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EFFECTS OF GRAPH STRUCTURE ON 2D PARTITIONING OF SCALE-FREE GRAPHS WITH

Summary

Eigenspace analysis of large-scale graphs is useful in a
number of important application domains, such as social
network analysis, cyber security, and biology. When per-
forming this sort of analysis across many parallel processes,
the data partitioning scheme is extremely important and
may have a significant impact on the overall running time.
Previous work demonstrated that partitioning based on
a subset of edges still yields a substantial improvement
in running time, and in this work we explore the effect of
community structure and degree distribution within this
context.

Eigenspace analysis of large networks

Computing extreme eigenvectors of matrices based on
graphs is a fundamental problem in a wide variety of
application areas. Common methods for community de-
tection include eigenvector analysis of the graph Laplacian
[4] or the modularity matrix [9]. A common measure of
vertex importance is PageRank [10], which is based on
the principal eigenvector of a modified adjacency matrix.
Eigenvector analysis is also frequently used in anomaly
detection, either in detection of anomalous clusters [7, §]
In all of these
applications, a sparse eigensolver is required to perform

or of global anomalous connectivity [6].

the desired computation.

FEigenspace analysis of extremely large graphs requires
parallel processing, and in this context significant compli-
cations arise. Data partitioning across several processes
when the data are in the form of a social or computer
network is a relatively new problem. Traditional matrix
partitioning algorithms have, for the most part, focused
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on and been most effective for sparse matrices that have
a regular structure (e.g., matrices derived from meshes).
However, there has been recent on research focused on
partitioning large networks—with community structure
and skewed degree distributions, as in many graphs of
interest—to best improve the time required to multiply a
sparse matrix by a dense vector (denoted SpMV), which
is the key kernel for a sparse eigensolver.

Partitioning for large, scale-free graphs

Matrix partitioning for SpMV operations has, in practice,
largely focused on 1-dimensional distributions, where a
set of rows is assigned to a process. In cases where there
is no known structure to the rows, this may require all
processes to communicate with all other processes, since
all rows of the dense vector may have to be multiplied
by each block of rows. It was shown by Yoo et al. that
simply randomly partitioning in two dimensions provides
a substantial speedup over 1D partitioning [14]. Later,
Boman et al. demonstrated that using hypergraph parti-
tioning to determine the 2D structure provides an even
better speedup in real-world graphs [2].

The hypergraph partitioning algorithm, however, is
expensive and may not be amortized over the SpMV op-
erations required to compute the desired eigenvectors.
Therefore, in order for the method to be computationally
beneficial, the partition must either (1) be useful for mul-
tiple time steps in a dynamic graph, or (2) be computable
from a sampled graph which will take much less time.
These were explored in earlier work [12, 13], on R-MAT
synthetic graphs [3] and a film actor’s network. In this
work, we consider the effect of community structure on
performance when the graph is sampled.

Experiments

We generated R-MAT matrices with 22° vertices and an
average of 100 nonzeros per row. These matrices were
partitioned with the random 2D method (2DR) or the
hypergraph method (2DH). For the hypergraph method,
we sampled a 1/2i edges at random for 0 <4 < 10. The



base probability matrix for the R-MAT graphs was given
by
a (0.75 —a)/2

(0.75 —a)/2 0.25 ’ S

with a set to 0.25, 0.375, 0.5, and 0.625. For a = 0.25, the
resulting graph will be an Erdés—Rényi graph, where all
edges occur with equal probability. As a increases, the
community structure in the graph increases as the two
halves begin to interact less.

The SpMV operation was performed with the Anasazi
library [1], part of the Trilinos project [5]. Results are
shown in Figure 1. As expected, partitioning time is
significantly reduced in all cases as the proportion of edges
sampled decreases. The 2DH method provides a benefit
in most cases for the values of a corresponding to more
community structure (0.5 and 0.625), while not providing

a benefit for cases with less.
Discussion

Consistent with previous results [13], we see that sampling
(even at fairly low sampling rates), is very effective at
reducing the 2DH partitioning time and even improves
the partitioning quality, reducing the SpMV time. In the
SpMV running times shown in the figure, when the matrix
is more similar to an Erdés-Rényi graph, 2DH partitioning
never helps a great deal. This makes intuitive sense: Since
there is no structure to the graph, partitioning randomly
will provide about the same performance as looking for
ideal cuts. One surprising aspect of the results is that, for
the cases with more community structure, performance
actually tmproves when the data were sampled. This
may be an artifact of the R-MAT generator. It could be
that, when there are fewer edges, the weak community
structure of the R-MAT graph is more apparent, and as
more edges between the two halves (and their recursive
counterparts) are added, the partitioning method does
not see the advantage of separating in certain parts of the
graph from others. This would imply that there still is an
advantage for SpMV, which is revealed in the sparsified
graph.

This is an interesting phenomenon that will be explored
in more depth in future work. In addition, while the R-
MAT generator was used here for the sake of continuity
with earlier work, future experiments will also use the
Block Two-level Er6s-Rényi (BTER) generator [11], which

has much more substantial community structure.
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RMat P=64: SpMV Time (Normalized)
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Figure 1: Relative time to partition the sparse matrix (left) and perform a SpMV operation (right).
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