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Preference Balancing Tasks (PBTs)
• Characteristics 

• Robotic motion
• High-stakes 
• Complicated dynamics
• Described with preferences

• Develop, analyze, and evaluate a 
solution for robotic PTBs

• System
• High-dimensional 
• Acceleration-controlled
• Unknown control-affine 

dynamics

• Solution
• Efficient
• Safe 

[Faust et al., 2013]

[Figueroa et al., 2014]

[Faust et al., 2015]
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Reinforcement learning

• Solves 
• Markov Decision Process MDP (S,A,D,R)

• Unknown D and R

• State-value function
• Cost to go

• Potential for accumulated reward

• Planning
• Greedy policy 

• Action sequence that maximizes the 
value

• is result of applying action     to state 

State

Reward (R)

Task

Reinforcement 
learning (RL)

Simulator (D)

[Barto and Sutton ‘98]
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Approximate Value Iteration (AVI)
• Batch Reinforcement Learning

• Deterministic planning

• Continuous state Markov Decision 
Process (MDP)

• State-value function approximation

• Learns feature vector weights

• AVI Algorithm
• Iteratively 

• Sample states and observe rewards
• Update state value 
• Find new parameter that fits the new 

observations

[Ernst et al. 2005]
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[Ernst et al. ’95]
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Task

PrEference Appraisal Reinforcement Learning (PEARL)

Planning

System

State

Greedy policy

Action
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Training Task
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ew
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d

Planning Task

Objectives PEARL

Features

Parameter

Planning

Deterministic axial sum policy
approximation

CAFVI

• How to select features?
• Did we learn the right thing?
• How to generalize learning?
• What about continuous actions?
• How to adapt to external 

disturbances?
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• Learning transfer
[Sherstov and Stone ‘05] 
[Taylor and Stone ‘09]
[McMahan et al. ‘05]

• Continuous action planning 
• HOOT [Mansley et al. ‘11]

• Optimistic planning [Walsh et al. ‘10], [Busoniu et al. ‘13]

• Gradient descent [Hasselt ‘11]

• RL with continuous actions
[Bubeck et al. ‘11]
[Madares et al. ‘13]
[Dievks and Jagannathan ‘12]

Related Work
• Feature selection

• Radial bias functions [Busoniu et al. ‘10]

• Space partitioning [Kimura ‘07]

• Neural networks [Busoniu et al. ‘10]

• Lyapunov stable RL
[DeCastro and Krass-Gazit ‘13]
[Perkins and Barto ‘02]
[Ogren et al. 02]

Least squares axial policy
Approximation (LSAPA)



PEARL Markov decision process (MDP)

• m agents, d DoFs each

• States, 
• Joint agent-position-velocity

• Actions, 
• Joint acceleration space

• Transition function
• System dynamics
• unknown and deterministic

• Reward 
• Measure of immediate state quality
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[Faust, 2014]
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How to select features?

• Objectives,      , applicable to

agents

• Preferences
•

• Preferences
• Polymorphic to the problem size
• Polynomial computation time
• Number does not change with the physical state size

7[Faust, 2014]



How to generalize learning?

• Policy leads to the goal if

•
• Can transition to a higher-valued

state

• State space changes
• Learn in small area

• The policy viable starting at arbitrary position

• Simulator and action space changes

• Preserve ability to transition to a higher valued state

[Faust et al., 2013]
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What about continuous actions?

• Greedy policy 

is optimization problem

• Unknown quadratic objective function

• Deterministic axial sum (DAS) policy
• Sample objective function along axes

• Interpolate and find maximum

• Combine with a vector or convex sum

• Characteristic
• Consistent

• Efficient, 

• Parallelizable

• Negative weights are sufficient for convergence to goal
[Faust et al., 2015]
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Continuous Action Fitted Value Iteration (CAFVI)

• Sample states

• For each state,   , using current 
weights

• Observe reward

• Find the best action wrt. DAS policy, 

• Query simulator for a resulting state    
of applying      to 

• Update state’s value: reward + 
discounted value of 

• Fit new weights through new 
observations
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10[Faust et al., 2015]



Least Squares Axial Policy Approximation (LSAPA)

• Problem
• PBTs
• Control-affine system with 

external input disturbance

• Learning
• Deterministic CAFVI

• Planning
• Estimate disturbance in real-time
• Least Squares Axial Policy 

Approximation selects an action at 
every time step

• Adapts to observed disturbance

Planning

System

State

Greedy policy

Action

Simulator

Training Task

Feature 
selection

AVI learning

R
ew

ar
d

Planning Task

Objectives

Features

Parameter

Planning

Least Squares Axial Policy
Approximation (LSAPA)

CAFVI

[Faust et al., 2014]



PEARL Summary

• Learns to perform PBTs* 
through interactions

• Learns on small problems, 
plans on large problems

• Efficient

• Autonomous

• Sufficient conditions for 
convergence to the goal in 
the deterministic case

Planning

System

State

Greedy policy

Action

Simulator

Training Task

Feature 
selection

AVI learning

R
ew

ar
d

Planning Task

Objectives

Features

Parameter

Planning

Least Squares Axial Policy
Approximation (LSAPA)

CAFVI

*Preference Balancing Tasks 12



Coffee Delivery: Setup
• Problem

• Holonomic cargo-bearing UAV

• Bring the suspended load to the destination

• Minimal residual load oscillations at arrival

• Previous solutions
• Dynamic programming [Palunko et al. ‘12]

• AVI [Faust et al. ‘13]

• Preferences, reduce
• Distance from the destination

• Vehicle's velocity

• Load displacement 

• Load’s velocity

• MDP
• States: 10-dimensional vector space

• Actions: 3-dimenstional vector space

13[Faust et al., 2015]



Trajectory without swing control
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[Faust et al., 2013]

https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx

https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=I8z67xdoS1Q&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx


Computational Efficiency
Over 1300 times faster action selection in 3D spaces

Time to make a decision per action dimensionality

[Faust et al., 2015]
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Trajectory Characteristics under Varying Disturbance
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[Faust et al., under submission]

• Least Squares Axial Policy Approximation 
(LSAPA) [Faust et al., 2014]

• Deterministic Axial Sum (DAS) [Faust et al., 

2015]

• Nonlinear Model Predictive Control 
(NMPC) [Grune and Pannek, 2011]

LSAPA reaches the goal for non-zero mean 
disturbances.

LSAPA and DAS perform decision-making in 
real-time.

http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4
http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4


Swing-free aerial cargo delivery with disturbances

http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4

https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx
https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx


Coffee Delivery
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[Faust et al., 
under submission]

https://www.youtube.com/watch?v=s2pWxgAHw5E&index=5&list=PLNCPLrvktEnsVIR-Z7t5e8xJlrZjNMZxx



Conclusion

• PEARL
• Solves robotic PBTs
• For high-dimensional, acceleration-controlled robotic problems
• Efficient
• Safe

• Developed
• Feature selection
• Learning in continuous action spaces
• Continuous action planning under external disturbances

• Analysis
• Task modification conditions
• Convergence to goal conditions

• Evaluation
• Additional applications
• Outperforms previous methods in precision and planning speed
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[Faust et al., 2013]

[Figueroa et al., 2014]

[Faust et al., 2015]

[Faust et al., under submission]

https://www.cs.unm.edu/amprg/Research/Quadrotor/
https://www.cs.unm.edu/amprg/Research/Quadrotor/
https://www.cs.unm.edu/amprg/Research/Quadrotor/


Questions
• Thank you!

• Website:
• https://www.cs.unm.edu/amprg/Research/Quadrotor/
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