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Essentially, all models are wrong, but some are useful.

George E. P. Box

Graph models are useful.
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Power blackouts are a global problem

= August 2003 blackout affected 50 million people in
New York, Pennsylvania, Ohio, Michigan, Vermont,
Massachusetts, Connecticut, New Jersey, Ontario.

= The time to recover from the blackout was as long
as 4 days at an estimated cost of $4-10 B

= Similar occurrences elsewhere: India (2012), Brazil

.||
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~BREAKING HEWS 2o 5 and Paraguay (2009), France-Switzerland-Italy
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The grid’s vulnerability increases ) 5.
with its growing complexity

Problem: the current standard requires
i the system to be resilient to only one
~ failure, because higher standards are not
enforceable.
= Uncertainty inherent in many renewable
resources and the increasing load on the

analaR e A system force us to operate closer to the
I S A ) feasibili ndary.
N e easibility boundary
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= detect vulnerabilities of the power
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United States v Y
transmission grid | v ‘ﬁ network
Source: FEMA //\\fg g.l‘.\

® Include contingency analysis as a
constraint in systems planning

Northeast blackout started with three
broken lines.




Why is this problem so hard? h
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Combinatorial complexity

Even the basic approximation lead
to NP-hard problems, and
heuristics lead to compromise
from security.

Multi-level optimization

Defender-attacker-defender
games lead to problems where
an optimization problems is a
constraint for another.

Complexity of power flow

Flow of power can be modeled by
differential algebraic equations,
which are difficult to solve by
themselves; Even steady state is
described by nonlinear equations.

Uncertainty

Power system operations
inherently involve uncertainties,
which is increasing with
renewable penetration.




What can we solve? ) i
Maximum-flow and minimum cut

Capacity=10 2/2

I

Capacity=7

1/

L

= Given a graph with capacities on edges, a source, s and a
terminal, t, push as much flow as possible from s to t.

= Cutis a bipartitioning of the vertices into S and T, so that s in S
andtinT.

= Capacity of a cut is the cumulative capacity of edges
between S and T.

= Min-cut is a cut with minimum capacity.
= Volume of max-flow = capacity of a min-cut.
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What can we solve? Network =
inhibition problem

k =0, max-flow= 11
k =1, max-flow= 7
k =2, max-flow= 5

k =3, max-flow=1

= Cut min. number of lines so that max flow is below a specified bound.

= Shown to be NP-complete (Phillips 1991).

= The classical min-cut problem is a special version of network inhibition, where
max-flow is set to zero.

Can be formulated as MILP with |V|+]|E| binary variables.
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How useful is this model? )

The Good The Bad
= We can solve network = Flow of power is different
interdiction problems. from the flow model, and
thus the results are not
applicable.

The Beautiful

= Understanding the combinatorial structure can guide
heuristic techniques that model the power flow more

accurately.

= Further analysis will show that the gap between the
two models is smaller than it looks.




Power flow is guided by potential ) R
difference between nodes

(Viaei) (Vj’ej)

B,VV, smn@®,-0)) Active power

V.. voltage B, VV,cos(0,-0,)  Reactive power

0: phase angle . .
. —<0.-0.<—
B: susceptance i

V,<V <)V,
T .
= Simplified model F(A,O,p) = A BSIH(AO) —pP= 0
= Fix voltages at 1; work only on active power equations.
" A is the node-arc incidence matrix that describes grid topology.

" P is the state of the system.

= Sin(A0) is a diagonal matrix whose entries are the angular difference.
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Pictorial representation of a blackout

Boundary of feasibility region shifts
P, % as we add/remove lines

*
*
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.
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Operating point corresponding to current load
and generation

< Infeasibility of power flow equations lead to a blackout.

2

< Cascading is initiated by a significant disturbance to the system.

< Our focus is detecting initiating events and analyzing the network

for vulnerabilities.
10
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Contingency analysis as a bi-level
optimization problem

P>

Boundary of feasibility region shifts
as we add/remove lines

current load and generation

/ : Operating point corresponding to

.
.

.

%

—

-

3 y
R

>

P

= Add integer (binary) line parameters, y, to identify brern lines

= Measure the blackout severity as the distance to feasibility boundary
=  The load shedding problem

= Bilevel-MINLP problem
=  cut minimum number of lines so that

= shortest distance to feasibility (i.e. severity) is at least as large as a specified target
= Mangasarian Fromowitz constraint qualification conditions are satisfied for a slightly

modified system.
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This approach leads to a Mixed Integer

Nonlinear Program (MINLP)

min v | =

}"’Z’e’ul sHo g5y ’MS,M6

S.t.

FAD(1-v),0,p+z)=0 —]
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minimize number of
lines cut

—n/2<AD(A-y)0 <m/2 |
—eTZgZS

0<p,+z,<p,

»
»

» feasible power flow

severity above threshold

p,<p+z =0

—€ }\‘gj (H4 o H3) —
— + =0
( 0) (kl sy — 1y
oF
A 0 + A" D(1-y)(1s — 1s) =0

wz, =0, w(p +z)=0

» feasible load shedding

~ satisfy the KKT optimality

Wz, =0 p(p, +2,)=0;
Ws(m/2+ AD(1-7v)0)=0;
(T /2= AD(1-7)B) =0;
Hyseees g = 0

y € 10,1}

" conditions
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Relaxation works on small problems

= Four candidate lines
identified.

—1s| ® Two are sufficient to
cause a blackout.

TV 19

= Failure of these lines
can cause a blackout
with 843 MW loss out
of a total load of 1655
MW).

= Solutions found using
IEEE 30-Bus System SNOPT.

Donde, et al. Severe Multiple Contingency Screening in Electric Power Systems,
IEEE T. Power Systems, Vol. 23, No. 2, pages 406--417, 2008




Sandia
National
Laboratories

= 13 candidate lines are identified
= Failure of these lines can cause a
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Power-flow Jacobian corresponds to the
graph Laplacian

= Key observation: The Jacobian matrix, which
characterizes the feasibility boundary, has the same
structure as the Laplacian in spectral graph theory.

oF
T
—=J=A"BD((1-7y)cos(A460)A4
00 — -
Node-arc Diagonal matrices with non- _NO_de-arC |
incidence matrix negative weights incidence matrix

= Feasibility of the optimization problem pushes the Jacobian
towards a second zero eigenvalue.

= Second zero eigenvalue corresponds to disconnected
regions in the graph.

P. et al., Optimization Strategies for the Vulnerability Analysis of the
Power Grid, SIAM J. Optimization, Vol. 20, No. 4, pages 1786-1810, 2010;
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Feasible solutions have rh) teima_
a combinatorial structure

Theoretical analysis of the bilevel
MINLP formulation shows:

KA = System is split into load-rich and
generation-rich regions.

TV 19

= There is at least one saturated line
from the generation rich region to
the load rich region.

= Blackout size can be approximated
by the generation/load mismatch
and capacity of edges in between.

Practical application: Exploit the combinatorial structure to find a loosely
coupled decomposition with a high generation/load mismatch

UCSB Institute for Energy Efficiency




Take 2: Vulnerability analysis asa @
combinatorial problem

Find minimum of number of power lines, whose removal decomposes
the network into generation-rich and load-rich regions such that the

excess generation of one part minus the capacity of the lines between
the two parts is above a threshold.

Find minimum of number of edges, whose removal leads to a cut such
that the capacity of the cut is below a threshold.

UCSB Institute for Energy Efficiency



Can we work on a nonlinear model ) e,

Laboratories

without solving nonlinear equations?

© Original Artist

Reproduction rights abtainable from
e Lartoonstock com /":‘\

Bl

""There's no such thing as a free
lunch’ — that'll be ten bucks."

UCSB Institute for Energy Efficiency

e |t is not free lunch, but a good deal.

e Why does it work?

e We are not proposing a power flow
model, we only find why power is not
flowing.

e This is a flow problem.

e The goal of the load shedding problem
is to make this model work.
e What is missing?

e \We can document the underlying
assumptions that lead to the graph
model.

e But we cannot quantify the gap
between the two models, ... yet.

e We need a representation of a typical
cases.




MILP formulation for network inhibition )&,

_J0 v, eS L if e; is cut.
p"_lvieT i

0 otherwise

(v;,v;)eE S.. = 1 dy B O/\pl ip]
s B 710 otherwise

ps - 07 pt -

p-d; € {0,1}; s, €[0,1]

The integrality gap is small, leading to fast solutions.

C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg, A decomposition-based approximation for network
inhibition, Network Interdiction and Stochastic Integer Programming, D.L. Woodruff, eds., (2003), pp. 51-66.
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Instances of the network inhibition problem g,
can be solved efficiently

120

.

100

80

60

Runtime (secs)

40

20 ¥

seee®* ©

0

0 10 20 30
# lines cut

= The integrality gap is provably small.
= Only one fractional variable after each solution.

= Experimented on a simplified model for Western states with 13,374
nodes and 16,520 lines, used PICO for solving the MILPs.

= Even the largest instances can be solved in small time, motivating us for
more higher objectives.

UCSB Institute for Energy Efficiency



Take 3: Inhibiting bisection problem @

* Divide graph into two parts (bisection) so that
* load/generation mismatch is maximum.
e cutsize is minimum.

Imbalance= 6; cutsize=2

imbalance=10: cutsize=3 Lesieutre et al., Power system extreme event analysis
! using graph partitioning, NAPS 2006.

Imbalance=11; cutsize=5 21

UCSB Institute for Energy Efficiency
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Solving the inhibiting cut problem

= Constrained problem is NP-complete.
= Goal: minimize « (cutsize) - (1- o) imbalance
= s the relative importance of cutsize compared to imbalance.
= Solution: use a standard min-cut algorithm.
=  Min-cut gives an optimal solution to the linearized inhibiting bisection problem.

=  QOther versions are solvable

=  Minimize cutsize/imbalance

= Minimize capacitv*(cutsize-1)/cutsize P., Fogel, and Lesieutre, The Inhibiting Bisection Problem,
pacity™*( )/ Technical report: LBNL-62142, LBNL.




Inhibiting bisection enables
fast analysis of large systems
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= Experimented on a Simplified

100 model for Western states with

90 13,374 nodes and 16,520 lines.

80 = Complete analysis using
% 20 Goldberg’s min-cut solver takes

|

c . H
8 Load corridors minutes
2 50 =  Solutions with small cutsize can
E 50| be used to detect initiating
‘é a0l events and groups of
v |- vulnerabilities
v 30 . . . :
a = Solutions with medium cutsize

20 — reveal load corridors that can be

Initiating : .
10 used to contain cascading.
events
0 . ' T
0 200 400 600 800 1000
Cutsize

Lesieutre, P., and Roy, Power System Extreme
Event Detection: The Vulnerability Frontier, HICSS, 2008.




Finding vulnerabilities is good; fixing them is ; =,
better: N-k survivable network design problem

= |mprove a network efficiently to make it
resilient to contingencies
1%t Level IES e | = Minimize the improvement cost such that the
Augmentation .. . .
' minimum number of lines for the maximum

- flow to be below a threshold B is above a
threshold C.

= Solution approaches:
= Asingle problem with a separate set of
constraints for each contingency
= forms a giant problem
= Bender’s decomposition
= limits the memory requirements
= the number of subproblems is still very large,
prohibitively expensive for large N and k.
= Proposed Method: Delayed Contingency
Generation

Infrastructure
2nd | evel S
Disruptions

3rd Level Infrastructure
Operations

UCSB Institute for Energy Efficiency



Delayed contingency generation @

= Qutline of the algorithm

= Solve a restricted master problem to
identify candidate lines to add.

Master Problem

=  Solve the network inhibition

g OPTIMAL YES (EXIT

3 ORACLE? prOblem

S = |f we cannot break the network,
Sub-Problem k

current solution is optimal

Sub-Problem ... = |f not, add a constraint to the master
(ADD NEW CONTINGENCY) problem for the identified
vulnerability.

Sub-Problem 1

= New constraints exclude regions of
the solution space, as opposed to

vidual solutions.
= Efficient solution of the interdiction problem i |s t e ey ena f

= The same framework can be applied to planning and operational problems

= We have applied this approach to
= Unit commitment
= Transmission and generation expansion

Chen et al. Contingency-Constrained Unit Commitment

with Post-Contingency Corrective Recourse,

to appear in Annals of Operations Research

I ———————
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Delayed contingency analysis limits
contingencies being considered.

mh

|EEE Test No. of Total MP  NIP No. of
Systems contingencies time time time time contingencles
evaluated

30 82 1 82 0 0 0 0 3
118 358 1 358 4 0 2 1 17
179 444 1 444 19 1 7 10 51
30 123 2 >7K 1 0 1 0 15
118 537 2 >140K 41 3 26 12 58
179 666 2 >200K 174 6 50 118 158
30 164 3 >700K 9 2 5 2 43
118 716 3 >60M 398 25 303 70 128
179 888 3 >116M 653 21 193 439 284
30 205 4 >72M 67 7 23 37 156
118 895 4 >26B 2,708 399 1,698 612 359
179 1110 4 >63B 11,999 4,939 1,822 5,237 899

—
1/14/2015
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Chen et al., Contingency-Risk Informed Power System Design,

to appear in IEEE T. Power Systems

26



Fast solutions enable analyses of )

the decision space

Cost (Billion S)

22
20
18
16
14
12
10

o N B~ O

Laboratories
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8 10 12 14 16 18 20 22 24 26 28 30 32

% load loss
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Cost of perfectness

Cost (Billion S)

22
20
18
16
14
12
10

o N B~ O

by ~50% if 1% loss of load is acceptable

Infrastructure investment cost can be reduced
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e

8 10 12 14 16 18 20 22 24 26 28 30 32

% load loss
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Benefits of humbleness ) i

22
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10

With a buaget ot 56 Billion ...

Cost (Billion S)
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% load loss
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Next Step: Uncertainties of renewables pose
a crucial challenge for grid operations

 Most renewable resources cannot be
controlled and involve significant
uncertainties.

* High penetration of renewables lead to
a significant change in operations due
to uncertainty.

|  Storage technologies are not adequate
Source: http://saferenvironment.wordpress.com Full
ligk enough, yet.
« Operations require decision making
under uncertainty.
— Stochastic optimization is essential.

— Better models for handling uncertainty
are needed.

UCSB Institute for Energy Efficiency


http://saferenvironment.wordpress.com/2008/11/03/wind-energy-renewable
http://saferenvironment.wordpress.com/2008/11/03/wind-energy-renewable-energy-harnesses-natural-wind-power-%E2%80%93-effective-answer-for-emission-problem-towards-cleaner-safer-and-greener-environment/
http://saferenvironment.wordpress.com/2008/11/03/wind-energy-renewable-energy-harnesses-natural-wind-power-%E2%80%93-effective-answer-for-emission-problem-towards-cleaner-safer-and-greener-environment/
http://saferenvironment.wordpress.com

Operational problems require stochastic
optimization

Prediction
of demand

-

Realization
of demand\

A

commitment

~

)

Commitment
decisions

-

Economic
dispatch

A

~

Generation
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Sample Problem: Unit Commitment
Fundamental problem in operations
Two stage problem

= Decide on the state of big and slow
generators under a prediction of
demand/ renewables

= QOperate on a realization of
uncertainties to minimize generation
costs

Standard approach: Monte Carlo sampling

UCSB Institute for Energy Efficiency
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Efficient Model for Uncertainty:
Polynomial Chaos Expansion

1.04
| = Error for Monte Carlo
Var(f)/sqrt(S)
B T A - | = Accurate estimations render optimization
§ é problems impractical.
g; 1.00 ? 8 o| = Propoged Solution: Polynomial chaos
E:“’ % expansion
oell T R =  Commonly used for uncertainty quantification
| | | in CSE applications
= Core idea: preprocess the random variables to
0.96. < - — build a surrogate that represents random

No. of samples variables compactly

Thiam and DeMarco: “Simply put, when =  Promising Initial results:
uncertainty is credibly accounted for such

methods yield solutions for economic " Currently working on adding this to the

benefit of a transmission expansion in optimization loop
which the “error bars” are often larger than
the nominal predicted benefit.” Safta et al., Toward Using Surrogates to Accelerate Solution of

Stochastic Electricity Grid Operations Problems,Proc. NAPS 2014
I ———————
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Concluding remarks ) .
= The grid’s vulnerability grows with its growing complexity.

= \We need to do more with less.

= Renewables bring additional challenges.

= Enforceable security metrics are essential.
= Problem is extremely complex, thus finding the right abstractions is a challenge.

= Formal description of the grid, at least some of its properties will boost algorithmic
advances.

= Integration of system dynamics remain as a challenge.

= We have made significant advances in vulnerability analysis.

= Special structure of a feasible solution to our MINLP formulation can be exploited
for a simpler approach for vulnerability detection.

= Qur combinatorial techniques can analyze vulnerabilities of large systems in a short
amount of time.

= We can now incorporate vulnerability analysis as a constraint to grid
operations and planning problems.

= Delayed contingency generation approach shows promising results for N-k-e contingency
constrained problems.

= We need novel approaches for handling uncertainties.
= Monte Carlo algorithms cannot provide the desired accuracy in estimations.

UCSB Institute for Energy Efficiency
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Announcements rh) pes

= We always try to create positions for talented researchers.

= Please contact me

= Network Science under SIAM

= 3rd SIAM Workshop on Network Science, Snowbird, UT, May 17-19,
2015.
" Co-located with the SIAM C. Dynamical Systems
= Abstract due by Jan 19th,

= Mailing list for network science

= To subscribe, send an email to siam-ns-subscribe@siam.org
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= Questions?
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Tri-level optimization problems

underlies many cha

15t Level Infrastructure
Augmentation

Infrastructure
2nd | evel S
Disruptions

lenges

Medium and long term planning
(e.g. capacity expansion, new
transmission corridors, unit-
commitment)

Loss of components
(e.g. maintenance, equipment failure,

attacks)

3rd Level Infrastructure
Operations

Respond to loss of components
(e.g. load shedding)
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Increasing uncertainty

Hierarchy of optimization problems with a modular structure
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= Motivation

= Why is this hard?

= What can we solve?
= Whatis the gap?

= Going Back and covering the simplifications

= Slides 67

= Slides 16 17 transition to the combinatorial problem.
= Description of uncertainties for robustness

= Check references

= Transition into uncertainty

I ———————
UCSB Institute for Energy Efficiency
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Network inhibition problem ) i

k =0, max-flow= 11

k =1, max-flow=7
k =2, max-flow= 5
k =3, max-flow=1

= Cut min. number of lines so that max flow is below a specified bound.
= Shown to be NP-complete (Phillips 1991).

= The classical min-cut problem is a special version of network inhibition, where
max-flow is set to zero.

Can be formulated as MILP with |V|+]|E| binary variables.

UCSB Institute for Energy Efficiency
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Feasibility boundary and spectral graph theory Lf

On the boundary of feasibility, the power-flow Jacobian will
have its second singular vector.

2_1; =J=A"BD((1-y)cos(46)4

Jw =0; we=0w'w=1

J has the same structure as Laplacian in spectral graph theory.

y 1 -1 0 O] - 21 o
1 0 -1 0 T
B - -1 3 -1 -1
A=|0 1 -1 O ) 4 pg-=
o1 0 -1 - -t 3
« 0 0o 1 -1 0 -1 -1 2]

41
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Uncertainty representation for ),
optimization
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What can we solve? Network Inhibition ) fouea,

g‘ﬁf k =1, max-flow=7
k =0, max-flow= 11

k =2, max-flow= 5

k =3, max-flow=1
= Cut klines to minimize the maxi flow.
%91).
= The classical min-cut problem is a special version of network inhibition, where

max-flow is set to zero.
= Can be formulated as MILP with |V|+|E| binary variables.

= Shown to be NP-complete (Phillips

UCSB Institute for Energy Efficiency



