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Summary

Eigenspace analysis of large-scale graphs is useful in a

number of important application domains, such as social

network analysis, cyber security, and biology. When per-

forming this sort of analysis across many parallel processes,

the data partitioning scheme is extremely important and

may have a significant impact on the overall running time.

Previous work demonstrated that partitioning based on

a subset of edges still yields a substantial improvement

in running time, and in this work we explore the effect of

community structure and degree distribution within this

context.

Eigenspace analysis of large networks

Computing extreme eigenvectors of matrices based on

graphs is a fundamental problem in a wide variety of

application areas. Common methods for community de-

tection include eigenvector analysis of the graph Laplacian

[4] or the modularity matrix [9]. A common measure of

vertex importance is PageRank [10], which is based on

the principal eigenvector of a modified adjacency matrix.

Eigenvector analysis is also frequently used in anomaly

detection, either in detection of anomalous clusters [7, 8]

or of global anomalous connectivity [6]. In all of these

applications, a sparse eigensolver is required to perform

the desired computation.

Eigenspace analysis of extremely large graphs requires

parallel processing, and in this context significant compli-

cations arise. Data partitioning across several processes

when the data are in the form of a social or computer

network is a relatively new problem. Traditional matrix

partitioning algorithms have, for the most part, focused
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on and been most effective for sparse matrices that have

a regular structure (e.g., matrices derived from meshes).

However, there has been recent on research focused on

partitioning large networks—with community structure

and skewed degree distributions, as in many graphs of

interest—to best improve the time required to multiply a

sparse matrix by a dense vector (denoted SpMV), which

is the key kernel for a sparse eigensolver.

Partitioning for large, scale-free graphs

Matrix partitioning for SpMV operations has, in practice,

largely focused on 1-dimensional distributions, where a

set of rows is assigned to a process. In cases where there

is no known structure to the rows, this may require all

processes to communicate with all other processes, since

all rows of the dense vector may have to be multiplied

by each block of rows. It was shown by Yoo et al. that

simply randomly partitioning in two dimensions provides

a substantial speedup over 1D partitioning [14]. Later,

Boman et al. demonstrated that using hypergraph parti-

tioning to determine the 2D structure provides an even

better speedup in real-world graphs [2].

The hypergraph partitioning algorithm, however, is

expensive and may not be amortized over the SpMV op-

erations required to compute the desired eigenvectors.

Therefore, in order for the method to be computationally

beneficial, the partition must either (1) be useful for mul-

tiple time steps in a dynamic graph, or (2) be computable

from a sampled graph which will take much less time.

These were explored in earlier work [12, 13], on R-MAT

synthetic graphs [3] and a film actor’s network. In this

work, we consider the effect of community structure on

performance when the graph is sampled.

Experiments

We generated R-MAT matrices with 220 vertices and an

average of 100 nonzeros per row. These matrices were

partitioned with the random 2D method (2DR) or the

hypergraph method (2DH). For the hypergraph method,

we sampled a 1/2i edges at random for 0 ≤ i ≤ 10. The
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base probability matrix for the R-MAT graphs was given

by [
a (0.75 − a)/2

(0.75 − a)/2 0.25

]
, (1)

with a set to 0.25, 0.375, 0.5, and 0.625. For a = 0.25, the

resulting graph will be an Erdős–Rényi graph, where all

edges occur with equal probability. As a increases, the

community structure in the graph increases as the two

halves begin to interact less.

The SpMV operation was performed with the Anasazi

library [1], part of the Trilinos project [5]. Results are

shown in Figure 1. As expected, partitioning time is

significantly reduced in all cases as the proportion of edges

sampled decreases. The 2DH method provides a benefit

in most cases for the values of a corresponding to more

community structure (0.5 and 0.625), while not providing

a benefit for cases with less.

Discussion

Consistent with previous results [13], we see that sampling

(even at fairly low sampling rates), is very effective at

reducing the 2DH partitioning time and even improves

the partitioning quality, reducing the SpMV time. In the

SpMV running times shown in the figure, when the matrix

is more similar to an Erdős–Rényi graph, 2DH partitioning

never helps a great deal. This makes intuitive sense: Since

there is no structure to the graph, partitioning randomly

will provide about the same performance as looking for

ideal cuts. One surprising aspect of the results is that, for

the cases with more community structure, performance

actually improves when the data were sampled. This

may be an artifact of the R-MAT generator. It could be

that, when there are fewer edges, the weak community

structure of the R-MAT graph is more apparent, and as

more edges between the two halves (and their recursive

counterparts) are added, the partitioning method does

not see the advantage of separating in certain parts of the

graph from others. This would imply that there still is an

advantage for SpMV, which is revealed in the sparsified

graph.

This is an interesting phenomenon that will be explored

in more depth in future work. In addition, while the R-

MAT generator was used here for the sake of continuity

with earlier work, future experiments will also use the

Block Two-level Erős–Rényi (BTER) generator [11], which

has much more substantial community structure.
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Figure 1: Relative time to partition the sparse matrix (left) and perform a SpMV operation (right).
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