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Preference Balancing Tasks (PBTs)

s LT

Characteristics
* Robotic motion
* High-stakes
* Complicated dynamics
* Described with preferences

Develop, analyze, and evaluate a
solution for robotic PTBs

System
* High-dimensional
e Acceleration-controlled

 Unknown control-affine
dynamics

Solution
e Efficient
e Safe

Image: NASA/JPL/Caltech
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[Faust et al., 2015]



Reinforcement learning

* Solves
* Markov Decision Process MDP (S,A,D,R)
 Unknown D and R

e State-value function V: S = R
* Costtogo
e Potential for accumulated reward

* Planning 85— A
* Greedy policy 7" (s) = argmaxge 4V (s)

e Action sequence that maximizes the
value

e s’is result of applying action a to state s

[Barto and Sutton ‘98]

ResearcH Grour

Task
Planning
Reward (R) Control‘eollcy
a=n"(s)
[ Vv Action State

Relnfo-rcement
learning (RL) >

1‘ State System
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Approximate Value Iteration (AVI) iemstera ss
e Batch Reinforcement Learning Task
« Deterministic planning l'
* Continuous state Markov Decision Planning
Process (MDP) Features 3 Greedy policy
I w(s) = argmaxaeA(BTF(D(s,a)))
 State-value function approximation y ¥ —
darameter ction Stat
V(s) = HTF(S) AVI learning —r> 6 Aetio l T -
e Learns feature vector weights 4 Simulator System
e AVI Algorithm
* |teratively

 Sample states and observe rewards (s;,7;), 1 = 1,.
* Update state value v; = v; +7; +YMaXgcA o' F( )

* Find new parameter that fits the new
observations 0 < argming » . (v; — 0" F(s))
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PrEference Appraisal Reinforcement Learning (PEARL)

ESEARCH Grour

Training Task Task Planning Task
e How to select features? l, Objectives \1, PEARL
* Did we learn the right thing? Feature Planning
. . 2 lact - Features j : :
* How to generalize learning? s | | selection | Least squares axial policy
. . o Approximation (LSAPA
 What about continuous actions? ! ‘1’ bP ( )
Parameter
* How to adapt to external ARy > e Actionl T tate
disturbances? A
Simulator System
Related Work
* Feature selection * Learning transfer e RL with continuous actions
* Radial bias functions [Busoniu et al. ‘10] ﬁhelrsw"j”s‘: Storjg;]of’] [Bubeck et al. ‘11]
. cas . , aylor ana >tone [Madares et al. ‘13]
Space partitioning [kimura 07] [McMahan et al. ‘05] [Dievks and Jagannathan ‘12]
 Neural networks [Busoniu et al. ‘10] e Continuous action planning
* Lyapunov stable RL » e HOOT [Mansley et al. “11]
[DeCastro and Krass-Gazit "13]  Optimistic planning [Walsh et al. ‘10], [Busoniu et al. ‘13]

[Perkins and Barto ‘02]

[Ogren et al. 02] * Gradient descent [Hasselt ‘11]
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PEARL Markov decision process (MDP)

* m agents, d DoFs each Task
Planning
* States, § = R2md Reward (R) Control policy
* Joint agent-position-velocity a=m"(s)

* Actions, A = R™4 : i
y A=R Reinforcement 4 Action State

* Joint acceleration space , —
learning (RL)

* Transition function
T State System

« System dynamics Sp+1 = f(Sn) + g(sn)an

e f, g unknown and deterministic .
Simulator (D)

* Reward
* Measure of immediate state quality

[Faust, 2014]
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How to select features?
Task
* Objectives, oi , applicable to iObjectives ‘l'
Si C 1, oy | [
agents & < 1l | e e —3
3 | m(s) = argmax, 4 (0" F(D(s,a)))

o Preferences 2 v v parameter | o T o
s, 2md) Z Hp — O’LH FVI learning - 0
jest A Simulator System

* Preferences
* Polymorphic to the problem size
* Polynomial computation time
* Number does not change with the physical state size

[Faust, 2014]
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How to generalize learning?
‘ Training Task ’ ‘ Planning Task

Objectives

\ 4

Planning

* Policy leads to the goal if
Features 3 [ Greedy pollcy )}

° ;<0 (s )—argmaxaeA(B F(D(s,a))

* Can transition to a higher-valued | |, [ Darameter
j[ J— Action State
state ~ AVI Iearnlng l T

System

Feature
selection

Reward

* State space changes Simulator

* Learn in small area
e The policy viable starting at arbitrary position

e Simulator and action space changes

* Preserve ability to transition to a higher valued state

[Faust et al., 2013]
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Training Task Planning Task
* Greedy policy m(s) = argmax, 4(8" F(s')) l, Objectives \1’ PEARL
. . . Planning
is optimization problem p| feature __o —3
P P S selection Features Deterministic axial sum (DAS)
* Unknown quadratic objective function | & I policy approximation
e Deterministic axial sum (DAS) policy |~ V¥ v P Paragemr — Action State
.. . AVI learning
» Sample objective function along axes A
* Interpolate and find maximum Simulator SBIE
* Combine with a vector or convex sum
. . 3 - S
* Characteristic a; = min(max(a*;,a),a"), where fEan=a i iz
| conement po (e @ e[ o ay)T AR
. icient, i = , T/ T i
) ( ¢ S) qu ) rx[ﬂfl Ai3 H."1] - [”f’S dj1  Ajo| }T -
* Parallelizable ; } = \
g S RSN LdadRRRRRSSSaRY
* Negative weights are sufficient for convergence to goal e o SN

[Faust et al., 2015]
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Continuous Action Fitted Value Iteration (CAFVI) “=+

Training Task Planning Task
l’ Objectives \1’
e Sample states Plannin
P T Featu're —— Features j L .g
: g] selection Deterministic axial sum (DAS)
* For each state, s, using current 2 I policy approximation

weights vV Parameter |__| rction State
* Observe reward CAFVI _|_> 0

* Find the best action wrt. DAS policy, a* A System

« Query simulator for a resulting state s’
of applying a*to s

Simulator

* Update state’s value: reward +
discounted value of s’

* Fit new weights through new
observations

[Faust et al., 2015]
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Least Squares Axial Policy A

e Problem (8) = argmaXGGA(OTF(D(S,a)))
« PBTs V(s)=0"F(s)
* Control-affine system with

external input disturbance
Sk+1 = f(sk) + g(sk)(ax +ny)

* Learning
* Deterministic CAFVI

* Planning
e Estimate disturbance in real-time

e Least Squares Axial Policy
Approximation selects an action at

every time step
* Adapts to observed disturbance

[Faust et al., 2014]
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PEARL Summary

* Learns to perform PBTs*
through interactions

e Learns on small problems,
plans on large problems

e Efficient
* Autonomous

e Sufficient conditions for
convergence to the goal in
the deterministic case

*Preference Balancing Tasks

Training Task

l’ Objectives
Feature
= . = Features
S selection
(]
< |
v & Parameter
CAFVI —I o
A Simulator

-

ResearcH Grour

Planning Task

|

Planning

Least Squares Axial Policy
Approximation (LSAPA)

Actionl T State

System
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Coffee Delivery: Setup

* Problem
* Holonomic cargo-bearing UAV
* Bring the suspended load to the destination
* Minimal residual load oscillations at arrival

* Previous solutions
* Dynamic programming [Palunko et al. ‘12]
* AVI [Faust et al. 13]

* Preferences, reduce
* Distance from the destination
* \Vehicle's velocity
* Load displacement
* Load’s velocity

* MDP

» States: 10-dimensional vector space
* Actions: 3-dimenstional vector space

ADAPTIVE MOTION PLaNNING
EEEEEEEEEEE

[Faust et al., 2015] 13
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Trajectory without swing control

[Faust et al., 2013]

https://www.youtube.com/watch?v=18267xdoS1Q&Ilist=PLNCPLrvktEnsVIR-Z7t5e8xJIrZiNMZxx
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https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
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Computational Efficiency

Over 1300 times faster action selection in 3D spaces

z

1|:| é 1 I I I
- — - Discrete
1III1 _ =& —HOOoT -
| il ey Sum '___.-"'
L f*lpl"
10° 3 - -
: - -3
[ - .Er"i—.i ]
L ; -
=o'k A - -.
E - - 3
= i - ‘E..-""’ ]
i - . .
2| S |
1|:| 23 4-""' - -
- -p"ll '.l' E
1.-'_:__...-'!:'-""' .
:l_.-_.‘l-.r"ﬁ' .
1|:|'4 ] ] ] ]

1 2 3 4 ) b
Input dimensionality, d_

Time to make a decision per action dimensionality

@\ UNM
P

Apaprnve MomioN PLanNING

Resrarpcy Crour

[Faust et al., 2015]
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Trajectory Characteristics under Varying Disturbance

Disturbance | Policy | Planning Time (ms) Distance (cm) Swing (°) Max. Swing (°)
i o 7 o p o ! o 7 o
LSAPA([ 1.76 004  009Y) 000] 00T 0.00]15.62 0.00

1.00 0.00 | DAS 0.77 0.01 14.01 0.00 0.02 0.00 | 15.99 0.00
NMPC 77.35 0.21 0.89 0.00 | 0.33  0.00 | 15.63 0.00

LSAPA 1.78 0.04 0.06 0.00 0.01 0.00 | 15.45 0.00

2.00 0.00 | DAS 0.77 0.01 28.11 0.00 0.01 0.00 | 16.18 0.00
NMPC T77.57 96.97 4.73 5.91 1.74 2.18 6.19 7.74

LSAPA 1.68 0.07 0.61 0.24 0.14 0.05 | 15.82 0.07

0.00 0.50 | DAS 0.77 0.01 0.49 0.21 0.11 0.03 | 15.90 0.06
NMPC || 341.04 4.53 8.40 3.58 1.69 0.70 | 13.12 1.04

LSAPA 1.78 0.17 0.96 0.28 0.13 0.04 | 15.60 0.07

1.00 0.50 | DAS 0.77 0.02 14.01 0.37 | 0.12 0.04 | 16.00 0.07
NMPC || 318.39 4.91 96.54 31.16 3.64 1.28 | 14.35 1.71

LSAPA 1.65 0.05 0.65 0.25 0.13 0.05 | 15.42 0.11

2.00  0.50 | DAS 0.77 0.02 28.18 043 | 0.13  0.04 | 16.20 0.08
NMPC || 310.83 6.99 7147.63 |1744.13 | 35.63 12.21 | 55.42 15.30

LSAPA 1.79 0.24 0.94 0.35 0.29 0.09 | 15.80 0.17

0.00 1.00 | DAS 0.81 0.06 0.79 0.28 0.23 0.07 | 15.88 0.15
NMPC || 321.59 6.61 14.67 5.74 2.66 1.00 | 12.79 1.80

LSAPA 1.65 0.08 3.14 0.83 0.31 0.11 | 15.58 0.16

1.00 1.00 | DAS 0.77 0.00 14.42 0.83 0.27  0.09 | 15.99 0.13
NMPC || 305.55 4.89 354.79 124.39 5.89 2.01 | 16.09 3.27

LSAPA 1.65 0.04 9.52 2.81 0.56 0.25 | 15.57 0.28

2.00 1.00 | DAS 0.76 0.00 30.24 1.34 0.34 0.14 | 16.16 0.15
NMPC \ 309.31 ) 6.03 \ 13287.59 ) 1513.72 | 42.71 24.56 | 71.47 39.23

Py

ADAPTIVE MOTION PLaNNING
EEEEEEEEEEE

[Faust et al., under submission]

* Least Squares Axial Policy Approximation
(LSAPA) [Faust et al., 2014]

* Deterministic Axial Sum (DAS) [Faust et al.,
2015]

* Nonlinear Model Predictive Control
(NMPC) [Grune and Pannek, 2011]

LSAPA and DAS perform decision-making in
real-time.

LSAPA reaches the goal for non-zero mean
disturbances.
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http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4
http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4
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Swing-free aerial cargo delivery with disturbances
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Preference-balancing Motion Planning
under Stochastic Disturbances

Aleksandra Faust, Nick Malone, and Lydia Tapia
Department of Computer Science

University of New Mexico

https://www.cs.unm.edu/amprg

http://www.cs.unm.edu/~afaust/movies/afaustlcral5.mp4



https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
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Coffee Delivery

https://www.youtube.com/watch?v=s2pWxgAHW5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJIrZjNMZxx
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[Faust et al.,
under submission]
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Conclusion

EEEEEEEEEEE

PEARL

Solves robotic PBTs

For high-dimensional, acceleration-controlled robotic problems
Efficient |——
« Safe \

Deve | O ped [Faust et al., under submission]
* Feature selection [Faust et al., 2013]
* Learning in continuous action spaces
* Continuous action planning under external disturb:

= =rUAV

Analysis T e S B 0
* Task modification conditions IR ! Nt T I
* Convergence to goal conditions

Evaluation P
* Additional applications Faustetall 3005~ ™
e QOutperforms previous methods in precision and planning speed

[Figueroa et al., 2014]
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https://www.cs.unm.edu/amprg/Research/Quadrotor/
https://www.cs.unm.edu/amprg/Research/Quadrotor/
https://www.cs.unm.edu/amprg/Research/Quadrotor/
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Questions
* Thank youl!

* Website:
* https://www.cs.unm.edu/amprg/Research/Quadrotor/
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