
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SIERRA Solid Mechanics
Trinity CoE Meeting
December 9, 10 2014
SIERRA/SM Profiling

Mahesh Rajan, Michael Tupek, Kendall Pierson

1

SAND2015-0099PE

SIERRA/SM (Solid Mechanics)

1/22/2015 2

 A general purpose massively parallel nonlinear solid mechanics
finite element code for explicit transient dynamics, implicit
transient dynamics and quasi-statics analysis.

 Built upon extensive material, element, contact and solver
libraries for analyzing challenging nonlinear mechanics
problems for normal, abnormal, and hostile environments.

 Similar to LSDyna or Abaqus commercial software systems.

Explicit Dynamic Impact Problem

Runtime
Sandy bridge – 512 processors

Original: 48 hours
Current: 20h 11m 21s
Speed-Up: 2.38x
Milli-second impact analysis

Capability Percent of Run

Contact: Search and Enforcement 85.06%

Internal Force Calculation 3.75%

Energy Calculations 1.77%

Runtime Breakdown by Capability

SIERRA/SM Bottlenecks

1/22/2015 4

Explicit
dynamics with
contact

Application: Implicit with FETI
pre-conditioner

Explicit
dynamics w/o
contact

Parallel proximity
search and enforcing
contact constraints

Hot spot: Serial sparse direct
solve: matrix
factorization and
forward/backward
solves

Assembling
nonlinear element
residuals and
computing material
response

Contact detection example:

Potential contact detected

I-Beam Problem (Quasi-Static)
-provided by Joe Bishop

Mesh:
• 3 Different mesh refinements:

8,576, 68,608, and 548,864
elements

• Mean Quadrature and SD hex
elements

Unique Features:
• Crystal Plasticity material

model
• Problem does not converge

when mesh is refined

1/22/2015 5

Quasi-Static Solution Algorithm

1. Initialize Time Step, t = 0, dt = dt0

2. Compute Residual Force:

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t)

3. Iterate until: R(x,t) = 0

4. If Converged, t = t + dt

6

Nonlinear Conjugate Gradient

1. k= 0

2. Loop, until converged

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t)

G = M-1 R(x,t) // preconditioning

S = G + beta * Sk-1 // axby

alpha = LineSearch(S) // extra residual call

x = x + alpha * S // axby

Compute ||R||, check convergence

Beta = compute_beta() // dot products, all reduce

7

Preconditioning with linear solver
 The preconditioning step dominates the cost (>90%).

 Occurs one per time step

 Accomplished with a Jacobian matrix which requires an
iterative linear solver algorithm to provide M-1

 Iterative linear solve done with the FETI (Finite Element
Tearing & Interconnecting) domain decomposition
algorithm

 FETI requires a local solve, coarse solve, and a
preconditioner solve (similar to most domain
decomposition algorithms)

 Extensively uses sparse direct solvers
8

Pardiso vs. SparsePack direct solver

1/22/2015 9

Official Use Only

3.20E+01

6.40E+01

1.28E+02

2.56E+02

5.12E+02

1.02E+03

2.05E+03

4.10E+03

8.19E+03

1 2 4 8 16 32

T
im

e
 (

s
)

Num Threads

Pardiso, Fine

SparsePack, Fine

Pardiso, Coarse

SparsePack,
Coarse
Ideal

Sierra/SM Performance Profile

 Have performance profile on Chama (Sandy Bridge IB Cluster) with
 vTune

 HPCToolkit

 Allinea Map

 Need to resolve build of Sierra/SM with CrayPat on Cray XE6 (Muzia)

 Used OpenSpeedShop(ossmpiotf) and Vampir to get MPI message
characteristics

 Performance profile confirms expected hotspots:
 Explicit dynamic: (MPI Sync time in Allreduce & Barrier)

 Cont_DashEnforcement.c line 550 (Allreduce; 23.1%)

 ContactCommunication.C line 2801 (Barrier; 5.9%)

 Quasi-static:
 36% of run time out of which 52% of the time in MPI calls was at ~/mycode/FETI-

DP/src/FETI_DP_FiniteElementData.C (line 919) feti::FetiDriver (FetiDriver.C line 228)

 The other hot spot (5.3% of run time) is in ParallelCoarseGrid.C line 179; 88% of this
time was in MPI (calls Allreduce BlockSparseSolver.C line 476)

1/22/2015 10

Allinea Performance Report on Chama
(Sandy Bridge, IB cluster)
512 core runs

Explicit dynamic contact
Summary: Sierra/SM is MPI-bound in this configuration

CPU: 46.3%

MPI: 53.7%

CPU:

A breakdown of how the 46.3% total CPU time was
spent:

Scalar numeric ops: 19.6%

Vector numeric ops: 2.4%

Memory accesses: 77.3%

MPI:

A breakdown of how the 53.7% total MPI time was
spent:

Time in collective calls: 92.3%

Time in point-to-point calls: 7.7%

Effective collective rate: 1.71e+06 bytes/s

Effective point-to-point rate: 3.13e+08 bytes/s

Quasi-static (implicit)
Summary: Sierra/SM is CPU-bound in this configuration
CPU: 68.9%
MPI: 30.8%

CPU:
A breakdown of how the 68.9% total CPU time was
spent:
Scalar numeric ops: 19.9%
Vector numeric ops: 10.2%
Memory accesses: 69.9%

MPI:
A breakdown of how the 30.8% total MPI time was
spent:
Time in collective calls: 94.7% |========|
Time in point-to-point calls: 5.3% ||
Effective collective rate: 8.90e+07 bytes/s
Effective point-to-point rate: 2.80e+08 bytes/s

11

Sierra/SM scaling

12

100

1000

10000

32 128 512

W
a
ll
 T

im
e
:

 h
r:

m
i:

s
e

of MPI Tasks

SM Strong Scaling on Chama, Dynamic Model

Wall time

Ideal

10

100

1000

10000

16 32 64 128 256 512

W
a
ll
 T

im
e
:

 h
r:

m
i:

s
e

of MPI Tasks

SM Strong Scaling on Chama, Static Beam Model

Wall time

Ideal

MPI Scaling
(Dynamics: large number of small (4 Byte) messages)
(Quasi-Statics: most messages in the 8kB to 25kB size)

Explicit dynamic contact Quasi-statics (implicit)

1/22/2015 13

0.00% 20.00% 40.00% 60.00% 80.00%

32

64

128

256

512

1024

Run Time Percentage in MPI

#
 o

f
M

P
I
T

a
s
k
s

MPI Time Percentage

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

16

32

64

128

256

512

Run Time Percentage in MPI

#
 o

f
M

P
I
T

a
s
k
s

I_Beam_r2 MPI Time
Percentage

Sierra/SM Performance Summary

 Explicit dynamics dominated by MPI globals at scale
 Try asynchronous collectives?

 May benefit from optimization for small messages

 Quasi-statics
 Need to investigate improvements after use of threading and

vectorization with Pardiso / MKL

 Leverage math library threading/vectorization

1/22/2015 14

SSE2/AVX/AVX512 SIMD in Sierra-SM
for nonlinear element assembly

x y z w

a b c d

+

=

x+a y+b z+c w+d

For simple loops, compilers can
auto-vectorize:

for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

Complicated loops don’t auto-
vectorize:

Tensor33 multiply

Eigenvectors

Constitutive law evaluations

Sierra SSE2/AVX/AVX512 interface

Simd.h:

#if defined(AVX)

const int ndoubles = 4;

class Doubles { __m256d d };
#elif defined(SSE2)

const int ndoubles = 2;

class Doubles { __m128d d };

#else

const int ndoubles = 1;

typedef double Doubles;

#end

main.cc:

#include <Simd.h>

double x[ndoubles];

Doubles a = simd::load(x);

Doubles b = Doubles(2.1);

// operator overload:

Doubles c = a+b;

double output[ndoubles];

simd::store(output,c);

SIMD “EDSL”

Standard math functions:

sqrt, cbrt, log, exp, pow, fabs,

copysign, min, max

Simd boolean types:

<, <=, >, >=, == returns booleans,
e.g.,

Bools isTrue = x < 5;

Simd ternary:

Doubles z = if_then(isTrue, 1.0, y);

Simd reduction:

double a = reduceSum(z);

Operator overloads:

+, -, *, /, +=, -=, *=, /=

Also Simd Loads and
Store

Bottlenecks:

_mm256_sqrt_pd() is only ~2X
faster than std::sqrt()

Same with
_mm512_sqrt_pd()?

Some compilers don’t
implement cbrt, log, exp, etc.

Performance improvements

 Tensor multiply: 1.80 x 3.63 x 2.42 x

 Eigenvalue: 1.97 x 3.19 x 5.25 x

 Polar Decomp: 1.7 x 2.28 x 4.89 x

SSE2 AVX AVX512(KNC)

Real applications!

 Goodyear milestone: get run time of < 1.5 x Abaqus

 Previously at ̴1.8 x

 Initial SIMD implementation
 ~ 40% overall improvement

 now at ̴1.1-1.2x !

 High velocity impact simulation
 Originally, ~70% calculating 3x3 eigenvectors

 Now ~10%

Early KNC results
 Sierra/SM compiles and runs on our test-bed KNC
 Use coloring algorithm to thread “force assembly”

Data provided by Nate Crane

Take aways
 Solvers

 Improve/thread sparse direct solvers

 Bottleneck in both factorization and forward/backward solves

 Contact/Search
 Serial cost dominated by random memory access

 Parallel dynamic load balancing required

 Element assembly
 Requires multi-threading (OpenMP?)

 Better auto-vectorization would be nice

 For now we are “hand” vectorizing

1/22/2015 21

EXTRA SLIDES

1/22/2015

Official Use Only

22

QS model: Vampir Message Profile for 8
MPI tasks

1/22/2015 23

SIMD Tensor class

Process N tensors at a time

(N=4 with AVX, N=8 with AVX512):

double tensors[4*9];

// fill 4 tensor

Tensor33<Doubles> a(tensors)

c = mult(a,b);

Eigenvector(c,vects,vals);

c[0] = a[8] + b[4];

double output[4*9];

c.Store(output);

a1 a2 a3

a5 a6

a9a8

a4

a7

Loading 4 2x2 tensors

Doubles A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load(a+i,tensor_size);

double a[4*tensor_size];

Slow memory access, but necessary unless we change memory layout of a.

Improved memory layout

Doubles A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load_better(a+i);

double a[4*tensor_size];

Fast memory access, but requires some code refactor.

Fast approximation for 3x3 eigenvalues

 Analytic eigenvalue calculations require evaluating:

 A Padé approximation can be derived (in Mathematica):

 Error < 5.6e-16 over entire range

 >7 X speed up over native C++ trig functions

 With AVX: speed up > 14 X

)3)(cos(arccos /x

5432

5432

0027.0078.06.08.126.21

0066.012.074.089.113.2866.0
)3)(cos(arccos

xxxxx

xxxxx
/x






