SAND2015- 0099PE

SIERRA Solid Mechanics
Trinity CokE Meeting
December 9, 10 2014

SIERRA/SM Profiling

unrotated_stress_xx

5.517e-01
2.758e-01
-7617e-05
-2.760e-01

-5.518e-01

Mahesh Rajan, Michael Tupek, Kendall Pierson

Sandia
National
Laboratories

Exceptional
service

in the

U.S. DEPARTMENT OF I YA =g

ENERGY /M VA ™A

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
l"ll terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

national

SIERRA/SM (Solid Mechanics)) .

A general purpose massively parallel nonlinear solid mechanics
finite element code for explicit transient dynamics, implicit
transient dynamics and quasi-statics analysis.

Built upon extensive material, element, contact and solver
libraries for analyzing challenging nonlinear mechanics
problems for normal, abnormal, and hostile environments.

Similar to LSDyna or Abaqus commercial software systems.

1/22/2015 2

Sandia

Explicit Dynamic Impact Problem -

Runtime
Sandy bridge — 512 processors

Original: 48 hours

Current: 20h 11m 21s
Speed-Up: 2.38x
Milli-second impact analysis

Runtime Breakdown by Capability

Contact: Search and Enforcement 85.06%
Internal Force Calculation 3.75%
Energy Calculations 1.77%

Sandia
|l1 National

Laboratories

SIERRA/SM Bottlenecks

Application:| Explicit Implicit with FETI Explicit
dynamics with pre-conditioner dynamics w/o
contact contact

Hot spot: | Parallel proximity Serial sparse direct | Assembling
search and enforcing solve: matrix nonlinear element
contact constraints factorization and residuals and

forward/backward computing material
solves response

Potential contact detected
4

Contact detection example: E\%

1/22/2015

I-Beam Problem (Quasi-Static))

-provided by Joe Bishop

Mesh:
3 Different mesh refinements:
8,576, 68,608, and 548,864

unrotated_stress_xx elements
5.517e-01 * Mean Quadrature and SD hex
2.758e-01 elements

-7.617e-05
-2.760e-01
-5.518e-01

Unique Features:

e Crystal Plasticity material
model

* Problem does not converge
when mesh is refined

1/22/2015 5

Quasi-Static Solution Algorithm 1) .

1. Initialize Time Step, t =0, dt = dt0
2. Compute Residual Force:
R(X,t) = Feyternall¥t) = Finternal(X,t) + Feontact(X,1)
3. Iterate until: R(x,t) =0
4. If Converged, t=t+dt

Sandia

Nonlinear Conjugate Gradient) e

1. k=0

2. Loop, until converged
R(x,t) = F x,t) - F X,t) + F o iact (1)
G = M1 R(x,t) // preconditioning
S =G + beta * Sk1 // axby
alpha = LineSearch(S) // extra residual call
X=X+ alpha *S // axby

external(internal(

Compute | |R| |, check convergence
Beta = compute_beta() // dot products, all reduce

Preconditioning with linear solver @,

"= The preconditioning step dominates the cost (>90%).
= QOccurs one per time step

= Accomplished with a Jacobian matrix which requires an
iterative linear solver algorithm to provide M-!

= [terative linear solve done with the FETI (Finite Element
Tearing & Interconnecting) domain decomposition
algorithm

= FETI requires a local solve, coarse solve, and a
preconditioner solve (similar to most domain
decomposition algorithms)

= Extensively uses sparse direct solvers

8

Pardiso vs. SparsePack direct solver @

8.19E+03
—¢—Pardiso, Fine
4.10E+03 = SparsePack, Fine
== Pardiso, Coarse
== SparsePack,
2.05E+03 oparse
—Ideal
1.02E+03

5.12E+02 \s\‘
2.56E+02

Time (s)

1.28E+02
P \‘)\‘\/)
3.20E+01 ! .
1 2 4 8 16 32
Num Threads
1/22/2015 9

Official Use Only

Sierra/SM Performance Profile) .

Have performance profile on Chama (Sandy Bridge IB Cluster) with
= vlune
= HPCToolkit
= Allinea Map

= Need to resolve build of Sierra/SM with CrayPat on Cray XE6 (Muzia)

= Used OpenSpeedShop(ossmpiotf) and Vampir to get MPI message
characteristics

= Performance profile confirms expected hotspots:

= Explicit dynamic: (MPI Sync time in Allreduce & Barrier)
= Cont_DashEnforcement.cline 550 (Allreduce; 23.1%)
= ContactCommunication.C line 2801 (Barrier; 5.9%)

= (Quasi-static:

= 36% of run time out of which 52% of the time in MPI calls was at ~/mycode/FETI-
DP/src/FETI_DP_FiniteElementData.C (line 919) feti::FetiDriver (FetiDriver.C line 228)

* The other hot spot (5.3% of run time) is in ParallelCoarseGrid.C line 179; 88% of this
time was in MPI (calls Allreduce BlockSparseSolver.C line 476)

1/22/2015 10
_ __

Allinea Performance Report on Chama

(Sandy Bridge, IB cluster)
512 core runs

Explicit dynamic contact

Sandia
|I1 National

Laboratories

Quasi-static (implicit)

Summary: Sierra/SM is MPI-bound in this configuration
CPU: 46.3%

MPI: 53.7%

CPU:

A breakdown of how the 46.3% total CPU time was
spent:

Scalar numeric ops: 19.6%

Vector numeric ops: 2.4%

Memory accesses: 77.3%

MPI:

A breakdown of how the 53.7% total MPI time was
spent:

Time in collective calls: 92.3%

Time in point-to-point calls: 7.7%

Effective collective rate: 1.71e+06 bytes/s
Effective point-to-point rate: 3.13e+08 bytes/s

Summary: Sierra/SM is CPU-bound in this configuration
CPU: 68.9%
MPI: 30.8%

CPU:

A breakdown of how the 68.9% total CPU time was
spent:

Scalar numeric ops: 19.9%

Vector numeric ops: 10.2%

Memory accesses: 69.9%

MPI:

A breakdown of how the 30.8% total MPI time was
spent:

Time in collective calls: 94.7% |========|
Time in point-to-point calls: 5.3% | |

Effective collective rate: 8.90e+07 bytes/s
Effective point-to-point rate: 2.80e+08 bytes/s

11

Sierra/SM scaling) .

SM Strong Scaling on Chama, Dynamic Model

10000

Q
"
=
| &
=
1000 —
GE, ——\\Vall time —=
E —#-|deal
©
100 . .
E= 32 128 512

of MPI Tasks

SM Strong Scaling on Chama, Static Beam Model

10000

—o—\Wall tim:\ S

—

-#-|deal

Wall Time: hr:mi:se
)
o

RN
o

32 64 128 256 512
of MPI Tasks

N
(o)}

12

MPI Scaling

(Dynamics: large number of small (4 Byte) messages)
(Quasi-Statics: most messages in the 8kB to 25kB size)

Sandia
|I1 National

Laboratories

Explicit dynamic contact Quasi-statics (implicit)

MPI Time Percentage |_ Beam_r2 MPI Time
1024 512
0 0
x 512 X 256
(1} (1}
~ 256 128
o o
S 128 L 64
s 5 32
® 64 *
32 16
0.00% 20.00% 40.00% 60.00% 80.00% 0.00% 5.00% 10.00% 15.00% 20.00% 25.00%
Run Time Percentage in MPI Run Time Percentage in MPI
Number of Messages per Message Size Number of Messages per Message Size
1. 500 123 750 < 15 k O k S k 0 k
um Sum

1zo B
3.2 24.352 KiB
.05 EEN 144 O
1.272 Il 224 375 KiB
1=
1.zzs Il s 5°5 KiB
= 1.154 il 24.528 KiB

14.549 48 KiB 1.007 il 5648 KiB
13.1=24a 6.07 KiB osa 8719 KiB
1=2.749 5. 438 KiB sea8 oB
11.827 15 727 KiB S84 2672 KiB
11.722 2. 414 KiB 2oz fas
11.44a44 a8 B z70] 8742 KiB
11.127 17.156 KiB 235 88
10.862 | ss2 B 147 | 328
10.23s 1781 KiB igz 8.984 KIiB
10.677 1172 KiB

10.559 se72 B
10.513 7444 B
10.427 14 391 KiB o6
10.412 1.969 KIB 85
10.297 16.828 KiB

1/22/2015 13

135
96

|
1=
135 | 4
|2
|2
|2
|1

Sierra/SM Performance Summary @

= Explicit dynamics dominated by MPI globals at scale
= Try asynchronous collectives?
= May benefit from optimization for small messages

= Quasi-statics

= Need to investigate improvements after use of threading and
vectorization with Pardiso / MKL

= Leverage math library threading/vectorization

1/22/2015 14
_ __

SSE2/AVX/AVX512 SIMD in Sierra-SI\éma.
for nonlinear element assembly

For simple loops, compilers can
auto-vectorize:
for (inti=0; i < N; ++i) {

+
afi] = bfi] + cfi] * d[i);
u)

Complicated loops don't auto-
vectorize:

Tensor33 multiply
Eigenvectors
Constitutive law evaluations

Sandia
|I1 National

Laboratories

Sierra SSE2/AVX/AVX512 interface

i main.cc:
Simd.h:
#if defined(AVX) #include <Simd.h>

const int ndoubles = 4;

class Doubles{ m256dd};
t#elif defined(SSE2)

const int ndoubles = 2;
class Doubles{ m128dd};

double x[ndoubles];

Doubles a = simd::load(x);
Doubles b = Doubles(2.1);

#else /I operator overload:
const int ndoubles = 1; Doubles ¢ = a+b:
typedef double Doubles;

#end double output[ndoubles];

simd::store(output,c);

SIMD “EDSL”) o,

Standard math functions: Operator overloads:

sqrt, cbrt, log, exp, pow, fabs, +, -5/, +=, = *= |=
copysign, min, max Also Simd Loads and
Simd boolean types: Store

<, <=, > >= ==returns booleans,

e.g., Bottlenecks:

Bools isTrue = x < 5; ~mm256_sqgrt_pd() is only ~2X

faster than std::sqrt()
Simd ternary:

Doubles z = if_then(isTrue, 1.0, y); | Same with
~mmd12_sqgrt_pd()?
Simd reduction:

double a = reduceSum(z); Some compilers don't

Implement cbrt, log, exp, etc.

Sandia
r.h National
Laboratories

Performance improvements

SSE2 AVX AVX512(KNC)

= Tensor multiply: 1.80 x 3.63 x 2.42 x

= Eigenvalue: 1.97 x 3.19 x 5.25 x

= Polar Decomp: 1.7 x 2.28 x 4.89 x

Real applications!)

= Goodyear milestone: get run time of < 1.5 x Abaqus
= Previously at ~1.8 x
= |nitial SIMD implementation

= ~40% overall improvement
= nowat ~1.1-1.2x !

= High velocity impact simulation

= Qriginally, ~70% calculating 3x3 eigenvectors
= Now ~10%

Early KNC results)
= Sierra/SM compiles and runs on our test-bed KNC

= Use coloring algorithm to thread “force assembly”

Internal Force Scaling By Bucket Size

1024 w==15,625 Element Mesh

——Bucket Size 512
512 ‘
\ ~—Bucket Size 128
256 b -#-Bucket Size 32 | |
\'\ Ideal
128

o
n -

128,000 Element Mesh
e==1,000,000 Element Mesh | |
Ideal

0.25

/

Internal Force Runtime (s)
5 8
Normalized Scaling (Runtime,/Runtime,)

0.125

0.0625

0.03125

1 0.015625
1 2 4 8 16 32 64 128 256 4 8 16 32 64 128 256

Number of Threads Total Threads Used

Data provided by Nate Crane
-

Take aways) s,

= Solvers
= |mprove/thread sparse direct solvers
= Bottleneck in both factorization and forward/backward solves

= Contact/Search
= Serial cost dominated by random memory access
= Parallel dynamic load balancing required

= Element assembly
= Requires multi-threading (OpenMP?)
= Better auto-vectorization would be nice

= For now we are “hand” vectorizing

1/22/2015 21
_ __

Sandia
m National
Laboratories

EXTRA SLIDES

1/22/2015 22

Official Use Only

QS model: Vampir Message Profile for 8 o ua,
MPI tasks

Number of Messages per Message Size
Aggregated Message Volume 15 k 10 k 5k 0k

18,077 | Sum

1208
3,292 24.352 KiB
16.2 MiB 2,052 [1448
Process 0 1,272 [24.375KiB
15.0 MmiB 1,228 [8695 kiB
Process 1 13.8 MiB T 1.184 [l 24.328KiB
SR 1,007 [jjj 8.648KiB
=M 958] 8.719kiB
Process 2 .
11.2 MiB sss jos
: 384 || 8672KiB
10.0 MiB
Process 3 . 292 I4 b
88 MB 270 | 8.742KiB
Process 4 7.5 MiB 235 l 8B
Process 5 135 | 48.984 KiB
5.0 MiB T 135 | 24.492KiB
Process 6 38 MB T 135 | 4328B
135 | 2168
2.5 MiB)
Process 7 [HFA: I 96 | 1.021KiB
1.2 MiB 96 |9B
0.0 MiB 85 | 17.719KiB

1/22/2015 23

SIMD Tensor class)

Process N tensors at a time
(N=4 with AVX, N=8 with AVX512):

double tensors[4*9];

// fill 4 tensor
Tensor33<Doubles> a(tensors)
c = mult(a,b);
Eigenvector(c,vects,vals);

c[0] = a[8] + b[4];

double output[4*9];
c.Store(output);

Loading 4 2x2 tensors

double a[4*tensor_size];

iiiiii

Doubles A[4];

for (int i=0; i < 4; ++i) A[i] = simd::load(a+i,tensor_size);

Ko

»
"R

e

’ S

SO

Slow memory access, but necessary unless we change memory layout of a.

Improved memory layout

double a[4*tensor_size];
ilfﬁiluiiluiilui

W ‘ !
Doubles A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load_better(a+i);

Fast memory access, but requires some code refactor.

Sandia
|I1 National

Laboratories

Fast approximation for 3x3 eigenvalues

= Analytic eigenvalue calculations require evaluating:

cos(arccos(x)/3)

= A Padé approximation can be derived (in Mathematica):

0.866+2.13x +1.89x” +0.74x” +0.12x* + 0.0066x"

1+2.26x+1.8x" +0.6x +0.078x" +0.0027x°
= Error < 5.6e'° over entire range

= >7 X speed up over native C++ trig functions
= With AVX: speed up > 14 X

cos(arccos(x)/3) ~

