
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Leveraging Model
Transformations in
Algebraic Modeling Systems
John D. Siirola
William E. Hart
Jean-Paul Watson

Discrete Math & Optimization (1464)
Sandia National Laboratories

INFORMS Computing Society Conference
11 January 2015

SAND2015-0009C

What do these have in common?

Siirola, p. 2

� = � + �
� ≤ � ⋅ �

� ≥ 0
� ∈ 0,1

� = � + �
� ≤ � ⋅ �

� ≤ � 1 − �
� − 3 = � − �

� ≥ 0
� ≥ 0

� ∈ 0,1

� = (� − 3)�+�� = (� − 3)�+�

� =
2(� − 3)

1 + ��	
���
�

− � + 3� =
2(� − 3)

1 + ��	
���
�

− � + 3

� ≥ � − 3
� ≥ 3 − �
� ≥ � − 3
� ≥ 3 − �

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

What do these have in common?

Siirola, p. 3

� = � + �
� ≤ � ⋅ �

� ≥ 0
� ∈ 0,1

� = � + �
� ≤ � ⋅ �

� ≤ � 1 − �
� − 3 = � − �

� ≥ 0
� ≥ 0

� ∈ 0,1

� = (� − 3)�+�� = (� − 3)�+�

� =
2(� − 3)

1 + ��	
���
�

− � + 3� =
2(� − 3)

1 + ��	
���
�

− � + 3

� ≥ � − 3
� ≥ 3 − �
� ≥ � − 3
� ≥ 3 − �

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

� = ���(� − 3)� = ���(� − 3)

If we mean “� = ���(� − 3)”,
why don’t we write that in our models???

 A general representation of a class of problems
 Data (instance) independent

 Represents our understanding of the class of problems
 Explicitly annotates and conveys the class structure

 Hierarchical? Separable? Graph based?

 Sets, vectors, matrices

 Incorporates assumptions and simplifications

 Is both tractable and valid
 (although these are often contradictory goals)

What’s a Model?

Model Data Instance+ 

T
ra

n
s
fo

rm
a
tio

n
s
 h

e
lp

 h
e
re

Siirola, p. 4

Why are we interested in transformations?

 Separate model expression from how we intend to solve it
 Defer decisions that improve tractability until solution time

 Explore alternative reformulations or representations

 Support solver-specific model customizations (e.g., abs())

 Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)

 Support “higher level” or non-algebraic modeling constructs
 Express models that are “closer” to reality, e.g.:

 Piecewise expressions

 Disjunctive models (switching decisions & logic models)

 Differential-algebraic models (dynamic models)

 Bilevel models (game theory models)

 Reduce “mechanical” errors due to manual reformulation

Siirola, p. 5

 Is this a reformulation or a transformation?

 Literature is not clear here; potential distinctions:
 Does it preserve the same feasible space (or relaxed space)?

 Is the operation reversible?

 …

A rose by any other name…

Siirola, p. 6

� = � + �
� ≤ � ⋅ �

� ≥ 0
� ∈ 0,1

� = � + �
� ≤ � ⋅ �

� ≤ � 1 − �
� − 3 = � − �

� ≥ 0
� ≥ 0

� ∈ 0,1

� = ���(� − 3)� = ���(� − 3)

 Is this a reformulation or a transformation?

 Literature is not clear here; potential distinctions:
 Does it preserve the same feasible space (or relaxed space)?

 Is the operation reversible?

 …

A rose by any other name…

Siirola, p. 7

� = � + �
� ≤ � ⋅ �

� ≥ 0
� ∈ 0,1

� = � + �
� ≤ � ⋅ �

� ≤ � 1 − �
� − 3 = � − �

� ≥ 0
� ≥ 0

� ∈ 0,1

� = ���(� − 3)� = ���(� − 3)

A Transformation is any Reformulation
that can be automatically applied

A new solution workflow

 Model Transformations: Projecting problems to problems
 Project from one problem space to another

 Standardize common reformulations or approximations

 Convert “unoptimizable” modeling constructs into equivalent
optimizable forms

+Model Data Compile Problem

Solve

Transform

Siirola, p. 8

Transformations are not entirely new

 LINGO’s automatic linearization:

 Generates the “usual” Big-M integer linear model:

MODEL:
MIN = @ABS(X-3);
X <= 2;

END

MAX _C3
SUBJECT TO
X <= 2
- _C1 - _C2 + _C3 = 0
_C1 – 100000 _C4 <= 0
_C2 + 100000 _C4 <= 100000
X - _C1 + _C2 = 3

END
INTE _C4

Cunningham and Schrage, “The LINGO Algebraic Modeling Language.” In Modeling Languages in
Mathematical Optimization, Josef Kallrath ed. Springer, 2004.

Siirola, p. 9

Pyomo: Python Optimization Modeling Objects

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling
Objects

NEOS

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

Siirola, p. 10

A Quick Tour of Pyomo

Idea: a Pythonic framework for formulating optimization models

 Provides a natural syntax to describe mathematical models

 Leverages an extensible optimization object model

 Formulates large models with a concise syntax

 Separates modeling and data declarations

 Enables data import and export in commonly used formats

Highlights:

 Python provides a
clean, readable syntax

 Python scripts provide
a flexible context for
exploring the structure
of Pyomo models

from pyomo.environ import *

model = ConcreteModel()

model.x1 = Var()
model.x2 = Var(bounds=(-1,1))
model.x3 = Var(bounds=(1,2))

model.obj = Objective(
expr= m.x1**2 + (m.x2*m.x3)**4 +

m.x2*sin(m.x1+m.x3) + m.x2,
sense= minimize)

Siirola, p. 11

 Pyomo is an object model
 Extensions declare new object classes (components)

 Supports annotating model components

 Transformations can detect presence of relevant components

 Core code (e.g., problem writers) can validate supported components

 Whole model (including expressions) is transparent and manipulable

 Pyomo natively supports hierarchical models
 “Block”: collection of modeling components (e.g., Sets, Prams, Vars)

 Namespacing: component names must only be unique within a block

 Blocks can contain blocks: hierarchical structure

 Many modeling extenions derive from Block

 Transformations can be “sandboxed” in transformation-specific Blocks

Why transformations in Pyomo?

Siirola, p. 12

An example: Disjunctive programming

 Disjunctions: selectively enforce sets of constraints
 Sequencing decisions: x ends before y or y ends before x

 Switching decisions: a process unit is built or not

 Alternative selection: selecting from a set of pricing policies

 Implementation: leverage Pyomo “blocks”
 Disjunct:

 Block of Pyomo components

– (Var, Param, Constraint, etc.)

 Boolean (binary) indicator variable determines
if block is enforced

 Disjunction:

 Enforces logical XOR across a set of Disjunct indicator variables

 (Logic constraints on indicator variables)

 

  trueY

c

oxh
Y

ikk

ik

ik

Di k




















 
V

Siirola, p. 13

Example: Task sequencing

 Prevent tasks colliding on a single piece of equipment
 Derived from Raman & Grossmann (1994)

 Given:

 Tasks I processed on a sequence of machines (with no waiting)

 Task i starts processing at time ti with duration im on machine m

 J(i) is the set of machines used by task i

 Cik is the set of machines used by both tasks i and j

kiIkiCj

tt

Y

tt

Y

ik

jm
iJm

imi

jm
kJm

kmk

ki

jm
kJm

kmk

jm
iJm

imi

ik



































 













,,,

)()()()(



Siirola, p. 14

Example: Task sequencing in Pyomo
def _NoCollision(model, disjunct, i, k, j, ik):

lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)

rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)

if ik:

disjunct.c = Constraint(expr= lhs + model.tau[i,j] <= rhs)

else:

disjunct.c = Constraint(expr= rhs + model.tau[k,j] <= lhs)

model.NoCollision = Disjunct(model.L, [0,1], rule=_NoCollision)

def _setSequence(model, i, k, j):

return [model.NoCollision[i,k,j,ik] for ik in [0,1]]

model.setSequence = Disjunction(model.L, rule=_setSequence)

kiIkiCj

tt

Y

tt

Y

ik

jm
iJm

imi

jm
kJm

kjkmk

ki

jm
kJm

kmkij

jm
iJm

imi

ik



































 













,,,

)()()()(



Siirola, p. 15

Solving disjunctive models

 Few solvers “understand” disjunctive models
 Transform model into standard math program

 Big-M relaxation:

 Convert logic variables to binary

 Split equality constraints in disjuncts into pairs of inequality constraints

 Relax all constraints in the disjuncts with “appropriate” M values

pyomo --preprocess=coopr.gdp.bigm jobshop.py jobshop.dat

Siirola, p. 16

Why is the transformation interesting?

 Model preserves explicit disjunctive structure

 Automated transformation reduces errors

 Automatically identifies appropriate M values (for bounded linear)

Siirola, p. 17

Why is the transformation interesting?

 Model preserves explicit disjunctive structure

 Automated transformation reduces errors

 Automatically identifies appropriate M values (for bounded linear)

 Big-M is not the only way to relax a disjunction!

 Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)

 Algorithmic approaches

 e.g., Trespalacios and Grossmann (submitted 2013)

 Prematurely choosing one relaxation makes trying others difficult

pyomo --preprocess=coopr.gdp.chull jobshop.py jobshop.dat

Siirola, p. 18

A growing library of transformations

 Bilinear relaxations

 Complementarity / Equilibrium
constraints
 Nonlinear relaxation

 Disjunctive relaxation

 “Standard” form relaxation

 Disjunctive programming
 Big-M reformulation

 Convex Hull reformulation

 Hybrid Basic-Step based algorithm

 Dynamic systems
 Collocation on finite elements

 Finite difference discretization

 Bilevel optimization
 Linear dual reformulation

 Linear complementarity
(KKT) reformulation

 Structural transformations
 Relax integrality

 Standard linear form

 Dual transformation

 Eliminate fixed variables

 Nonnegative transform

 Equality transform

Siirola, p. 19

model = ConcreteModel()

[…]

TransformFactory(“abs.complements”).apply(model, inplace=True)

TransformFactory(“mpec.disjunctive”).apply(model, inplace=True)

TransformFactory(“gdp.bigm”).apply(model, inplace=True)

Back to our original example: ABS(x)

 Chaining transformations

0,0

)1(
0,0

0000

)(






































































xx

yMx

Myx

xxx

xxf

xx

x

Y

x

Y
xxx

xxf

xx

xxx

xxf

xabsf

Siirola, p. 20

 Transformations can fundamentally alter problem instance.
 Presenting results is best done in the original problem context

 How to (automatically) map results from the transformed space back
to the original instance?

 Many transformations are not isomorphic

An open issue: back-mapping

Siirola, p. 21

Summary

 Model transformations can significantly impact modeling
 Separates the intent of the Modeler from the needs of the solver

 Expands the set of (high-level) modeling constructs

 Models can closer represent how a Modeler “thinks”

 Defers decisions on how to map the problem class to the solver to just
before solve time

 Reduces / eliminates manual transcription errors

 Chaining transformations is a powerful operation

 Complex transformations are cast as a series of simpler operations

 Availability of alternative transformation routes is preserved

Siirola, p. 22

For more information…

 Project homepage
 http://www.pyomo.org

 https://software.sandia.gov/pyomo

 Mailing lists

 “pyomo-forum” Google Group

 “pyomo-developers” Google Group

 “The Book”

 Mathematical Programming Computation paper:
 Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

Siirola, p. 23

