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A Why do people do chemical kinetic
modeling?
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Predict what WiII happen as the boundAary conditions are changed
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What will make a model predictive?

(x,v, ..

6. Wechselgetriebe fiir vier Geschwindigkeiten
und Riicklauf:

M Angriff der Motorwelle, C Angriff der Cardanwelle;

Geschwindigkeitsréider I, I1, /11,1 V,durch Verschiebung

mit 1, 2, 3, 4 in Eingriff gebracht; Riicklaufrad R,

durch Linksschiebung mit I ¥ und 4 in Eingriff gebracht.

Need to understand the intermediate steps
“Decision points” that determine the outcome of the process
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CRE. A Longstanding Fundamental Challenge -

Predictive Models of Complex Systems
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CRE. Tropospheric and Engine Oxidation Processes

Both Run on Radical Chain Chemistry

Ignition Chemistry: General Alkyl Radical Oxidation Scheme

— Chain-branching pathways are
a “nonlinear feedback” for

autoignition ( i 73 7 7
o photolysis OH reaction NOj; reaction 03 reaction
—_— AI kyl + 02 rea CthﬂS a nd initiation 4 carbonyls, all VOC and ! alkenes, dienes, alkjnes, dienes(,1
. . i ROOH, RC(0)OOH aldehydes an and unsaturate
“QOO0H” intermediates are reactions 2 RONO, oxygenated product e || oogensted prosucts
central to low-temperature
o . A \
Chaln bra nChlng [ oxy: RO peroxy: RO, excited Criegee stabilised Cri‘egee
. . . reaction_s of P, 0, reactiurl reaction with [RC(OO)R' A|’ RF(OQ)R
Tropospheric Chemistry: mermedates || Samarsaion | N\ avko,” docompostton || N0, NGy, €0 and 56,
— Alkyl + O, reactions from OH- — L i -~
initiated oxidation also oxygenated products '
. . products < carbonyls, ROOH, ROH, RC{O}OOH, RC(0)OH, i
iImpo rtantin troposp here RONO,, PANs, multifunctional and c@ |~ 7777
— NO; and O, species are also QUOHO, Atmos. Chem. Phys., 3, 161-180, 2003
important oxidation initiators
- Crlegee intermediates are branching
Important species for OH, low temperature
aerosol fo rmation, NOX, SOX Adapted from Walker and Morley, "Basic Chemistry of Combustion," in

Low Temperature Combustion and Autoignition, Ed. M. J. Pilling,
(Comprehensive Chemical Kinetics Vol. 35) Elsevier, 1997

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



2\ Kinetic Models for Oxidation Chemistry Require
CP_LZ . . «“ : ”»
y Knowing Reactions of “Intermediates

ROOH'I'owain branching
+0

% RO: + OH

Oe

Wrect HO, elimination

HO, + alkene

Khain propagation
*O0OQOOH

HOO*Q_,0O0H
QOOH + O, is responsible for chain branching
A\ QOOH radicals are isomers of the major reaction
- H00Q,0 + OH products ROO
7 Until this year (David Osborn — next talk!) no one
«0Q,,0 + 2 OH had ever directly seen a QOOH by any means

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
PECS 2011, 37, 341.
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So what can we do?
k Take one step at a time?

./ Alkyl + O, reactions — Detect ~ Product appears on two

the HO, reaction product timescales -- kinetically separate
- R ROOH+ 0, chemical activation contribution

¢+%

ROO- \direct HO, elimination 8 ;
i i B .ill
HO, + alkene 0 j\M A _ h , !
E — o . o i r —
=]
oy
g
gL
8
g
21 — Corrected reference signal
o
% Ethyl + O, signal:
— corrected for self reaction
—— corrected for reaction with C,H;0,—
I I I I |
0 10 20 30 40
Time (ms)

Phenomenological analysis

Eileen P. Clifford; John T. Farrell; John D. DeSain; Craig A. Taatjes; J. Phys. Chem. A 2000, 104, 11549-11560
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CRE

g

How Does This Tell Us Anything about the
Intermediates? Theory opens the Black Box!

Measured products from

pulsed photolytically
initiated R + O, reactions
compared to theory
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Experimental ambiguity: e.g., OH measurements don’t tell which QOOH contributes
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72N r
| @ Need as much detail as we can get — really would

like to measure all the species all the time

/Multiplexed photoionization mass spectrometry
(MPIMS) - David Osborn

Universal detection (mass spectrometry)

High sensitivity (synchrotron radiation + single ion counting)
Simultaneous detection (multiplexed mass spectrometry)

Isomer-resolved detection (tunable VUV, ALS synchrotron)
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CRE.

2

Photon Energy (eV)

Time (ms)

7
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10

Cl-initiated oxidation

40

Time behavior of product
formation — prompt and
delayed

Photoionization spectra identify
product isomers

50 60 70 80 90
mlz

4]

O m/z=72 (Expt.)
— fit
-------- 2-methyloxetane
- = Tetrahydrofuran
= Dimethyloxirane
— - Ethyloxirane

e
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100

Energy-Integrated Photoion Signal
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A\ Thermodynamics Affects the Isomerization

“ and Dissociation of QOOH

, ¢ ROOH + O, chain branching p—
+0
2 + HO, RO- + OH A one

—-O—-m/z 100 DEK + Cl* + O,
----- m/z 103 d,-DEK + Cl+ + O,
= = m/z 105 d¢-DEK + Cle + O,

HO, + alkene

R(i(y Wrect HO, elimination

Relative Ion Signal (Arb. Units)

Photon Energy (eV)

esonance stabilization
may favor particular QOOH
pathway

Energy ;. (keal/mol)

e et
\0/
\ o
Adam Scheer - P e
Phys. Chem. Chem. Phys. 16, 13027—13040 (2014). ol + 1L,

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



N
A SF Thermodynamics Affects the Isomerization

and Dissociation of QOOH

What about systems with Ring strain in the transition state for

isomerization
?
unusua”y stable QOOH: Stability of QOOH radical (strength

. of breaking C-H bond)

CH, CH;

Ketone oxidation has
possibility of vinoxylic
resonance stabilization

Resonance-stabilized
radicals less reactive with O,

Energy, . (kcal/mol)

Resonance stabilization may
favor particular QOOH
pathway

Adam Scheer on + 5
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Cé\}\?F Photoionization mass spectrometry can also
follow the subsequent oxidation steps

ROO%ain branching S o
+0 o583 g
% RO- + OH VL

ROOe direct HO, elimination
$ HO, + alkene BUtENE M/Z =56

chain propagation Cyclic ethers .
OH + O-heterocycle m/z=72 g
: Cl + CH4CH,CH,CH, + O,
| 590 K, 1488 Torr === sum of butenes
T o O miz=104
l 575K, 5 Torr — sum of butenes
? 9
| | | | I I |
' -5 0 5 10 15 20 25
Time / ms
. Arkke Eskola et al. Proc. Combust. Inst. in press
Ketohyd rope roxide m/z =104 doi:10.1016/j.proci.2014.05.011

Energy-Integrated Photo-lon Signal
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/\5 |
r @ Observed ketohydroperoxide product at m/z =
/ 104 arises from O, + QOOH (but which?)

1

Clinitiated n-butane Isotopic labeling further narrows the

Photoionization . c .
. possible ketohydroperoxide isomers
spectrum similar

| |oxidation 575K

©
2 to that observed D,
. c CH
3 by Battin-Leclerc ne ¢
I | D>
N et al. (Angew. Chem. 5
S 2010, 49, 3169) ~o
Q
©
E -
:

9.0 9.5 10.0 0-
Photon Energy (eV)

T T T T T
8.5 9.0 9.5 10.0 105

Energy (eV) miz =107 D miz =108

At low pressure, the ketohydroperoxide yield relative
to ROO is linear with [O,] 0 o

. e i miz =107 Sow
Measurements with specific butyl isomers show
ketohydroperoxide from 1-butyl oxidation but not

from 2-butyl oxidation Arkke Eskola
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Energy (kcal/mol)

Difficult to make, rapidly parrier to

dissociates to bimolecular products
bimolecular products

Considering the potential surface allows the
-butyl + O final choice to be made...

HO5 + 1-butene
H

HsC C

~c~ \CHZ

H,

/o\ IC-I:Z
/ \
N HL—C"  “ch,
LN OH + ethyloxirane

~
" H,C—O
\ ]
\ OH + HZC—CI:|\
‘. | 2-methyloxetane CH,

S

H,C—O
H C/ \CH OH +
2 2
\ﬁ/ oxolane

Easy to make, larger
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CRE What happens to y-ketohydroperoxides?

The observed species is a Jalan et al. pointed out that
gamma-ketohydroperoxide gamma-KHP can isomerize
OH 7 Q‘H J’d% " w{w e
o o [o~So] + [0 eaaihadi s P!
K/k
49.5
(D 34.7
l 28.5 31.6
Jalan et al., J. Am.

Chem. Soc. 2013, 135,
11100-11114

o) 0 OH | o "~°

KHP
0.0

OH

0=
L] L] H CP
0-0 bond fissign leads to chain 9.7
branching
COMg
IHO/\\O| ar IAOI
\_ -75.3
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— m/z=30
O m/z=86

—_— m/z =44
O m/z=86

Energy-Integrated Photoion Signal

— m/z =58
O m/z=86

O m/z=86

T T T
20 40 60

Time / ms

0

Timescale suggests formation
from ketohydroperoxide

Observed products in Cl-initiated butane

oxidation include organic acids

Acetone isotopic signature
could signal isomerization

CHs
/CH3 /CH3 H —H/
HC-HC Hao-He Lot [CH3&P,CD,CH; oxidation 650K O
HG S HG o Il Go”miz =61 product — fit O
o \ o °OH T 50 . - ropanal ----- Acetone O(Q ol
71-KHP CH (% = LM  cp.cocH Q7
ne o CHeCOCHs o 40 pct + HCOOH o QO_
H2c|; 5 + HCOOH £ 2 0
HC—~" S
HO o N E 30
CHsCHO £
+ CH3;COOH 8
o 5B
ZHe
©
© 910
v1-KH
0
IjCLO \ I ' I ' |
HO 9.2 @00 10.0 10.4
PhotbrCErgrgyteV)

Arkke Eskola et al. Proc. Combust. Inst. in press doi:10.1016/j.proci.2014.05.011
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Problem is to make
enough!

(CH,),C(CH,)OOH

But we still haven’t measured the intermediate

QOONH steps

Cl + t-butylhydroperoxide

-»» Increasing O, »»

_ il

/*'wm w e

2,2- dlmethyIOX|rane
' CH,O

INIAMAPY Ao A IO WO NG
WYY U A adA ) N w\.mwwww Ay
| | [ | | [
. 0 10 20 30 40 50
' HOO0Q,,0 + OH Relative rate can Time (ms)
l give direct CH; T CH
HsG H H.C. | O
measurements of |H.C O on 0: OO0 ? ~0
° . . H
0Q,0+20H QOOH reactions O. CH, HO.  CH,
CHy o~ o

Judit Zador
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| %F Measurement of OH directly probes rate

constant for QOOH reactions

/ Haifeng Huang

unknowns w/o O,

;,-E; "o == @ KaooH->0H
2] ~ [ . . . . o
g © 49 "MO"oon HA o ~oon (ew Glhitﬁkﬁb}%rWP@PsHmé conditions
Q. — O — — -
s 3 Ot @ lpss to ROO in CH+TBHP ()
58 O e — QOOH+02
6o 9 [ -cToon 4T
3 £ /
PRI [ HCTNeH
c - & 3 2 OOH 4
ge O - .
o o H,C CH, {n\ ® Experiment
S < - ——Theo
.'-E-é o L ° o 3T 7
Eo + L =
n < T a
=N &] ) - +
°d O z
LE X oL i
e 10 100 5

K S

P (Torr) X ko= 4.8x10" s
Fit all data -- use competition between ' -
QOOH dissociation and addition of O, to 10 100
P (Torr)

get kqoon+02 as well
Zador, Huang et al., Phys. Chem. Chem. Phys. 15, 10753-10760 (2013)
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That’s pretty close —
Is there some way we can do even better?

What are these “intermediates” again?

QOONH is an isomer of the more stable ROO intermediate

Criegee intermediates are isomers of more stable
tropospheric species

But we have a machine that can resolve isomeric
chemistry!

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



2\ Other systems have their own black boxes...

\J

deling ozonolysis has long been the
to determine reactions of Criegee
rmediates

asure products of ozonolysis and
pare to theory and models

— Add scavengers that are thought to
remove Criegee intermediates, see what
happens to stable product yields

— Lots of other intermediates possible!
SO, |

Ry 0 .

nopinong N

[0} (o]
R1\\ c/ /| _Rs  Criegee intermediate
/c_ \ + carbonyl compound

Re R | Rq

R1\c/
primary ozonide J-‘lz dioxirane

Phys.Chem.Chem.Phys. 16,, 1704-1718 (2014) vinylhydroperoxide

Atmos. Chem. Phys. Discuss., 4, 2905-2948, 2004
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2. Kinetic Models for Oxidation Chemistry Require
‘L@

Knowing Reactions of “Intermediates”

Ozonolysis is a major component in tropospheric removal of hydrocarbons — makes
carbonyl oxides, often known as Criegee intermediates

Criegee intermediates are isomers of more stable products, organic acids or esters
Until 2012, no one had directly measured a Criegee reaction

\N_/ O\o

C—C

/

—O0

O

|
\/\/
\

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories i
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Tunable synchrotron photoionization can identify

ol |
| novel isomeric intermediates

J

Cl-initiated

Carl Percival, Dudley Shallcross DMSO oxidation

Ozonolysis of alkenes proceeds via a CH,S miz = 45.988 300 K, 8 Torr
carbonyl oxide intermediate 10
(“Criegee intermediate”)

They are important tropospheric
reactants but only indirect
measurements existed

Relative lon Signal
Kinetic Time (ms)
(&)}

8CH,00 miz = 46.006

Problem is to make enough

Dimethyl Sulfoxide (DMSO) oxidation

may form CH, 00 (Asatryan and Bozzelli,
PCCP 10, 1769 (2008))

Time-of-flight can resolve CH,S from 5
4585 4590 4595 46.00 46.05 46.10 46.15
CHzo m/z

Taatjes et al., J. Am. Chem. Soc. 130, 11883 (2008)
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Detection Is One Thing, Kinetics Is Another: Make

Viore Criegee to Measu action

e Arkke Es
1416 (200€
made | 3
Criegee

e Can mak

reaction
species IS
(®]
=
o
2500 5
& LA
© l'
g J '-1
2000 o e 1P
l’.L @
- Bl P
2 1500
< | ‘.
= 'l
1000 ."' O—CH:>
l‘f.l'/
oo = = = = = = OH —
500 — I | | I [
| l | | ' ' 10.0 10.5 11.0 11.5 12.0
0 10 20 30 40 50

o 3 Photon energy (eV)
[SO,] (10" cm”) .
o 1 2 3 4 5 & Welz, Savee, et al., Science 335, 204 (2012)

Time (ms)
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Can also make larger Criegee Intermediates like
acetaldehyde oxide (CH;CHOO)

Relative lon Signal

|""'|"'|"'|"'| John Dyke,

Similar strategy: 90 92 94 96 98 100 Ed Lee
J

Photoionization Energy (eV) ]
Daniel Mok

hv °
HyC—CHI,  — |+ H,C—CH

. H
0O, + H,C—CHI — |+ C
2 3 H3C/ \C|)

m/z=60 0O

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



Can also make larger Criegee Intermediates like
acetaldehyde oxide (CH;CHOO)

+/O_ +O/O
O
Lo+ ¢
/ e’ CH H™ \CH3
anti syn
©
c
e
(0))
5 _
6 + /O
> —
© <
o) H
0 ]
anti

|""'|"'|"'|"'| John Dyke,

Similar strategy: 90 92 94 96 98 100 Ed Lee
J

Photoionization Energy (eV) ]
Daniel Mok

hv °
HyC—CHI,  — |+ H,C—CH

. H
0O, + H,C—CHI — |+ C
2 3 H3C/ \C|)

m/z=60 0O
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, %F Addition of water preferably removes the
!  anti- conformer of CH,CHOO

®©

c

2

0p]

C

o

()

=

5

(0]

o
I 11 I L I LI I L I LI I
9.0 9.2 9.4 9.6 9.8 10.0

Photoionization Energy (eV)
——> Conformer-dependent reactivity! Taatjes, Welz et al., Science 340,

171-180 (2013)
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2\ We measured the rate coefficient of

anti-CH;CHOO with H,0

s 1400 [ SN\
— [H,0]=2.7x10" cm | X X
—— 105eV 1200 |- de(\’&
. ~O—9.37 eV . e
E | 1000 deP -
o < er - (ﬁ\e(
(_% — ‘n Co(\ﬁo 4 7
2 mostly syn- A0\ o8 © anti-CH,CHOO +H,0
s R\
nc L ¥ (\ﬁ\(“\ 400 |- _
- a\ cO no reaction observed for
" 200 (- —
ANe e syn-CH,CHOO + H,0
0
-t I LI I LILILIL I LILILIL I rriri I LI
6 8
Kinetic Time (ms) e Afactor of 10 lower than predictions

for the high-pressure limit from

Anglada et al. (Phys. Chem. Chem. Phys. 13,

13034 (2011)), but larger than other

calculations

k(syn-CH,CHOO + H,0) < 4 x 1015 cm3 52 * Substantially larger than prediction
for other Criegee Intermediates

k(anti-CH,CHOO + H,0) = (1.0 = 0.4) x 1014 cm3 5! E>
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7 What are the next steps?

~* We are just beginning to understand how +—— transient absorption
. . . 10 in the presence of H,0
Criegee intermediates react

—_

— Need to understand larger Criegee molecules %

— Need to understand more reactions 8 5
— Need to understand reactions at different

conditions, measure with different methods Y
— Really need to know products of reactions 1

time (ms)

separated UV spectra

syn-CH,CHOO

-

anti-CH,CHOO

k, 110" cm’s™

300 350 400
wavelength (nm)

o ] v 1 v 1 . T hd ] v 1
0 100 200 300 400 500
Pressure / Torr

Stone et al. Phys. Chem. Chem. Phys. 16, Leonid Sheps, Ashley M. Scully, Kendrew Au
1139-1149 (2014) Phys. Chem. Chem. Phys. 16, 26701-26706
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Working inside the “black box” connects
fundamental kinetics to complex models

* Begin to investigate conditions more like
troposphere and real combustion devices

CHj o
H3C\C|: N |
y C/ \o H20\ /CH2°
2 / /C
HO HaC

* So far only the simplest or most convenient
examples of intermediates -- try harder problems

e New measurement methods are opening things up -- others
are developing new tools to investigate these species
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