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SIERRA/SM (Solid Mechanics)
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 A general purpose massively parallel nonlinear solid mechanics 
finite element code for explicit transient dynamics, implicit 
transient dynamics and quasi-statics analysis.

 Built upon extensive material, element, contact and solver 
libraries for analyzing challenging nonlinear mechanics 
problems for normal, abnormal, and hostile environments.

 Similar to LSDyna or Abaqus commercial software systems.



Explicit Dynamic Impact Problem

Runtime
Sandy bridge – 512 processors

Original: 48 hours
Current:  20h 11m 21s  
Speed-Up: 2.38x
Milli-second impact analysis

Capability Percent of Run

Contact: Search and Enforcement 85.06%

Internal Force Calculation 3.75%

Energy Calculations 1.77%

Runtime Breakdown by Capability



SIERRA/SM Bottlenecks
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Explicit 
dynamics with 
contact

Application: Implicit with FETI 
pre-conditioner

Explicit 
dynamics w/o 
contact

Parallel proximity 
search and enforcing 
contact constraints

Hot spot: Serial sparse direct 
solve: matrix 
factorization and 
forward/backward 
solves

Assembling 
nonlinear element 
residuals and 
computing material 
response

Contact detection example:

Potential contact detected



I-Beam Problem (Quasi-Static)
-provided by Joe Bishop

Mesh:
• 3 Different mesh refinements: 

8,576,  68,608, and 548,864 
elements

• Mean Quadrature and SD hex 
elements

Unique Features:
• Crystal Plasticity material 

model
• Problem does not converge 

when mesh is refined
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Quasi-Static Solution Algorithm

1. Initialize Time Step, t = 0, dt = dt0

2. Compute Residual Force:

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t)

3. Iterate until: R(x,t) = 0 

4. If Converged, t = t + dt
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Nonlinear Conjugate Gradient

1. k= 0

2. Loop, until converged

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t)

G = M-1 R(x,t)               // preconditioning

S = G + beta * Sk-1            // axby

alpha = LineSearch(S) // extra residual call

x = x + alpha * S          // axby

Compute ||R||, check convergence

Beta = compute_beta() // dot products, all reduce
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Preconditioning with linear solver
 The preconditioning step dominates the cost (>90%).

 Occurs one per time step

 Accomplished with a Jacobian matrix which requires an 
iterative linear solver algorithm to provide M-1

 Iterative linear solve done with the FETI (Finite Element 
Tearing & Interconnecting) domain decomposition 
algorithm 

 FETI requires a local solve, coarse solve, and a 
preconditioner solve (similar to most domain 
decomposition algorithms) 

 Extensively uses sparse direct solvers
8



Pardiso vs. SparsePack direct solver
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Official Use Only
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Sierra/SM Performance Profile

 Have performance profile on Chama (Sandy Bridge IB Cluster) with
 vTune

 HPCToolkit

 Allinea Map

 Need to resolve build of Sierra/SM with CrayPat on Cray XE6 ( Muzia)

 Used OpenSpeedShop(ossmpiotf) and Vampir to get MPI message 
characteristics

 Performance profile confirms expected hotspots:
 Explicit dynamic: ( MPI Sync time in Allreduce & Barrier)

 Cont_DashEnforcement.c line 550 (Allreduce; 23.1%)

 ContactCommunication.C line 2801 (Barrier; 5.9%)

 Quasi-static:
 36% of run time out of which 52% of the time in MPI calls was at ~/mycode/FETI-

DP/src/FETI_DP_FiniteElementData.C (line 919) feti::FetiDriver ( FetiDriver.C line 228) 

 The other hot spot (5.3% of run time) is in ParallelCoarseGrid.C line 179;  88% of this 
time was in MPI ( calls Allreduce BlockSparseSolver.C line 476 )
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Allinea Performance Report on Chama 
(Sandy Bridge, IB cluster) 
512 core runs

Explicit dynamic contact
Summary: Sierra/SM is MPI-bound in this configuration

CPU:                              46.3% 

MPI:                              53.7%

CPU:

A breakdown of how the 46.3% total CPU time was 
spent:

Scalar numeric ops:                19.6% 

Vector numeric ops:                 2.4%

Memory accesses:                   77.3%

MPI:

A breakdown of how the 53.7% total MPI time was 
spent:

Time in collective calls:          92.3% 

Time in point-to-point calls:       7.7% 

Effective collective rate:      1.71e+06 bytes/s

Effective point-to-point rate:  3.13e+08 bytes/s

Quasi-static (implicit)
Summary: Sierra/SM is CPU-bound in this configuration
CPU:                              68.9% 
MPI:                              30.8% 

CPU:
A breakdown of how the 68.9% total CPU time was 
spent:
Scalar numeric ops:                19.9% 
Vector numeric ops:                10.2%
Memory accesses:                   69.9%

MPI:
A breakdown of how the 30.8% total MPI time was 
spent:
Time in collective calls:          94.7% |========|
Time in point-to-point calls:       5.3% ||
Effective collective rate:      8.90e+07 bytes/s
Effective point-to-point rate:  2.80e+08 bytes/s
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Sierra/SM scaling
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MPI Scaling
(Dynamics: large number of small (4 Byte) messages)
(Quasi-Statics: most messages in the 8kB to 25kB size )

Explicit dynamic contact Quasi-statics (implicit)
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Sierra/SM Performance Summary

 Explicit dynamics dominated by MPI globals at scale
 Try asynchronous collectives?

 May benefit from optimization for small messages

 Quasi-statics
 Need to investigate improvements after use of threading and 

vectorization with Pardiso / MKL

 Leverage math library threading/vectorization
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SSE2/AVX/AVX512 SIMD in Sierra-SM
for nonlinear element assembly

x y z w

a b c d

+

=

x+a y+b z+c w+d

For simple loops, compilers can 
auto-vectorize:

for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

Complicated loops don’t auto-
vectorize:

Tensor33 multiply

Eigenvectors

Constitutive law evaluations



Sierra SSE2/AVX/AVX512 interface

Simd.h:

#if defined(AVX)

const int ndoubles = 4;

class Doubles { __m256d d }; 
#elif defined(SSE2)

const int ndoubles = 2;

class Doubles { __m128d d };

#else

const int ndoubles = 1;

typedef double Doubles; 

#end

main.cc:

#include <Simd.h>

double x[ndoubles];

Doubles a = simd::load(x);

Doubles b = Doubles(2.1);

// operator overload:

Doubles c = a+b; 

double output[ndoubles];

simd::store(output,c);



SIMD “EDSL”

Standard math functions:

sqrt, cbrt, log, exp, pow, fabs, 

copysign, min, max

Simd boolean types:

<, <=, >, >=, == returns booleans, 
e.g.,

Bools isTrue = x < 5;

Simd ternary:

Doubles z = if_then(isTrue, 1.0, y); 

Simd reduction:

double a = reduceSum(z);

Operator overloads:

+, -, *, /, +=, -=, *=, /=

Also Simd Loads and 
Store

Bottlenecks:

_mm256_sqrt_pd() is only ~2X 
faster than std::sqrt()

Same with 
_mm512_sqrt_pd()?

Some compilers don’t 
implement cbrt, log, exp, etc.



Performance improvements

 Tensor multiply: 1.80 x 3.63 x            2.42 x

 Eigenvalue:                1.97 x 3.19 x            5.25 x

 Polar Decomp: 1.7 x 2.28 x            4.89 x   

SSE2 AVX AVX512(KNC)



Real applications!

 Goodyear milestone: get run time of < 1.5 x Abaqus

 Previously at   ̴1.8 x 

 Initial SIMD implementation 
 ~ 40% overall improvement

 now at ̴1.1-1.2x !

 High velocity impact simulation
 Originally, ~70% calculating 3x3 eigenvectors

 Now ~10%



Early KNC results
 Sierra/SM compiles and runs on our test-bed KNC
 Use coloring algorithm to thread “force assembly”

Data provided by Nate Crane



Take aways
 Solvers

 Improve/thread sparse direct solvers

 Bottleneck in both factorization and forward/backward solves

 Contact/Search
 Serial cost dominated by random memory access

 Parallel dynamic load balancing required

 Element assembly
 Requires multi-threading (OpenMP?)

 Better auto-vectorization would be nice

 For now we are “hand” vectorizing
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EXTRA SLIDES
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Official Use Only
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QS model: Vampir Message Profile for 8 
MPI tasks
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SIMD Tensor class

Process N tensors at a time 

(N=4 with AVX, N=8 with AVX512):

double tensors[4*9];

// fill 4 tensor

Tensor33<Doubles> a(tensors)

c = mult(a,b);

Eigenvector(c,vects,vals);

c[0] = a[8] + b[4];

double output[4*9];

c.Store(output);

a1 a2 a3

a5 a6

a9a8

a4

a7



Loading 4 2x2 tensors

Doubles A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load(a+i,tensor_size);

double a[4*tensor_size];

Slow memory access, but necessary unless we change memory layout of a.



Improved memory layout

Doubles A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load_better(a+i);

double a[4*tensor_size];

Fast memory access, but requires some code refactor.



Fast approximation for 3x3 eigenvalues

 Analytic eigenvalue calculations require evaluating:

 A Padé approximation can be derived (in Mathematica):

 Error < 5.6e-16 over entire range

 >7 X speed up over native C++ trig functions

 With AVX: speed up > 14 X
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