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Outline	
  

• 	
  What	
  are	
  Epsilon	
  Near	
  Zero	
  modes,	
  what	
  can	
  we	
  do	
  
with	
  them?	
  
–  Fundamentals	
  
–  ENZ	
  modes:	
  coupling	
  to	
  metamaterial	
  resonators	
  
–  Berreman	
  modes:	
  Thermal	
  emission	
  

• Other	
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  uses	
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  Epsilon	
  Near	
  Zero	
  modes	
  
–  ENZ	
  modes	
  coupled	
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  Intersubband	
  transiBons	
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Metamaterials	
  

–  Enhanced	
  Harmonic	
  GeneraBon	
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What	
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Flat	
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What	
  Can	
  We	
  Do	
  With	
  ENZ	
  Modes:	
  
Coupling	
  to	
  Planar	
  Metamaterials	
  

MM	
  resonators	
  create	
  strong	
  opUcal	
  fields	
  that	
  
lead	
  to	
  strong	
  coupling	
  

  

Optical Phonons: Nano Letters 11, 2104 (2011) 
Intersubband Transitions: Nature Communications 4, (2013)  
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013) 
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Strong	
  Coupling	
  to	
  ENZ	
  Modes	
  	
  

Numerical simulation (FDTD) 
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Scale 2.0 

FTIR transmission measurement 
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Electrically	
  Tuning	
  the	
  Coupling	
  to	
  
the	
  ENZ	
  Mode	
  

Fundamentally	
  different	
  than	
  tuning	
  just	
  by	
  changing	
  a	
  local	
  permi>vity!	
  
Removal	
  of	
  carriers	
  -­‐>	
  removal	
  of	
  ENZ	
  mode	
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Where	
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  Find	
  ENZ	
  Modes?	
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Related	
  to	
  ENZ:	
  Berreman	
  Modes	
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Transmission	
  vs	
  angle	
  (p-­‐pol):	
  
A	
  sharp	
  dip	
  is	
  observed	
  in	
  
transmission,	
  where	
  ε~0	
  

Berreman,	
  Physical	
  Review	
  130	
  (6),	
  2193	
  (1963).	
  
McAlister	
  and	
  Stern,	
  Physical	
  Review	
  132,	
  1599	
  (1963).	
  

(“Berreman”	
  dip)	
  

Coupling	
  to	
  Berreman	
  Modes	
  From	
  Free	
  
Space	
  



Thermal	
  Emission:	
  Berreman	
  Modes	
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Kirchhoff’s law of thermal radiation:  the absorptivity of an object should be 
equal to its emissivity (A = є)  

Appl. Phys. Lett. 105, 
131109 (2014) 



Angle-­‐resolved,	
  polarizaBon-­‐dependent	
  
absorpBvity	
  measurements	
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Angle-­‐resolved,	
  polarizaBon-­‐dependent	
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  measurements	
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•  Unpa`erned	
  semiconductor	
  thin	
  
films	
  generate	
  spectrally	
  selecBve	
  
thermal	
  emission	
  near	
  the	
  ENZ	
  
frequencies.	
  

•  Wavelength	
  determined	
  purely	
  
by	
  doping	
  densiBes	
  

•  An	
  ENZ	
  film	
  works	
  as	
  a	
  “leaky	
  
wave	
  antenna”	
  

Appl. Phys. Lett. 105, 131109 (2014) 
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Strong	
  Coupling	
  of	
  Metamaterials	
  to	
  Inter-­‐
subband	
  TransiBons	
  in	
  Quantum	
  Wells	
  

18 18 

Opt.	
  Express	
  20,	
  6584	
  (2012),	
  
APL	
  98,	
  203103	
  (2011)	
  

Nature	
  CommunicaUons	
  4,	
  
(2013)	
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Strong	
  Coupling:	
  From	
  Mid-­‐IR	
  to	
  Near	
  IR	
  

19 Nature	
  CommunicaUons	
  4,	
  (2013)	
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AddiBon	
  of	
  ENZ	
  layer	
  to	
  QWs	
  
ωP≠IST	
  transiBon	
  frequency	
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AddiBon	
  of	
  ENZ	
  layer	
  to	
  QWs	
  
ωP=IST	
  transiBon	
  frequency	
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Using	
  ENZ:	
  Larger	
  Rabi	
  Splikng	
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  From	
  Strongly	
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  MMs	
  and	
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  Efficiency	
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  thickness!	
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AddiBon	
  of	
  ENZ	
  Layer	
  Also	
  Enhances	
  SHG	
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Conversion efficiency 

APL 104, 131104 (2014) 

The	
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Summary	
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•  AddiBon	
  of	
  ENZ	
  layer	
  to	
  metafilms	
  enhances	
  coupling	
  to	
  other	
  dipole	
  resonances	
  

(useful	
  for	
  spectral	
  tuning,	
  enhanced	
  nonlineariBes,	
  etc)	
  

•  Berreman	
  modes	
  (close-­‐relaBve	
  of	
  ENZ	
  modes)	
  can	
  be	
  used	
  for	
  spectrally	
  selecBve	
  
thermal	
  emission	
  

Metafilms	
   Semiconductor	
  
heterostructures	
  

•  Metamaterial	
  resonators	
  +	
  semiconductor	
  heterostructures	
  +	
  ENZ	
  modes	
  :	
  
plamorm	
  for	
  tunable	
  spectral	
  behavior	
  and	
  variable	
  coupling	
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Plasmon	
  Modes	
  of	
  a	
  Thin	
  Film:	
  “ENZ	
  mode”	
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  surface	
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The	
  red	
  mode	
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  the	
  ENZ	
  
mode	
  

The	
  smaller	
  the	
  
thickness,	
  the	
  larger	
  Ez	
  
	
  	
  

Numerical solution in complex domain 
(assuming complex ω, real k) 

“Thin”:	
  ~20nm	
  for	
  ~30THz	
  	
  plasma	
  frequency	
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•  Berreman	
  mode	
  (leaky	
  mode),	
  	
  
•  ENZ	
  mode	
  (bound	
  mode)	
  
•  ENZ	
  mode	
  is	
  a	
  special	
  type	
  of	
  a	
  plasmon	
  polariton	
  

“Epsilon	
  Near	
  Zero”	
  vs	
  Berreman	
  Modes	
  

t = 30 nm 

t = 60 nm 

t = 200 nm 

Light line 
Berreman	
   “ENZ”	
  

t Drude	
  
Substr.	
  

Air	
  

S. Vassant et al., Phys. Rev. Lett. 109, 237401 (2012) 
S. Vassant et al., Opt. Express 20, 23971 (2012) 30 

Young	
  Chul	
  Jun	
  



ENZ	
  Modes	
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t = 30 nm 

t = 60 nm 

t = 200 nm 

Light line “ENZ”	
  

To	
  the	
  right	
  hand	
  side	
  of	
  the	
  light	
  line:	
  cannot	
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  from	
  free	
  space	
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  is	
  observed	
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Berreman,	
  Physical	
  Review	
  130	
  (6),	
  2193	
  (1963).	
  
McAlister	
  and	
  Stern,	
  Physical	
  Review	
  132,	
  1599	
  (1963).	
  

(“Berreman”	
  dip)	
  

Coupling	
  to	
  Berreman	
  Modes	
  From	
  Free	
  
Space	
  

Example:	
  “Drude”	
  layer	
  



Coupling	
  of	
  ENZ	
  Modes	
  to	
  Other	
  Resonances	
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Let’s	
  Separate	
  the	
  ENZ	
  Layer	
  and	
  the	
  
Dipole	
  Resonance	
  Layer	
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ENZ	
  Layer	
  With	
  an	
  OpBcal	
  Phonon	
  
Resonance	
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Strong	
  Coupling:	
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  Polariton	
  Branches	
  

36 

0.2

0.6

1.0

0.2

0.6

1.0

0.2

0.6

1.0

0.2

0.6

1.0

18 20 22 24 26 280.2

0.6

1.0

 

 2.0

 

 2.3

 

T
ra

ns
m

is
si

on
 (V

A
50

6B
)

 2.5

  

2.6

 

Wavelength (µm)

 2.9

Increasing SRR size 

SimulaBons	
   Experiments	
  

Metamaterial 

AlAs nano layer 



37 
•  This implementation is limited by nature: as optical phonons are defined by material properties and 

can hardly be modified 

Full-wave simulations Experiments 

•  Formation of three polariton branches 

ENZ	
  Layer	
  With	
  an	
  OpBcal	
  Phonon	
  Resonance	
  



Case	
  1:	
  Different	
  Frequencies	
  for	
  Dipole	
  
TransiBon	
  and	
  ENZ	
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Case	
  2:	
  Same	
  Frequencies	
  for	
  Dipole	
  
TransiBon	
  and	
  ENZ	
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Experimental	
  VerificaBon	
  of	
  Combined	
  
Strong	
  Coupling:	
  

(ENZ	
  layer	
  +	
  dipole	
  transiBon	
  in	
  QWs)	
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Empty symbols: Theory
Full symbols: Experiment
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  structures	
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  largest	
  Rabi	
  
splikngs	
  for	
  a	
  given	
  ENZ	
  thickness	
  
	
  	
  

ENZ	
  layer	
  +	
  dipole	
  transiBon	
  in	
  QWs	
  
Rabi	
  splikng	
  versus	
  geometry	
  



Combining	
  ENZ	
  Modes	
  and	
  Intersubband	
  
TransiBons	
  for	
  Stronger	
  Coupling	
  

• Field	
  decays	
  exponenBally	
  with	
  
distance	
  from	
  MM	
  resonators	
  

• 	
  An	
  ENZ	
  thin	
  layer	
  acts	
  as	
  a	
  
“transducer”	
  and	
  potenBal	
  
“amplifier”	
  of	
  Ez	
  field	
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z 

x 

QWs: anisotropic ε	



Substrate, εs 

Cap layer, εc  

E 

k

εAu 

ENZ 

|H|2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  |Ez|2	
  

The	
  addiBon	
  of	
  an	
  ENZ	
  layer	
  enhances	
  the	
  coupling	
  	
  
-­‐>	
  larger	
  Rabi	
  splikng	
  
-­‐>	
  larger	
  SHG	
  efficiency	
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Tunable	
  Planar	
  Metamaterials:	
  Why?	
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1.	
  ApplicaBon	
  example:	
  IR	
  hyperspectral	
  imaging	
  

(NASA) 

(Cedip) 

Has	
  mechanical	
  filters!	
  

A	
  voltage	
  tunable	
  IR	
  spectral	
  filter	
  
would	
  be	
  a	
  very	
  useful	
  device:	
  

2.	
  Fundamentals:	
  (ultra?)	
  strongly	
  coupled	
  systems	
  are	
  interesBng	
  for	
  control	
  of	
  emission,	
  
quantum	
  opBcs,	
  cavity	
  QED,	
  etc	
  



Planar	
  Metamaterials:	
  Strong	
  Coupling	
  &	
  	
  
Tuning	
  

MM	
  resonators	
  interact	
  strongly	
  with	
  thin	
  
layers	
  underneath	
  
(see	
  papers	
  by	
  Chen,	
  Giessen,	
  Zheludev,	
  us,	
  etc)	
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• 	
  	
  	
  	
  	
  	
  	
  Resonant	
  
(Use	
  a	
  dipolar	
  resonance,	
  
example:	
  phonon)	
  

 Change	
  ε2 (n)	
  Change	
  ε1 (n)	
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Energy (meV) 

Nano Letters 11, 2104 (2011) 
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•  Nonresonant	
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Cold	
  Stop	
  

Beam	
  Spli
`er	
  

Fixed	
  Mi
rror	
  

Movable
	
  Mirror	
  

IR	
  Photodetec
tor	
  

Parabolic	
  
Mirror	
  

FTIR	
  

Computer	
  
(Fourier	
  transform

)	
  

Lens	
  

Vacuum	
  Chamber	
  

IR	
  Polariz
er	
  

Sample	
  holder	
  with
	
  a	
  heaBng	
  plate	
  

RotaBon	
  Knob	
  



MM	
  Resonators	
  Provide	
  k-­‐vectors	
  to	
  
Excite	
  ENZ	
  Modes	
  

47 

Superimpose	
  dipole	
  emission	
  spectra	
  on	
  
the	
  ENZ	
  dispersion	
  

ENZ	
  dispersion	
  



Plasmon	
  Modes	
  of	
  a	
  Thin	
  Film	
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(courtesy,	
  Dept.	
  of	
  Physics,	
  Hanyang	
  Univ.)	
  

Econoumou,	
  1969	
  
Burke	
  1986	
  
etc	
  

assuming real ω, complex k 

“Thin”:	
  ~20nm	
  for	
  ~750THz	
  	
  plasma	
  frequency	
  



•  Berreman	
  mode	
  (leaky	
  mode),	
  	
  
•  ENZ	
  mode	
  (bound	
  mode)	
  
•  ENZ	
  mode	
  is	
  a	
  special	
  type	
  of	
  a	
  plasmon	
  polariton	
  

t = 30 nm 

t = 60 nm 

t = 200 nm 

Dispersion relation of the TM mode in a 3-
layer 

Numerical solution in complex domain 
(assuming complex freq, real k) 

Light line 

“Epsilon	
  Near	
  Zero”	
  vs	
  Berreman	
  Modes	
  
Berreman	
   “ENZ”	
  

t Drude	
  
Substr.	
  

Air	
  

Greffet	
  et	
  al,	
  PRL	
  109,	
  237401	
  (2012)	
  
Opt	
  Exp	
  (2012)	
   49 



Medium 1 

Medium 2 

Substrate 

Free space 

Can be calculated in a different way: The layered medium can be modeled as a set 
of cascaded transmission lines 

d1 

d2 

d1 

d2 

Z0 

Z1 

Z2 

Z3 

Select a reference plane, then compute the impedances looking up and looking down by  
accounting for the dispersion in each medium 

Zup 

Zdown 

Compute the (complex) modes as the zeroes of Zup + Zdown = 0 
 

Modal	
  analysis	
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Electrically	
  Tunable	
  Strong	
  Coupling	
  

Appl.	
  Phys.	
  Ler.	
  103,	
  263116	
  (2013)	
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Strong	
  Coupling	
  Theory	
  vs.	
  Experiment	
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Geometry	
  factor	
  

Plasma	
  frequency	
  

​Ω↓𝑅 =√⁠​𝑓↓𝑊  ​𝜔↓𝑝 /2 

Nature	
  CommunicaUons	
  4,	
  (2013)	
  
Phys.	
  Rev.	
  B	
  89,	
  165133	
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Experiments	
  

SimulaUons	
  (FDTD)	
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  resonators	
  

Rabi	
  frequency	
  depends	
  on	
  
simple	
  parameters	
  



Electrically	
  Tunable	
  Strong	
  Coupling	
  

• Metamaterial	
  spectral	
  response	
  tuned	
  
by	
  voltage	
  

• Upper	
  polariton	
  shiued	
  by	
  2.5	
  THz	
  (=8%	
  
of	
  center	
  frequency	
  or	
  one	
  full	
  
intersubband	
  linewidth)	
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Appl.	
  Phys.	
  Ler.	
  103,	
  263116	
  (2013)	
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How	
  to	
  Increase	
  the	
  Rabi	
  Frequency:	
  
Metamaterial	
  Nanocavity	
  +	
  Ground-­‐plane	
  

• Ground	
  plane	
  limits	
  field	
  penetraBon	
  into	
  the	
  semiconductor	
  
• Mode	
  volume	
  reduced	
  from:	
  2.49×10-­‐3	
  (λ/n)3	
  to	
  1.34×10-­‐3	
  (λ/n)3	
  

55 

QW	
  region	
  (thinner)	
  

Back-­‐reflector	
  
Highly	
  doped	
  
semiconductor	
  

Optics Express 21, 32572 (2013) 



Reduced	
  Mode	
  Volume:	
  Experiments	
  

• Rabi	
  frequency	
  remains	
  almost	
  idenBcal	
  despite	
  reduced	
  QW-­‐stack	
  
thickness	
  (factor	
  3.3)	
  or	
  reduced	
  mode	
  volume	
  (factor	
  1.9)	
  

• ConvenBonal	
  sample:	
  2.1	
  THz	
  vs.	
  Nanocavity:	
  2.5	
  THz	
  

56 Optics Express 21, 32572 (2013) 



Rabi	
  Frequency	
  vs.	
  Geometry	
  

• Larger	
  capacitance	
  leads	
  to	
  larger	
  Rabi	
  splikng	
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Dogbone 
High 
capacitance 

Dumbbell 
High 
capacitance 

Jerusalem Cross 
Low damping = high-Q 

Circular SRR 
High 
inductance 

Physical Review B89, 165133 (2014)	
  



Strong	
  Coupling	
  to	
  Inter-­‐subband	
  TransiBons	
  
in	
  Quantum	
  Wells	
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• Scalabe	
   (far	
   IR	
   to	
   near	
  
IR),	
  Mature,	
  VersaUle	
  

58 

z 
Opt.	
  Express	
  20,	
  6584	
  (2012),	
  

APL	
  98,	
  203103	
  (2011)	
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Experimental	
  Rabi	
  OscillaBons	
  
(using	
  a	
  mid-­‐IR	
  Time-­‐domain	
  fsec	
  system)	
  

• Energy	
  exchange	
  
probed	
  in	
  Bme	
  
–  33	
  fs	
  oscillaBon	
  
–  480	
  fs	
  beaBng	
  

• System	
  strongly	
  
coupled	
  

• Splikng	
  of	
  4.2	
  THz	
  
measured	
  
–  15	
  %	
  of	
  ω12	
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How	
  to	
  Increase	
  the	
  Rabi	
  Frequency	
  	
  
Effect	
  of	
  QW-­‐stack	
  thickness	
  

• Thickness	
  of	
  the	
  QW-­‐stack	
  influences	
  the	
  Rabi	
  frequency	
  
• Increased	
  from	
  1.65	
  to	
  2.64	
  THz	
  

50 nm 650 
nm 
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How	
  to	
  Increase	
  the	
  Rabi	
  Frequency:	
  
Metamaterial	
  Nanocavity	
  +	
  Ground-­‐plane	
  

Opt.	
  Express	
  21,	
  32572	
  (2013)	
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Coupling	
  of	
  Metamaterial	
  Resonators	
  to	
  
Dipole	
  Resonances	
  +	
  ENZ	
  modes	
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Metamaterial 

AlAs nano layer 

GaAs Substrate 

Lorentz model 

J. Appl. Phys., 48, 212 (1976). 
Solid State Communications, 62, 645-647, (1987).  

Γ: Phonon damping constant 
ωp: Plasma frequency 
γ: Free carrier damping constant 
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One	
  thin	
  layer	
  contains:	
  	
  
•  ε~0	
  crossing	
  -­‐>	
  ENZ	
  mode	
  
•  TO	
  Phonon:	
  “dipole”	
  transiUon	
  



Circuit	
  Model	
  for	
  Strong	
  Coupling	
  

• Metamaterial	
  modelled	
  as	
  simple	
  RLC	
  
harmonic	
  oscillator	
  

• Strong	
  coupling	
  represented	
  by	
  
dispersive	
  capacitor	
  

• No	
  free	
  fikng	
  parameters	
  for	
  dispersive	
  
capacitor	
  

​𝐶↓𝐼𝑆𝑇 (𝜔)= ​√⁠​𝜀↓𝑏𝑎𝑐𝑘 ​𝜀↓𝐼𝑆𝑇 (𝜔) − ​𝜀↓𝑏𝑎𝑐𝑘 /​𝜀↓𝑏𝑎𝑐𝑘 +1 ​𝐶↓𝑚𝑚  

​𝜀↓𝐼𝑆𝑇 (𝜔)= ​𝜀↓𝑏𝑎𝑐𝑘 + ​Δ​𝑁↓12 ​𝑒↑2 /​𝜖↓0 ​𝑚↑∗     ​​𝑓↓12 /​𝜔↓12↑2 − ​𝜔↑2 +2𝑖𝜔𝛿    

Near	
  fields	
  of	
  “metasurface”	
  
	
  
	
  
Ez-­‐IST	
  coupling	
  
	
  
	
  
Plane	
  wave	
  in	
  substrate	
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Accuracy	
  of	
  circuit	
  model	
  

• FDTD	
  simulaBons	
  show	
  clear	
  anB-­‐crossing	
  as	
  a	
  funcBon	
  bare	
  
cavity	
  frequency	
  

• Circuit	
  model	
  can	
  recover	
  full	
  lineshape	
  of	
  reflectance	
  (or	
  
transmi`ance)	
  spectra	
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Resonator	
  Geometries	
  Analyzed	
  

• All	
  metamaterial	
  
have	
  idenBcal	
  
bare	
  cavity	
  
resonances	
  but	
  
different	
  RLC	
  
values	
  

• Metamaterial	
  
defined	
  by	
  
electron-­‐beam	
  
lithography	
  

• Same	
  QW-­‐stack	
  
used	
  for	
  all	
  
samples	
  

• Study	
  only	
  
geometry	
  effect	
  

Dogbone 
High capacitance 

Dumbbell 
High capacitance 

Jerusalem Cross 
Low damping = high-Q 

Circular SRR 
High inductance 

1um	
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Circuit	
  model	
  accuracy	
  

• RLC	
  model	
  
describes	
  strong	
  
coupling	
  
accurately	
  
despite	
  the	
  exact	
  
geometry	
  

• Only	
  cold	
  cavity	
  
requires	
  fikng	
  

Dogbone Dumbbell 

Jerusalem 
Cross 

Circular SRR 
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Top: Two isotropic Lorentzians; one is stronger than the other 

Bottom: Two anisotropic Lorentzians; one is stronger than the other 



Modal	
  analysis	
  

Medium 1 

Medium 2 

Substrate 

Free space 

The layered medium can be modeled as a set of cascaded transmission lines 

d1 

d2 

d1 

d2 

Z0 

Z1 

Z2 

Z3 

Select a reference plane, then compute the impedances looking up and looking down by  
accounting for the dispersion in each medium 

Zup 

Zdown 

Compute the (complex) modes as the zeroes of Zup + Zdown = 0 
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Strong	
  Coupling,	
  Near	
  IR	
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Dogbone	
  Resonators,	
  Near	
  IR	
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Strong	
  Coupling,	
  Near	
  IR	
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SHG	
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Appl.	
  Phys.	
  Ler.	
  104,	
  131104	
  (2014)	
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