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Outline

e What are Epsilon Near Zero modes, what can we do
with them?

— Fundamentals
— ENZ modes: coupling to metamaterial resonators
— Berreman modes: Thermal emission

e Other examples and uses of Epsilon Near Zero modes

— ENZ modes coupled to Intersubband transitions and
Metamaterials

— Enhanced Harmonic Generation
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F16. 4. Geometry and the dispersion relations for SPO of a
metal film between two semi-infinite insulators (en=1—w,?/w?,
e;=1). The analytical expressions for £>>k, or k<<k,, for the curves
shown schematically here are (3.23b) and (3.18).

What happens when the layer becomes much thinner?
(<< skin depth)
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Prof. Francois Marquier

ENZ Modes: E, is Constant and Large
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& What Can We Do With ENZ Modes:
Coupling to Planar Metamaterials

|
~ Metal - Metal -

MM resonators create strong optical fields that
lead to strong coupling Substrate
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Optical Phonons: Nano Letters 11, 2104 (2011)
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Intersubband Transitions: Nature Communications 4, (2013)

Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)



Strong Coupling to ENZ Modes
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Numerical simulation (FDTD) FTIR transmission measurement
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Nano Letters 13, 5391 (2013)



Electrically Tuning the Coupling to

the ENZ Mode
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Al, ;GaAs 30nm

30 nm n+ GaAs (2-5e18)

VB581, Scale 2.2

400 500 600 700
Wavenumber (cm'1)

Fundamentally different than tuning just by changing a local permittivity!
Removal of carriers -> removal of ENZ mode

Nano Letters 13, 5391 (2013)
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Inverted Dogbone Resonator + ENZ Mode

Transmission

Tunable Passband Filter
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Where Can We Find ENZ Modes?
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Related to ENZ: Berreman Modes

Leaky modes: can couple from free space

“Berreman

Light line
n+ InAs, N = 119 cm™
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Space

Coupling to Berreman Modes From Free

Transmission vs angle (p-pol):

‘>/P-pol
1.0}

where € crosses 09k

Thin (<<)\) layer —2

0 (Drude,
phonon, etc)

Transmission

0.6

0.5

Berreman, Physical Review 130 (6), 2193 (1963).

McAlister and Stern, Physical Review 132, 1599 (1963). 13

A sharp dip is observed in
transmission, where £~0
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Appl. Phys. Lett. 105,

131109 (2014)

i1

Thermal Emission: Berreman Modes

Kirchhoff’s law of thermal radiation: the absorptivity of an object should be
equal to its emissivity (A = €)

(@) Spectrally selective thermal emission
from an unpatterned film

Ultra-thin ENZ layer
(doped semiconductor)
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Angle-resolved, polarization-dependent
absorptivity measurements
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Angle-resolved, polarization-dependent
emissivity measurements (140°C)
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Outline

e Other examples and uses of Epsilon Near Zero modes

— ENZ modes coupled to Intersubband transitions and
Metamaterials

— Enhanced Harmonic Generation
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Strong Coupling of Metamaterials to Inter-
subband Transitions in Quantum Wells
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Opt. Express 20, 6584 (2012),
APL 98, 203103 (2011)

Nature Communications 4,
(2013) 18



Sandia
m National
Laboratories

Strong Coupling: From Mid-IR to Near IR
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NI Addition of ENZ layer to QWs
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IST permittivity
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Using ENZ: Larger Rabi Splitting
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SHG From Strongly Coupled MMs and b ..
Intersubband Transitions

Py

Omri Wolf .
Resonators are designed to have
resonances at 30 & 60 THz
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Addition of ENZ Layer Also Enhances SHG

Conversion efficiency

e -
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APL 104, 131104 (2014)
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Summary

0.8

ENZ Modes 06

0.4

Metafilms Semiconductor
heterostructures

* Metamaterial resonators + semiconductor heterostructures + ENZ modes :
platform for tunable spectral behavior and variable coupling

» Addition of ENZ layer to metafilms enhances coupling to other dipole resonances
(useful for spectral tuning, enhanced nonlinearities, etc)

* Berreman modes (close-relative of ENZ modes) can be used for spectrally selective
thermal emission

25
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~ SPARES
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Plasmon Modes of a Thin Film: “ENZ mode”

Laboratories
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Berreman mode and epsilon near zero
mode

Simon Vassant,” Jean-Paul Hugonin, Francois Marquier, and
Jean-Jacques Greffet

Laboratoire Charles Fabry, Institut d’Optique, Univ Paris Sud, CNRS, 2 av. Fresnel, 91127
Palaiseau, France
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“Epsilon Near Zero” vs Berreman Modes

Berreman “ ”
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<)
had ENZ Modes

To the right hand side of the light line: cannot couple from free space

Light line “ENZ”
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Coupling to Berreman Modes From Free
Space

P-pol
Thin (<<\) layer —> Transmission vs angle (p-pol):
where ¢ crosses A sharp dip is observed in
0 (Drude, transmission, where ¢~0
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=~ Coupling of ENZ Modes to Other Resonances

ENZ modes (phonons,

doped semiconductors)
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0 il
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Dipole resonance 1 Dipole resonance 2
(MM resonators) (phonons, ISTs)
20

Permittivity
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Let’s Separate the ENZ Layer and the
Dipole Resonance Layer

3 Interacting Systems

MM
Resonators

L —

ENZ Mode
(Drude layer)

34

_l Dipole Transition
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ENZ Layer With an Optical Phonon & i
Resonance

Optical Phonon

AlAs Undoped

Real (Permittivity)

(KAAamuLRg) Sewp

Wavelength (um)

One thin layer contains:
* ¢=0 crossing -> ENZ mode
* TO Phonon -> “dipole” transition
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ENZ Layer With an Optical Phonon Resonance

AlAs permittivity

Frequency (cm'l)

Experiments

350 400 450 500 350 400 450 500
- . _1
Bare cavity resonance (cm 1) Bare cavity resonance (cm )
Formation of three polariton branches

This implementation is limited by nature: as optical phonons are defined by material properties and
can hardly be modified 37
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Case 1: Different Frequencies for Dipole
Transition and ENZ
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Case 2: Same Frequencies for Dipole
Transition and ENZ

20

Relative permittivity ENZ layer

Relative permittivity ISTs in QWs

400 600 800 1000 1200 400 600 800 1000 1200
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Only 1 Polariton, larger Rabi Splitting!
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Experimental Verification of Combined

Strong Coupling:
(ENZ layer + dipole transition in QWs)

Cap layer
(,j semlconductor

S in Quantyp, wells
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ENZ layer + dipole transition in QWs

Rabi splitting versus geometry

651 nm (QW)
350 L 200 nm (squares)
Empty symbols: Theory |

<300~ Full symbols: Experiment 100 nm (triangles)

g [0 200 nm

& 250 V 100 nm O 30 nm (circles)
é 2007 . 30 nm |

5

a

15($651 nm )

(5% only ENZ only QW+ENZ
Strong coupling structure

The structures comprising QW+ENZ exhibit the largest Rabi
splittings for a given ENZ thickness



Combining ENZ Modes and Intersubband & =
Transitions for Stronger Coupling

e Field decays exponentially with
distance from MM resonators

e An ENZ thin layer acts as a
“transducer” and potential
“amplifier” of Ez field

|H|? | Ez|?

The addition of an ENZ layer enhances the coupling
-> larger Rabi splitting
-> larger SHG efficiency

42
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Tunable Planar Metamaterials: Why?

<«

A voltage tunable IR spectral filter
would be a very useful device:

i

1. Application example: IR hyperspectral imaging

(Cedip)

Has mechanical filters!

2. Fundamentals: (ultra?) strongly coupled systems are interesting for control of emission,
qguantum optics, cavity QED, etc

44
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7 Planar Metamaterials: Strong Coupling & e
Tuning

MM resonators interact strongly with thin | Wietal wetal

layers underneath
(see papers by Chen, Giessen, Zheludev, us, etc)

Substrate
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E :;' gvﬁ/ﬁ

A A A A ) ) )
20 30 40 50 10 20 30 40 50
Frequency (THz) Frequency (THz)

5 06

2
2 04t
o
=
0.2

0.0 -

m//%\
W

50"
40
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(Use a dipolar resonance, 301

example: phonon) 20
107

Nano Letters 11, 2104 (2011) e e
100 120 140 160 180 200 0 100 120 140 160 180 200
Energy (meV) Energy (meV)
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Vacuum Chamber

Rotation Knob

$ Movable FTIR
Mirror

Sample holder with
a heating plate
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MM Resonators Provide k-vectors to
Excite ENZ Modes

ENZ dispersion
(a) (b) . . ..
780 Superimpose dipole emission spectra on
3:Air gy 10 the ENZ dispersion
2:ENZ [t £ 760
1: Substrate e
750
t=20nm, d =100 nm a5 t=20nm,d =50 nm
740t 250
0 30
25 '7;800 200
20 s 150
S 750
" E 100
10
50
5
0
t =200 nm, d = 100 nm 160 t =200 nm, d =50 nm 700
140 600
“'; 800 120 "; 800 500
& 100 2
Py > }\ 400
s c \
g 750 80 g 750 300
@ 60 @
w 'S
40 200

100




Dielectric — &,

Dielectric - &,

(1+

€3k, 3 fskz;z

assuming real o, complex k

k., k.
it “1> = i tan(k, 2d) (62 2,3 +

frequency

€1k, o

62kz,1
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Plasmon Modes of a Thin Film
“Thin”: ~20nm for ~750THz plasma frequency

Long-Range SP:
weak surface confinement, low loss

v

Short-Range SP:
strong surface confinement, high l)oss

(courtesy, Dept. of Physics, Hanyang Univ.)

)

in-plane wavevector

Econoumou, 1969
Burke 1986
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“Epsilon Near Zero” vs Berreman Modes

Berreman “ ”
Light line ENZ
Air
n+ InAs, N_ = 1e19 cm®
Drude t 1005 ; : : : :
Substr. 1000} X j / _
995 t = 30 TinT]
Dispersion relation of the TM mode in a 3- - 990r .
layer f_,. :
€1k, . ok, €1k, - s 985
(1 B L ”‘1> = i tan(k, »d) ( 22,3 4 L ”‘2)
€skz,3 €sk.2 €2k, 980l
Numerical solution in complex domain 975
(assuming complex freq, real k)
370, 05 1 15 2 25 3

K, [em™] x 10*

Berreman mode (leaky mode),

e ENZ mode (bound mode)
</ [ J

2
<AL9E L LU ni aa 0% o LL L8 |

T ’ j B —

° o1 2 0.3 “4 o .1 0. 3 L2

ENZ mode is a special type of a plasmon polariton

Greffet et al, PRL 109, 237401 (2012)
Opt Exp (2012) 49
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Modal analysis «

Can be calculated in a different way: The layered medium can be modeled as a set
of cascaded transmission lines

Free space Z, Z,
Medium 1 R A___Z-
Zl dl down
v
Medium 2 A
Z, d,
v

Substrate
A

Select a reference plane, then compute the impedances looking up and looking dowr
accounting for the dispersion in each medium

Compute the (complex) modes as the zeroes of Zpt ZLgown = 0
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p-polarized, d = 60 nm A s-polarized, d = 60 nm
(a) 016 (b) 1400 4 0.010
0.008
0.12 1200
- - 0.006
: 08 5 0.004
c ° 1000 '
0.04 0.002
20 40 60 0 20 40 60 80 0
Angle [°] Angle [°]
p-polarized, d = 500 nm A s-polarized, d = 500 nm
© (d) . : :
0.5
0.4 0.04
i 0.3 E
S s
0.2 S 0.02
0.1
40 60 0 20 40 60 80 0
Angle [°] Angle [°]
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Frequency (THz)

2.625 um
2.625 um
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0.90

Electrically Tunable Strong Coupling

<

2 3
Bias (V)

. Phys. Lett. 103, 263116 (2013)

1.00

o
©
=1

Reflectance

Energy (meV)

300 -

200

100

NN
7~

ﬂt

5 10 15
Growth direction (nm)

20

Transition energy (meV)

120

1.00

150 |

140 -

130 |

10.85

10.80

10.75

Oscillator strength

0.70

20 40 60 80
Applied field (kV/cm)

-100

0.95

0.90

0.85

1.00
0.95
0.90
0.85
25.0 30.0 35.0
Frequency (THz)

25.0 30.0
Frequency (THz)

35.0

Upper polariton shifted by 2.5 THz (~8% of center frequency)
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Strong Coupling Theory vs. Experimen

1.0
08
¥
06} E
[
'% ? 0.52
g 04} %
2 i
©
= 02t
00f 135 —— 07 - - - 0.05
200 30.0 40.0 50.0 Bare cavity resonance (THz)
Frequency (THz) 0.95
Plasma frequency =
E
>
g 0.675
[}
_ = ]
QR =V, s
Rabi frequency depends on -
simple parameters
0.4

Nature Communications 4, (2013) GeomEtry factor Bare cavity resonance (THz)
Phys. Rev. B 89, 165133 53



1.00

40.91

Frequency (THz)

0.82

Bias (V)

e Metamaterial spectral response tuned

by voltage

e Upper polariton shifted by 2.5 THz (=8% ;.|

of center frequency or one full

intersubband linewidth)
Appl. Phys. Lett. 103, 263116 (2013)

Reflectance

1.00

Reflectance

0.85¢

1.00

&
©
o

Reflectance
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Electrically Tunable Strong Coupling

&

©

S
T

250 300 350
Frequency (THz)

250 300 350
Frequency (THz)
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N7 How to Increase the Rabi Frequency:
Metamaterial Nanocavity + Ground-plane

QW region (thinner)
‘ / Back-reflector

_—> Highly doped
semiconductor

35

35
+ Conventional MM

30

w
(=

G : 0.75
 Metamaterial nanocavity I

§ N
T
E 25 E 25
> >
= 10.25 o 10.375
[
g Q
320 320
E )
o L
15 15
1
Air' Semiconductor
10 0.0 10 0.0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Depth (nm)

Depth (nm)
e Ground plane limits field penetration into the semiconductor

* Mode volume reduced from: 2.49x103 (A/n)3 to 1.34x103 (A/n)3

Optics Express 21, 32572 (2013) 55



Metamaterial nanocavity

32

'§ ~N
T
E 28 =
> 0.38 o
[ [
[(}] [(}]
g_ >
O
0 24 -
[T L

24 28 32 0.20 20 20 24 28

Bare cavity resonance (THz)

Bare cavity resonance (THz)

e Rabi frequency remains almost identical despite reduced QW-stack
thickness (factor 3.3) or reduced mode volume (factor 1.9)

e Conventional sample: 2.1 THz vs. Nanocavity: 2.5 THz

Optics Express 21, 32572 (2013) 56
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Dogbone
25T z Dumbbell Dw i
Jerusalem C.
Circular SRR

N
~
T
1

Q /27 (THz)

Dogbone Dumbbell
High High
capacitance: capamtanc

12 ' 14 ' 16
Capacitance (aF)

Jerusalem Cross Clrcular SRR
Low damping =ghigh-Q High

(3 ’\»

y > mduct?cé
’:\ >3 Physical Review B89, 165133 (2014)

e Larger capacitance leads to larger Rabi splitting
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' Strong Coupling to Inter-subband Transitions

< N
()]
Scalabe (far IR to near =T :
: >
IR), Mature, Versatile : o y, \ :
Z w |
Opt. Express 20, 6584 (2012), y Q
APL 98, 203103 (2011)
é 1I0 1I5 2I0 2I5
Growth direction (nm)
Change levels using an electric field
101-80 kV/icm ' ' ' i T . - . - .
st W m_
a i0.48
il |
- — 10r \-\.\ / =
%J 0.8 % I .\. u téb
~ — 12t \I / o
> < SNa u {042 &
> o ~. / v
GJ 06 [ 14 + u o B
LLl G>J '\. ./ \ =
© 16r \.\ B ,./ " 37
0.4 , = | u 2-g_m-8-" \- 1036 2
1 N 1 N 1 18 - = \
10 20 30 - ' - ' - ' —
. . -80 -40 0 40 80
Groth direction (nm) Applied field (kV /cm)
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Experimental Rabi Oscillations
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(using a mid-IR Time-domain fsec system)

0.5F

0.0

Electric field (a.u.)

2000 | 2500
Time (fs)

59

e Energy exchange
probed in time

— 33 fs oscillation
— 480 fs beating
e System strongly
coupled
e Splitting of 4.2 THz
measured
— 15 % of w,,
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- How to Increase the Rabi Frequency

Effect of QW-stack thickness

I0.85 35 I0.85

N N
T 30 T 30
E E
9 9
2 10.55 2 10.55
Q Q
35 35
3 25 3 25
— —
L L
20 20
20 25 30 35 022 20 25 30 35 022
Bare cavity frequency (THz) Bare cavity frequency (THz)

e Thickness of the QW-stack influences the Rabi frequency
e ncreased from 1.65 to 2.64 THz

60



How to Increase the Rabi Frequency:
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Metamaterial Nanocavity + Ground-plane

Opt. Express 21, 32572 (2013)

61

40

Permittivity

A
o

QW region (thinner)

Back-reflector
Highly doped
semiconductor

o

19.65 3930 58.95
Frequency (THz)
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Coupling of Metamaterial Resonators to
Dipole Resonances + ENZ modes

~ |l
£ 2
& | | iF
= : s =
g | 5
= : 1 5
Q ' '
& ° / " E
ER| =
& 0Fa e\ 0 2

y0=24.6 pm

-40 . | . | . I . I . -60
15 20 25 30 35 40
Wavelength (um)

Lorentz model

2 2 2 I': Phonon damping constant
WL = Wy w . .
== 1+ - 2 ) =(n=-ik)? w, Plasma frequency
e Gw 2 - . — n ZK p . A
Wp = w* +iwl w(w - 17) y: Free carrier damping constant

J. Appl. Phys., 48, 212 (1976).
. . Solid State Communications, 62, 645-647, (1987).

One thin layer contains:

e ¢~0 crossing -> ENZ mode

* TO Phonon: “dipole” transition
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Near fields of “metasurface”

E,-IST coupling

Ras Plane wave in substrate

ST (w)=elback +ANI12 eT2 /el0 mT+ fI12 /
e Metamaterial modelled as simple RLC

harmonic oscillator
e Strong coupling represented by

dispersive capacitor CLUST (w)=Velback slIST (w) —elback /e
* No free fitting parameters for dispersive

capacitor
63
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0.85

—_ / N
N - NS oo - - -
T PR S e
t28 7\ ,
3 SN
c 10.55 ,/ \\/
9 s
- . T T T T s = e

oy - - ’
Q24 /
[N \ /

7/ \ / \\

’ ~

S e = -

-
-
e

L
**
.
*
*
.
.
.
.
o*
-

20

20 24 28 32 0.25

Bare cavity frequency (THz)

e FDTD simulations show clear anti-crossing as a function bare
cavity frequency

e Circuit model can recover full lineshape of reflectance (or

transmittance) spectra
64
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Resonator Geometries Analyzed

Saanc s RS e All metamaterial
High capacitance High capacitance . ]
g\ have identical
L0 bare cavity
\J_!,»_;f, resonances but
v different RLC
- ,,_,5 values
e Metamaterial
I defined by
Jerusalem Cross “Circular SRR electron-beam
Low damplngﬂ= hl,gh-Q\ High mducta?c‘e?'\ } lithography
. . e Same QW-stack
k,{ r used for all
& samples
. e Study only

geometry effect
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Dogbone
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Circuit model accuracy

Dumbbell
N
;N
, \
, \
’ \ ,
- \s__
- - - _ - . B s - - -
s N .
, \\ , 0
’ - -
\~—
_____ _ - - _
'
\ , \
- \\~
~ = - o
- - - - - _
.
Circular SRR
oy
LY
_ - -
- - - ~
P T T
ARRY \
/ \ /
- - - S~
- - - e
- TN
1 \

Sandia
m National
Laboratories

e RLC model
describes strong
coupling
accurately
despite the exact
geometry

e Only cold cavity
requires fitting



Transmission map

q0.4

Transmission map

10.4

07 078 08 08 08 0% 1 1.05

Top: Two isotropic Lorentzians; one is stronger than the other
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Bottom: Two anisotropic Lorentzians; one is stronger than the other
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Modal analysis
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The layered medium can be modeled as a set of cascaded transmission lines

Free space Z, Z,
Medium 1 R A___Z-
Zl dl down
- A\ 4
Medium 2 A
Z, d,
v

Substrate
A

Select a reference plane, then compute the impedances looking up and looking dowr
accounting for the dispersion in each medium

Compute the (complex) modes as the zeroes 8f,+Z;,,,= 0



77 I
éctm :3

1
5
< 820

g

S 815
3 810
& 805
800

Sandia
m National

_ﬁ_ -15 Lahoratories
/ i _m i _20 fm% y
| | g —
"'"'""""-g-...\ = Two isotropic 2 /
( . One isotropic § 25 /
one anisotropic &
r - -—4—"‘-——"" . : g
« Two anisotropic = -30
— Light line in air P
i C 35 |
500 600 700 800 900 1000 1100 1200 500 600 700 800 900 1000 1100 1200
k// (cm’l) k// (Cm_l)

810 815 820 825 830
Real(%) (cm'l)



Sandia
m National
[ [ Laboratories
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- ENZ+QWs |
~ Light line in air ~286
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Energy (eV)

Strong Coupling, Near IR
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Strong Coupling, Near IR
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| . ‘. L L 0.015 L L :
0.8 === (Quadratic fit o Forward
* Experiment =8 Backward
~ 0.6F
=
=
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0.1 L L
Pump laser
0.08+ polarization
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=
e
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