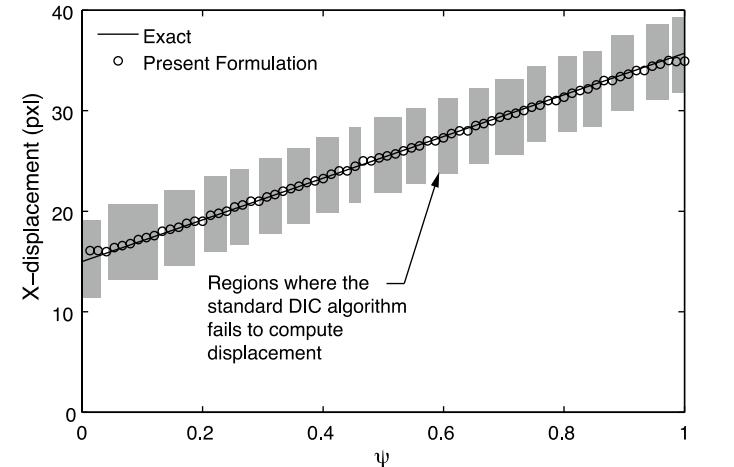
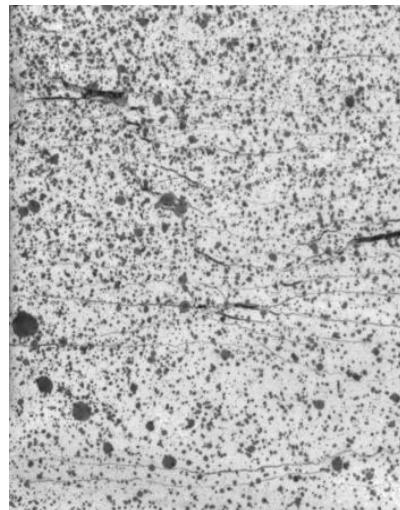
SPH

Olivares, NIS Document 09-039 (2010)

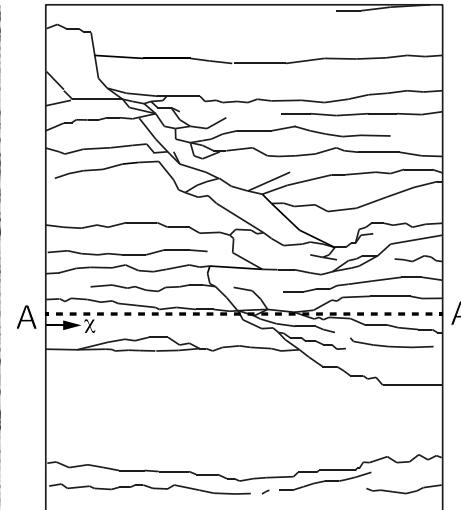
Success stories:

Peridynamics-Based Digital Image Correlation*

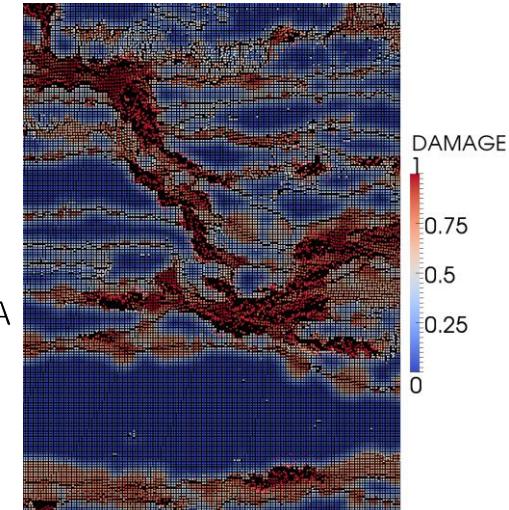
- Capable of resolving fragmentation (this is not possible with other methods)
- Near-crack strain is orders of magnitude more accurate



Digital Image



Fracture Network

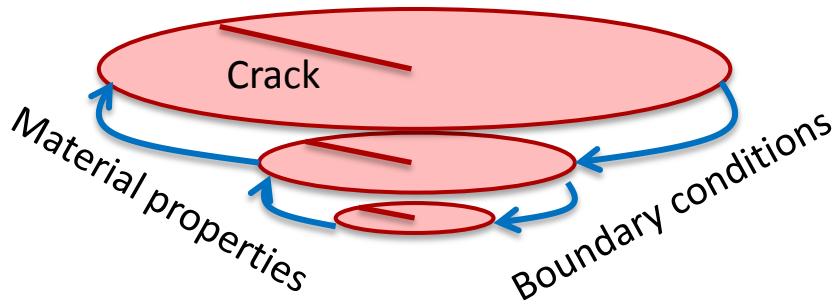


Peridynamics Damage

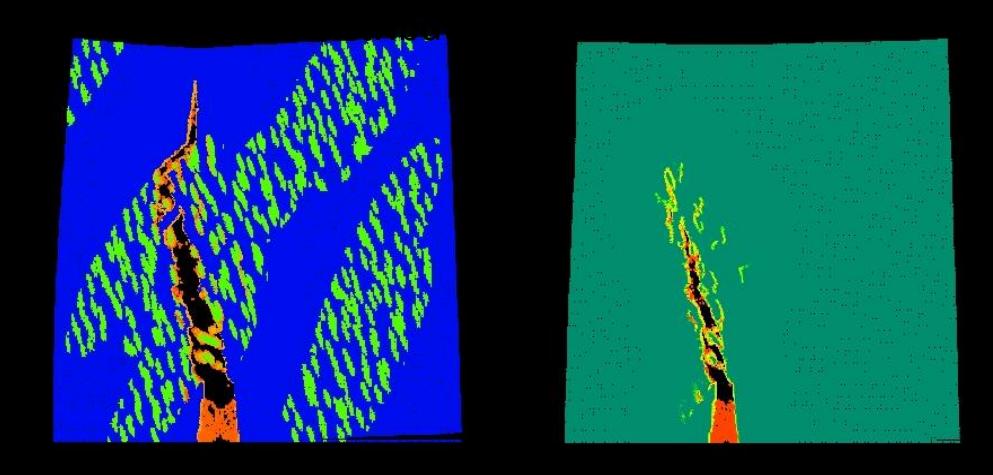
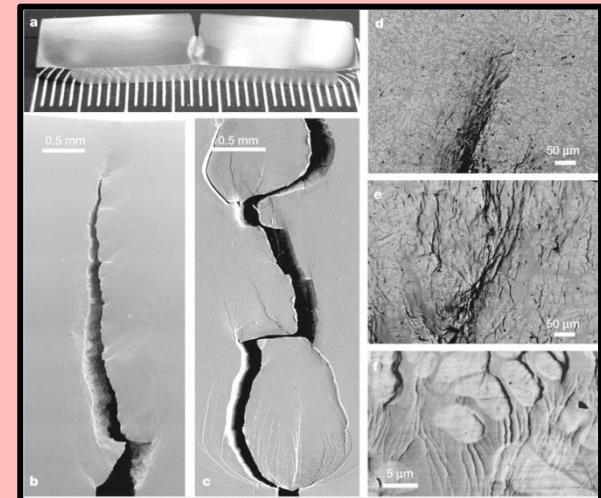
*Dan Turner

Multiscale peridynamics helps to reveal the structure of brittle cracks

- Material design requires understanding of how morphology at multiple length scales affects strength.
- This is a key to material reliability.



Multiscale model of crack growth through a brittle material with



Metallic glass fracture (Hofmann et al, Nature 2008)

Peridynamics strengths and weaknesses

Strengths

- Offers potentially great generality in fracture modeling.
 - Cracks nucleate and grow spontaneously.
 - Cracks follow from the basic field equations.
- Any material model from the local theory can be used.
 - Plus a lot more!
- Compatible with molecular scale long-range forces.
 - MD is a special case.
 - Cauchy theory is a limiting case.
- Length scale can be exploited for multiscale modeling.

Weaknesses

- Slow due to many interactions.
 - Local-nonlocal coupling will help.
 - Need smarter integration methods.
- Surface effects
 - Correction methods are available, none totally satisfactory.
 - PALS material model will help solve this.
- Boundary conditions are different from the local theory.
- Particle discretization has known limitations.
 - FE methods are under development.

Thrust areas and needed research

- **Production software**
 - Unify Peridigm/Sierra/Emu
 - Address usability & interface issues
 - V&V
 - Material model library
- **Solvers and numerical methods**
 - SPH, kernel methods connection
 - Next gen platforms
 - Eulerian & ALE capability
- **Material/damage modeling**
 - Ductile failure
 - Continuum damage mechanics
 - Quasistatic material failure
 - Nonlocality: fundamental aspects
 - Digital image correlation (DIC)
 - Nonlocal deformation measures
- **Multiscale**
 - Scalable multiscale methods
 - Coarse graining
 - Atomistic-to-continuum coupling
 - General tool for material failure
- **Math and theory**
 - Boundary conditions
 - Quantify uncertainty esp. in fracture
 - Contact algorithms
 - Material stability
- **Multiphysics**
 - Math and numerics for multiphysics
 - Geological applications
 - Fluid-structure interaction
 - Diffusion, chemical reactions
 - Electromagnetic fields
 - Electronics & MEMS reliability
 - Friction