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Semiconductors for Power Electronics

 Power electronics are necessary 
for energy modulation and 
introduction of storage on the 
electrical grid

 Leading technology today is Si-
based IGBTs
 Si-based devices are limited in operating 

temperature and electric field

 Costs and low mobility associated 
with SiC technology makes GaN
devices attractive
 Particularly useful for 600 V applications
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Silicon 4H-SiC GaN

Bandgap
(eV)

1.1 3.2 3.4

Tmax (°C) 300°C 600°C 700°C

Mobility 
(cm2/Vs)

1500 260 1500

Breakdown
Field
(MV/cm)

0.3 3.5 2.0
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Data adapted from: R.S. Pengelly, et al. IEEE Trans. M.T.T., 60 (6)  (2012)



GaN Devices

 “Ideal” GaN Device

 Voltage Controlled

 Smart Grid compatible

 Film Embodiment

 Inexpensive compared to SiC

 Enhancement Mode (nominally off)

 Existing HEMTs are typically 
always on

 Safety issue

 MOSFETs would be advantageous
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GaN Devices

 Oxide requirements for MOSFETs:

 Large bandgap

 Band offsets > 1 eV with semiconductor

 Chemically compatible

 Grows as a smooth film on GaN

 Low interface defect density

 Our strategy:

 Identify chemically compatible wide bandgap oxides that may have 
acceptable offsets with WBG and UWBG semiconductors

 Utilize epitaxy to form well-controlled interfaces
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Lanthanide Oxides: Candidate 
Materials
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19.1%

5.5

20-30

Ln2O3

cub

hex
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K

Data from:  G-Y. Adachi and N. Imanaka, Chem. Rev. (1998)
J-P. Maria in High Dielectric Constant Materials (2005).
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Oxide Molecular-Beam Epitaxy

Reactive MBE

 Metallic La and Gd
sources

 E-beam evaporation

 O2 oxidant

 In situ RHEED

 Growth rates 0.5-
1 Å/minute

 5x10-7 Torr O2

 550-600°C substrate 
temperature

e-

e-

B

e-



La2O3 Growth Characteristics
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 Hexagonal growth observed for 
thicknesses of ≤ 6nm

 Transitions to rough cubic 
phase for thicknesses > 6nmJ.F. Ihlefeld, M. Brumbach, and S. Atcitty, Applied Physics Letters, 

102, 162903 (2013)

X-ray Diffraction

RHEED
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XPS Determination of Band Offsets
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La2O3/GaN Band Alignments
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 Valence band offset of 0.63 eV
measured at the La2O3-GaN 
interface (La 4p & Ga 3s)

 0.64 ± 0.04 eV (La 4p & Ga2p)

 0.60 eV (O 1s & Ga 3s)

 0.68 eV (O 1s & Ga 2p)

 Ideally want band offsets >1 eV
to maximize performance and 
reliability

 Conduction band offset of 
1.47 eV

 Low valence band offset may 
limit applications

J.F. Ihlefeld, M. Brumbach, and S. Atcitty, Applied Physics Letters, 
102, 162903 (2013)
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La2O3/GaN Electrical Characterization
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 C-V curves enable identification of 
interface defects
 Low frequency peak (red arrow) 

indicates presence of interface trap 
states

 I-V curves allow for measurement of 
leakage through gate insulator

 La2O3 looks great on paper, but does 
not work 

La2O3 on GaN

Interface trap presence indicates 
performance limitation for this system



Gd2O3 as Gate Dielectric
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 High temperature 
stable oxide gate

 High permittivity in 
hexagonal phase (24)

 Other reports of a 1 eV
valence band offset

 Potential for low 
interface trap density
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Gd2O3 on AlGaN Growth

 Films grown at 600°C

 5 x 10-7 Torr O2 atmosphere

 7 Å/minute growth rate

 All films grow smoothly on 
different AlGaN composition 
substrates

 In-plane lattice spacing identical 
for each Gd2O3 film consistent 
with same phase independent 
of substrate
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RHEED

J.F. Ihlefeld, M. Brumbach, A.A. Allerman, D.R. Wheeler, and S. 
Atcitty, Applied Physics Letters, 105, 012102 (2014)
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Gd2O3 on AlGaN Growth

 All Gd2O3 films are cubic (bixbyite) 
regardless of thickness or 
substrate

 In-plane twins are present
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J.F. Ihlefeld, M. Brumbach, A.A. Allerman, D.R. Wheeler, and S. 
Atcitty, Applied Physics Letters, 105, 012102 (2014)

400 reflection of cubic Gd2O3

(2 = 33.2°, Ψ = 54.7°)
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Gd2O3 on AlGaN Band Offsets

 Band offsets are 
semiconductor bandgap
dependent

 All valence band offsets 
are < 0.5 eV

 Lanthanides will not 
work for UWBG devices
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Gd2O3 on AlGaN Band Offsets

 Band offsets are 
strongly semiconductor 
bandgap dependent

 All valence band offsets 
are < 0.5 eV

 Lanthanides will not 
work for UWBG devices
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Summary

 Enhancement mode GaN semiconductor devices are desirable 
for electric grid power management applications

 One candidate embodiment to achieve a nominally off device is 
a MOSFET structure

 Lanthanide oxides possess some favorable attributes for use as a 
gate dielectric with GaN
 Chemical compatibility

 Large bandgaps

 High dielectric constants

 Low band offsets, interfacial defects, difficult to control 
polymorphs make lanthanide oxides poor choices for GaN and 
AlGaN gate dielectric applications
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Oxide/GaN Growth and Structural 
Issues
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 Rough growth results in grain boundaries that act as defect sources for gate 
leakage  poor performance

 Smooth growth should have fewer threading defects  greater reliability 
and performance

 Amorphous oxides (e.g. SiO2) do not work well for WBG gates owing to poor 
interface control

Jon Ihlefeld, Sandia National Laboratories 2012 DOE ESS Peer Review
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Oxide Electronic Properties: 
Importance of Band Gap
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Low Band Offsets
Low Efficiency

MetalMetal

CB

VB

O
xi

d
e

+V+V

e-

MetalMetal

CB

VB

O
xi

d
e

+V+V

Large Bandgap
Potentially Large Band Offsets

Data from: J-P. Maria in High Dielectric Constant Materials (2005).
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Oxide/Nitride Growth

Reactive MBE

• Metallic sources

• e-beam evaporation

• Oxidizing atmosphere

• in situ RHEED

ALD

• Organometallic sources

• Oxidizing atmosphere

• Low temperature 
processing
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Background
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 Few well characterized reports on gate oxides for WBG and 
UWBG semiconductors:

 Most work is either poorly conducted (band offset characterization) 
or vague (interface trap density characterization)

 Important parameters:

 Chemical compatibility

 Band offsets

 Available materials become increasingly limited as semiconductor band 
gap increases

 Interface state density

 Our strategy:

 Identify wide bandgap oxides that may have acceptable offsets with 
WBG and UWBG semiconductors

 Utilize epitaxy to form well-controlled interfaces

Electronic Materials and Applications 2015Jon Ihlefeld, Sandia National Laboratories


