Sandia
National
Laboratories

Exceptional

service
in the
national

interest

SAND2015- 0009C

Leveraging Model
Transformations in
Algebraic Modeling Systems

John D. Siirola
William E. Hart
Jean-Paul Watson

Discrete Math & Optimization (1464)
Sandia National Laboratories

INFORMS Computing Society Conference
11 January 2015

4 %, U.S. DEPARTMENT OF VYA T <<
{8JENERGY INAYSA

Sandia National Laboratori multi-program laboratory managed and operated by San d Cor p ration, a wholly owned subsidiary of Lockheed Martin
Corporatio f the U.S. D p rtmet of Energy’s National Nuclear Security Administration under contra tDE -AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia

What do these have in common?)t

£a=\/(x—3)2+e J

/a=b+c \
b<M:-y
y<M1-y)
x—3=c—b>b
b=>0
c=>0
_ y € {0,1})
~
a=b+c
x—3=c—b
b>01Lc=>0
\

[a

a=>x—3
a=>3—x
2(x — 3

(x_)3—x+3
l1+e h

Siirola, p. 2

Sandia

What do these have in common?)t

£a=\/(x—3)2+e J

[a = abs(x — 3) J ng_x}

/a=b+c \
b<M:-y
y<M1-y)
x—3=c—b>b
b=>0
c=>0
_ y € {0,1} J
a O\
a=b+c
x—3=c—b
b>01Lc=>0
\ J

[a

2(x — 3
= (x_)3—x+3
l1+e h

If we mean “a = abs(x — 3)7,
why don’t we write that in our models?7??

Siirola, p.3

What’s a Model? rih) e

= A general representation of a class of problems

= Data (instance) independent

{Model } + { Data } - {Instance}
\

= Represents our understanding of the class of problems

= Explicitly annotates and conveys the class structure

= Hierarchical? Separable? Graph based?

= Sets, vectors, matrices
= |ncorporates assumptions and simplifications
= |s both tractable and valid

= (although these are often contradictory goals) .

Y
Transformations help here

Siirola, p. 4

National

. . . Sandia
Why are we interested in transformations? @i,

= Separate model expression from how we intend to solve it
= Defer decisions that improve tractability until solution time
= Explore alternative reformulations or representations
= Support solver-specific model customizations (e.g., abs())

= Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)

= Support “higher level” or non-algebraic modeling constructs

= Express models that are “closer” to reality, e.g.:
= Piecewise expressions
= Disjunctive models (switching decisions & logic models)
= Differential-algebraic models (dynamic models)
= Bilevel models (game theory models)

III

= Reduce “mechanical” errors due to manual reformulation

Siirola, p.5

A rose by any other name...) e,

= |s this a reformulation or a transformation?

/ a=b+c \

b<M-y
y<M1-y)

x—3=c—b <> a=ab5(x_3)

b=0

7 EYOJ} J

= Literature is not clear here; potential distinctions:

= Does it preserve the same feasible space (or relaxed space)?

= |s the operation reversible?

Siirola, p. 6

A rose by any other name...) ..

= |s this a reformulation or a transformation?

/ a=b+c \

b<M-y
y<M(1-y)

x—g:g—b <> a = abs(x — 3)
CEO

7 € {0,1} J

= Literature is not clear here; potential distinctions:

= Does it preserve the same feasible space (or relaxed space)?

= |s the operation reversible?

A Transformation is any Reformulation
that can be automatically applied

Siirola, p.7

A new solution workflow

Sandia
r.h National
Laboratories

= Model Transformations: Projecting problems to problems

= Project from one problem space to another

= Standardize common reformulations or approximations

= Convert “unoptimizable” modeling constructs into equivalent
optimizable forms

~
Model

Data

Problem

Transform

Siirola, p. 8

Transformations are not entirely new Wi

= LINGQ’s automatic linearization:

MODEL :
MIN = @ABS(X-3);
X <= 2;

END

II)

= Generates the “usual” Big-M integer linear model:

MAX _C3
SUBJECT TO
X <= 2
- C1- C2+ C3=0
_C1 - 100000 C4 <= 0
_C2 + 100000 C4 <= 100000
X - _Cl+ C2-=23
END
INTE _C4

Cunningham and Schrage, “The LINGO Algebraic Modeling Language.” In Modeling Languages in
Mathematical Optimization, Josef Kallrath ed. Springer, 2004.
I ———————

Siirola, p.9

Pyomo: Python Optimization Modeling Objects i

-

Q.
)" PYOMO

Sandia
National _
Laboratories

Meta-Solvers
* Generalized Benders
* Progressive Hedging
* Linear bilevel
* Linear MPEC

"

Modeling Extensions

* Disjunctive programming
Stochastic programming
Bilevel programming
Differential equations
Equilibrium constraints

\ CPLEX
Solver Interfaces Gurobi
Xpress
Core Optimization .
Objects CBC
BARON
Core Modeling OpenOpt
Objects e
AMPL Solver Library
Model | Ipopt
Transformations N KNITRO
— Bonmin
/] Couenne

Siirola, p. 10

A Quick Tour of Pyomo ‘V‘PYOMO) .

Idea: a Pythonic framework for formulating optimization models
= Provides a natural syntax to describe mathematical models
= Leverages an extensible optimization object model
= Formulates large models with a concise syntax
= Separates modeling and data declarations
= Enables data import and export in commonly used formats

Highlights: from pyomo.environ import *
gniig
= Python provides a model = ConcreteModel()
clean, readable syntax model.x1 = Var()
| Python Scripts provide model.x2 = Var‘(bounds=(-1,1))
a flexible context for egel e 0)
exploring the structure model.obj = Objective(
of Pvomo models expr= m.x1**2 + (m.x2*m.x3)**4 +
y m.x2*sin(m.x1+m.x3) + m.x2,
sense= minimize)

Siirola, p. 11

Sandia
|I1 National
Laboratories

Why transformations in Pyomo?

= Pyomo is an object model
= Extensions declare new object classes (components)
= Supports annotating model components
= Transformations can detect presence of relevant components
= Core code (e.g., problem writers) can validate supported components
= Whole model (including expressions) is transparent and manipulable

= Pyomo natively supports hierarchical models

= “Block”: collection of modeling components (e.g., Sets, Prams, Vars)
= Namespacing: component names must only be unique within a block
= Blocks can contain blocks: hierarchical structure
= Many modeling extenions derive from Block
= Transformations can be “sandboxed” in transformation-specific Blocks

Siirola, p. 12

An example: Disjunctive programming (@&

= Disjunctions: selectively enforce sets of constraints

= Sequencing decisions: x ends before y or y ends before x
= Switching decisions: a process unit is built or not
= Alternative selection: selecting from a set of pricing policies

= |mplementation: leverage Pyomo “blocks”

= Disjunct: i .]
l
= Block of Pyomo components ()
y por V h,\x)<o
— (Var, Param, Constraint, etc.) ieD, .
Cr =7V

" Boolean (binary) indicator variable determines —
if block is enforced Q(Y) =true

* Disjunction:
= Enforces logical XOR across a set of Disjunct indicator variables

" (Logic constraints on indicator variables)

Siirola, p. 13

Example: Task sequencing) i,

* Prevent tasks colliding on a single piece of equipment

= Derived from Raman & Grossmann (1994)

= Given:
= Tasks I processed on a sequence of machines (with no waiting)
= Task i starts processing at time ¢, with duration z,,, on machine m
= J(i) is the set of machines used by task i
= C, is the set of machines used by both tasks i and j

Yy Y,
Lt D T SH+ D T VG + D T SE+ D T,
meJ (i) meJ (k) meJ (k) meJ (i)
m<j m<j B m<j m<j |

VieC,,Vikel, i<k

Siirola, p. 14

Example: Task sequencing in Pyomo @&,

def NoCollision(model, disjunct, i, k, j, ik):
lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)

if ik:
disjunct.c = Constraint(expr= lhs + — <= -)
Constraint(expr= [phs| + model tau[k,j] <= 1lhs)

model.NoCollision = Disjunct(model.L, [©,1], rule=_NoCollision)

else:

disjunct.c

def _setSequence(model, i, k, j):
return [model.NoCollision[i,k,j,ik] for ik in [0,1]]
model.setSequence = Disjunction(model.L, rule=_setSequence)

[+ Zrim +

Yy
%
meJ (i)
| m<j

VieC,,Vi,kel, i<k

Siirola, p. 15

Solving disjunctive models) e,

= Few solvers “understand” disjunctive models
= Transform model into standard math program

= Big-M relaxation:
= Convert logic variables to binary
= Split equality constraints in disjuncts into pairs of inequality constraints
= Relax all constraints in the disjuncts with “appropriate” M values

[pyomo --preprocess=coopr.gdp.bigm jobshop.py jobshop.dat]

Siirola, p. 16

Why is the transformation interesting? [@J&.

= Model preserves explicit disjunctive structure
= Automated transformation reduces errors

= Automatically identifies appropriate M values (for bounded linear)

Siirola, p. 17

Why is the transformation interesting? @J&.

= Model preserves explicit disjunctive structure
= Automated transformation reduces errors
= Automatically identifies appropriate M values (for bounded linear)

= Big-M is not the only way to relax a disjunction!
= Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)

[pyomo --preprocess=coopr.gdp.chull jobshop.py jobshop.dat]

= Algorithmic approaches
= e.g., Trespalacios and Grossmann (submitted 2013)

= Prematurely choosing one relaxation makes trying others difficult

I ———————
Siirola, p. 18

A growing library of transformations W=,

= Bilinear relaxations = Bilevel optimization
= Complementarity / Equilibrium = Linear dual reformulation
constraints = Linear complementarity

= Nonlinear relaxation (KKT) reformulation

= Disjunctive relaxation = Structural transformations

= “Standard” form relaxation " Relaxintegrality

= Disjunctive programming " Standard linear form

" Big-M reformulation = Dual transformation

. = Eliminate fixed variables
= Convex Hull reformulation

= Hybrid Basic-Step based algorithm " Nonnegative transtorm

: = Equality transform
= Dynamic systems

= Collocation on finite elements

= Finite difference discretization

Siirola, p. 19

Back to our original example: ABS(x) M.

= Chaining transformations

f=x"+x =X +Xx

f=x"+x x=x"—x" x=x"—x"

f:abS(.X) — x:x+ —-X — Y v _IY j— X SMy
x">0Lx >0 x =0] [x =0 X <M(1-y)
x"20,x >0 x'>20,x =0

model = ConcreteModel()

gl

TransformFactory(“abs.complements®).apply(model, inplace=True)
TransformFactory(“mpec.disjunctive”).apply(model, inplace=True)
TransformFactory(“gdp.bigm”).apply(model, inplace=True)

Siirola, p. 20

An open issue: back-mapping) .

= Transformations can fundamentally alter problem instance.
= Presenting results is best done in the original problem context

= How to (automatically) map results from the transformed space back
to the original instance?

= Many transformations are not isomorphic

Siirola, p. 21

Summary h) e,

= Model transformations can significantly impact modeling
= Separates the intent of the Modeler from the needs of the solver

= Expands the set of (high-level) modeling constructs
= Models can closer represent how a Modeler “thinks”

= Defers decisions on how to map the problem class to the solver to just
before solve time

= Reduces / eliminates manual transcription errors

= Chaining transformations is a powerful operation
= Complex transformations are cast as a series of simpler operations
= Availability of alternative transformation routes is preserved

Siirola, p. 22

For more information...) e,

" Project homepage Wil
" http://www.pyomo.org Do L Wootrf

= https://software.sandia.gov/pyomo

Pyomo —
Optimization
= Mailing lists Modeling
= “pyomo-forum” Google Group in Python
= “pyomo-developers’ Google Group
= “The Book” 2 Springer

= Mathematical Programming Computation paper:
= Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

Siirola, p. 23

