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ABSTRACT

The Sandia Architecture for Heterogeneous Unmanned System Control (SAHUC) was produced as part of a three year 
internally funded project performed by Sandia’s Intelligent Systems, Robotics, and Cybernetics group (ISRC). ISRC 
created SAHUC to demonstrate how teams of Unmanned Systems (UMS) can be used for small-unit tactical operations 
incorporated into the protection of high-consequence sites. Advances in Unmanned Systems have provided crucial 
autonomy capabilities that can be leveraged and adapted to physical security applications. SAHUC applies these 
capabilities to provide a distributed ISR network for site security. This network can be rapidly re-tasked to respond to 
changing security conditions. 

The SAHUC architecture contains multiple levels of control. At the highest level a human operator inputs objectives for 
the network to accomplish. The heterogeneous unmanned systems automatically decide who can perform which 
objectives and then decide the best global assignment. The assignment algorithm is based upon coarse metrics that can 
be produced quickly. Responsiveness was deemed more crucial than optimality for responding to time-critical physical 
security threats. Lower levels of control take the assigned objective, perform online path planning, execute the desired 
plan, and stream data (LIDAR, video, GPS) back for display on the user interface. SAHUC also retains an override 
capability, allowing the human operator to modify all autonomous decisions whenever necessary.

SAHUC has been implemented and tested with UAVs, UGVs, and GPS-tagged blue/red force actors. The final 
demonstration illustrated how a small fleet, commanded by a remote human operator, could aid in securing a facility and 
responding to an intruder
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1. INTRODUCTION

One of the core missions of the Intelligent Systems, Robotics, and Cybernetics group (ISRC) at Sandia National 
Laboratories is to develop advanced technology for the protection of high-consequence sites. To provide cutting-edge 
physical security solutions, Sandia investigates a variety of relevant emerging technologies. Unmanned Systems (UMS) 
and autonomy are two prominent and highly relevant technologies. ISRC developed the Sandia Architecture for 
Heterogeneous Unmanned System Control (SAHUC) to demonstrate how these new capabilities could be leveraged to 
augment the security of high-consequence sites.

Recently, highly capable autonomy has been embedded on individual UMS platforms. This has allowed UMSs to 
complete complex tasks with humans providing only minimal high-level oversight. Most visibly, autonomous navigation
has been demonstrated across difficult terrain2 and through urban traffic3. These capabilities represent important 
elements for future UMS operations. However, high-consequence physical security applications require teams of UMS 
to secure an entire facility, not just one portion of it. Advanced navigation autonomy is necessary to move individual
team members safely and quickly around facilities, but collaborative autonomy is also necessary to ensure the team 
members are efficiently working together toward common objectives.
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Figure 1. SAHUC allows a single human operator to intuitively command a distributed team of heterogeneous UMS. 

Scripted collaborative autonomy techniques, wherein missions are built up from pre-sequenced combinations of tasks, 
can be effective in well-known and predictable conditions. However, these techniques are not conducive to quickly
responding to intelligent adversaries seeking to exploit any rigidly defined and predictable behaviors4.

Swarm autonomy techniques enable multiple assets to work together on a single unifying objective using consensus 
methods. These approaches perform best when controlling tens to hundreds of very simple homogeneous UMS and are 
effective at tasks like plume localization, moving in formation, and spreading around perimeters5,6. However, relatively 
few physical security missions can be entirely distilled to this sort of single objective. Additionally, these behaviors fail 
to take advantage of the multi-functional capabilities provided by modern military-grade UMS assets. 

Other approaches to collaborative autonomy optimize the assignment of tasks (e.g. typically visiting fixed waypoints) to 
individual UMSs, which then execute those tasks independently with minimal coordination7-9. While promising for many 
types of operations, these methods are not designed for the physical security scenarios where tasking may change 
extremely rapidly in response to time-critical security threats. 

The Sandia Architecture for Heterogeneous Unmanned System Control adapts collaborative autonomy techniques to 
produce a system that emphasizes timely responsiveness over full optimality, figure 1. While other applications may 
have the luxury of calculating a truly optimal global solution offline, the physical security of high-consequence sites is 
not compatible with this approach. When security threats are encountered, they must be dealt with swiftly; the system 
must be highly reactive to changing conditions. The trade-off between optimality and computing resources has been well 
recognized in the context of optimal control. In Scokaert, Mayne, and Rawlings10, the authors remark that many 
“[s]tabilizing formulations … rely on the assumption that global and exact solutions of nonconvex, nonlinear 
optimization problems are possible in limited computational time” and that this is in general not practical. Instead, the 
authors identify stability to be the priority when computational resources are limited and establish a method wherein 
suboptimal control policies may be generated while stability is still guaranteed. In Zeilinger, Jones, and Morari11, the 
authors use offline (presolved) optimization results to provide a “warm-start” to a real-time optimization algorithm, 
reducing the number of iterations required for solution. In this case, the offline solution provides a “good enough” 
solution, but the solution may be refined further is computational resources permit.

Section 1 has briefly discussed Sandia’s motivation for creating SAHUC. Section 2 will detail the contents of the 
SAHUC architecture. The proof-of-concept implementation is described in Section 3. Section 4 presents a physical 
security demonstration performed at Sandia to illustrate the potential utility of SAHUC. Finally, Section 5 contains 
conclusions, an assessment of the strengths and weaknesses of the approach, and some directions for future work.



2. SAHUC ARCHITECTURE

The SAHUC architecture allows a single human operator to command a distributed network of collaborating UMSs, 
figure 1. To accomplish this, several levels of autonomy are connected hierarchically. Figure 2 depicts this hierarchy 
conceptually. The lowest level of autonomy contains the traditional path tracking control as well as state estimation. The 
mid-level autonomy contains a set of behavior algorithms to generate the paths needed by the low-level layer (e.g. it can 
plan how to search an area or track a moving target). These mid-level behaviors can be for individual UMSs or swarms 
of UMSs working together on a single objective. The mid-level layer also estimates several metrics to characterize the 
expected performance of the UMSs if they executed the objectives. The high-level optimizer contains an optimization-
based assignment algorithm to assign the UMSs to objectives, based upon costs formed from the metric estimates 
produced by the mid-level autonomy. Finally, the Graphical User Interface (GUI) allows the human operator to add, 
remove, or modify the objectives in the system. They can also change how the metrics are combined to form the costs 
being minimized (e.g. the human operator can move from desiring “fastest” to “most energy efficient”).

Figure 2. Conceptual hierarchy of the Sandia Architecture for Heterogeneous Unmanned System Control.

2.1 Low-level Autonomy

The lowest level of autonomy accepts desired states or paths to follow and produces state estimates for the UMS. This is 
generally performed onboard the UMS, but could be performed by a surrogate (e.g. a ground station or neighboring 
vehicle). The specific algorithms chosen depend on the computational resources available. Different UMS may have 
different capabilities and different vehicle dynamics. SAHUC does not specify or constrain what algorithms are used 
wherever possible, including within the low-level autonomy. 

SAHUC allows a wide variety of low level control algorithms including PIDs, Model-Predictive Controllers, Rapidly-
expanding Random Trees and other approaches. It also allows for vehicle specific controllers to be used to fully exploit 
knowledge of the individual UMSs dynamics (e.g. skid-steered vs unicycle UGVs). 

Similarly, the state estimation algorithms can vary based on sensor suite and computational resources. Simple Extended 
Kalman Filters or Unscented Kalman Filters can be used with GPS and IMU measurements for computationally limited 
UMSs, but full SLAM solutions can be used for other more advanced platforms. If the state estimation algorithms 
include representations of the local environment, local obstacle avoidance may also be incorporated within the low-level 
autonomy.



2.2 Mid-level Autonomy

The mid-level autonomy executes the UMS’s assigned objective by planning waypoints or paths that are then sent to the 
low-level autonomy discussed above. It also evaluates every other objective, determines if the objective is feasible, plans 
a tentative path if it was to switch to that objective, and estimates the metrics associated with each of those alternative 
objectives. These metrics are then sent to the high-level optimization layer.

The mid-level behaviors are domain specific and can potentially determine paths for individuals or teams. For Physical 
Security it is necessary to have UMSs perform behaviors like: move to a point, search an area, patrol a border, protect 
another asset, follow a target, etc. Just as different low-level algorithms can be used, different path planning algorithms 
can exist for the same type of objective. This may be necessary due to heterogeneity in the UMS dynamics or the 
computational resources available. For example, the path for a UAV to search an area can be radically different from the 
path for a UGV; and the algorithms that produce the paths can be equally unique and customized. These algorithms must 
simply agree on the inputs necessary to define the area to be searched. 

The mid-level autonomy also contains a metrics estimator, producing metric estimates for all objectives. The first 
portion of the estimate is to determine feasibility. An objective may not be feasible for a UMS because the UMS does 
not have a path planning algorithm for that type of objective. The UMS may not have the necessary sensor suite. It may 
also be infeasible for the UMS because the UMS’s constrained resources will not allow it to reach and complete the 
objective (e.g. the battery will die before the UAV reaches the area to be searched). 

If the UMS could feasibly execute the objective, a path is planned using the mid-level behavior’s algorithm. Again, the 
fidelity of the path is not constrained within SAHUC. Computationally limited UMSs can use very coarse 
approximations while computationally rich UMSs can use detailed highly-accurate simulations. The idea is to allow each 
UMS to rapidly approximate the paths for each alternative objective. Multiple metrics are then calculated for each of the 
alternative courses of action. These metrics include measurements of transient and steady-state effects: time to arrival, 
cycle time, energy to arrival, cycle energy, distance to arrival, cycle distance. For example, to patrol a border a certain 
amount of time is required to arrive at the border, and then a different amount of time is required to perform one 
complete cycle of that patrol.

2.3 High-level Autonomy

The highest level of autonomy takes the objectives, the UMSs, and the metrics provided by the UMSs, and determines 
which objective each UMS should perform. This assignment algorithm is intended to solve a high-level multi-objective 
optimization, but multiple approximations are used to speed up the algorithm. The responsiveness of the system to 
changes in the security threat conditions is much more important that being fully optimal. Once a new threat is identified
and new objectives created, the system must respond in seconds; not stop, fully re-plan an optimal solution, and then act 
minutes later.

To speed up the assignment, the metrics are computed in a distributed manner onboard the UMSs and are only coarse 
approximations of their true values. The estimated metrics are then communicated and combined to form the costs used 
in the assignment algorithm.

C(Ai,Oj )=β1 M1 (Ai,Oj )+β2 M2 (Ai,Oj )+⋯+βn Mn (Ai,Oj )            (1)

Equation (1) expresses that the estimated cost of the i-th agent (Ai) performing the j-th objective (Oj) is a weighted 
combination of the metric values calculated by Ai. βk are weights, defined through the graphical user interface. This 
gives the human operator the ability to modify how the UMS network is operating during execution (e.g. to switch from 
“fast” to “energy efficient”).

The assignment algorithm minimizes the cost J defined by:

(2)



Figure 1. 1:1 assignment of agents to objectives when NA = NO, NA > NO, and NA < NO.

NA and NO are the number of agents and objectives, respectively, is the estimated cost of the i-th agent 

completing the j-th objective, and zij are a set of binary assignment variables. If agent Ai determined that executing 
objective Oj was infeasible, a constraint is added to the optimization to prevent this assignment from occurring: zij=0. 
The most straightforward solution to minimize equation (2) makes 1:1 assignments of agents to objectives. That is, each 
agent is assigned to at most one objective, and one objective has at most one agent assigned to it. In this case, the 
constraints on equation (2) are:

a) (each objective is assigned to at most one agent)

b) (each agent is assigned to at most one objective)

c) (forces as many assignments as the lesser of the number of agents and the 

number of objectives)

By relaxing the binary decision variable such that  1,0z , conventional linear programming methods can be applied10. 

These conventional methods can decrease the computation time required to find a solution. In practice, it is observed that 

as long as the sensitivity of J with respect to each ijz is nonzero, ijz tends to be driven to the constraint limits 0 or 1, 

typically providing the desired assignments. If NA = NO, then each agent is assigned to an objective and each objective 
has an agent assigned to it. If NA > NO, then NO assignments are made and the remaining agents remain idle. If NA < NO, 
then NA assignments are made and some objectives are unassigned. These cases are shown in 
Figure 1. 

In order to prevent the assignment algorithm from suffering “decision chatter” (excessive switching between 
assignments), a switching cost is assigned to changing from the current assignment. This switching cost (hysteresis)
provides some resistance to changing the assignment13,14.

If multiple agents are allowed to be assigned to a single objective (for executing a swarm-based objective), constraint a) 
must be replaced with:

a+) 

and constraint c) must be replaced with

c+)  

where maxteamsize returns the maximum allowable number of agents that can be assigned to each objective. 

2.4 User Interface

The graphical user interface (GUI), figure 4, allows the human operator to add, remove, and modify the objectives 
currently in the system; view the current state of the system (locations of all UMS); view the current live sensor feeds; 
adjust the weighting factors affecting system performance; and override every level of autonomy. High-level objectives 
may be specified by interacting with icons on the 3D display or with lists of agents in the simulation. The human 
operator can force specific assignments, manually specify waypoints, and even teleoperate individual vehicles whenever 
necessary. The GUI includes a 3D model representation of the operating area to provide context for live sensor feeds, 
which are also presented.



Figure 4. Graphical User Interface.

Figure 5. Modified COTS UAVs and UGVs used in SAHUC’s proof-of-concept implementation.

3. IMPLEMENTATION

The proof-of-concept SAHUC implementation leveraged Commercial-Off-The-Shelf (COTS) hardware and open-source 
software wherever possible. Figure 5 shows the three highly-modified Jaguar UGVs from Dr. Robot13. Two of the UGVs 
are 4x4s and one has tank tracks (on the right). While each UGV came with an internal GPS receiver, the GPS was 
replaced with a better-performing NovAtel receiver and pinwheel antenna.  The GPS antenna and IMU where moved 
outside of the main vehicle body. This reduced interference caused by the motors and the ground.  An Asus netbook with 
a 1.6 GHz Atom processor running Linux (Ubuntu 12.04 LTS) was added to each vehicle. Webcams and Hokuyo URG-
04LX LIDARs were also added to the UGVs.

Figure 5 also shows the three UAVs: 3DR Arducopter Hexa B’s14. The Arducopters include onboard GPS/IMU, 2.4 
GHz RC control links, 1.3 GHz video links, and 900 MHz communications links to the individual UAV’s base stations.
The UAV base stations were also operated on 1.6 GHz Asus netbooks running Linux. This effectively allowed the 
UAVs to have identical processing capabilities as the UGVs, but that processing was located offboard due to the 
hexacopter’s limited payload capacity.

Additionally, a pan/tilt security camera was mounted to a tower and integrated into the system; several human actors 
wearing GPS backpacks were used as moving objects of interest; the user interface was run on a Windows 7 base 
station; and all wireless communications used standard 802.11g hardware.



The low-level autonomy was implemented in a fully distributed fashion onboard the Asus netbooks using the Robot 
Operating System (ROS)15. Custom Extended Kalman Filters were written for state estimation. Simple PID controllers 
were created to close turn-rate and velocity loops for waypoint tracking. These two simple algorithms were 
computationally efficient alternatives to ROS’s standard slam_gmapping and move_base packages. Those packages
were also incorporated to enable SLAM and advanced path following (including obstacle avoidance). When the more 
advanced ROS algorithms were run, the netbooks were taxed to their computational limits. However, the more 
insurmountable problem was that the Hokuyo lidars needed for SLAM did not function well outdoors during daylight. 

The mid-level autonomy was also implemented in a distributed fashion on the Asus netbooks using ROS. The mid-level 
behaviors and metric estimators were custom-written, but also utilizing the ROS framework. The information they 
received and sent from the high-level autonomy used UDP datagrams broadcast at 1 Hz containing Google Protocol 
Buffers messages. This information format could be easily read and written by the high-level autonomy. The high-level 
autonomy’s assignment algorithm is decentralizable, but due to time constraints was implemented in a centralized 
fashion using Matlab’s Optimization toolbox, also running at 1 Hz. 

Finally, the user interface was implemented using Sandia’s UMBRA framework16. UMBRA provides a 3D model-based 
interface that was extended for the SAHUC implementation. An XBOX 360 controller enabled the human operator to 
teleoperate the UMSs whenever necessary.

4. PHYSICAL SECURITY DEMONSTRATION

SAHUC’s potential for physical security applications was demonstrated at Sandia’s Robotic Vehicle Range (RVR), 
figure 6. The RVR is a Sandia facility on Kirtland Air Force Base that enables Sandia to test robots for varying 
applications. It includes multiple buildings, towers, paved areas, gravel areas, dirt paths, and a fenced security perimeter;
making it an ideal site to test how UMSs can aid in physical security.

All three UGVs were used in the demonstration, but only one UAV was flown. This was not due to technical limitations, 
but to ensure safety and comply with all pertinent regulations. The single flying UAV had a Sandia-trained aircraft 
operator. This operator acted as a safety pilot to take over manual RC control in the event of an emergency situation. The 
UAV also had a dedicated pilot-in-command (a FAA licensed private pilot) in one of the RVR’s towers. The pilot-in-
command monitored the UAV, communicated with the FAA control tower, and monitored the sky for other aircraft.

The pilot-in-command and aircraft operator fulfilled their required safety roles, but were not active participants in the 
system or demonstration. The human operator ran the Graphical User Interface from inside a designated control room 
within the RVR, having no line-of-sight to the UMSs being commanded. The three UGVs and three UAVs (only one of 
which actually flew) operated inside and just outside of the fenced security perimeter. Finally, a person acting as an 
intruder approached the RVR from the Southeast, sneaked through an open gate on the Southeast end of the RVR, and 
attempted to gather intelligence about the facility, figure 8.   

The human operator began his shift by distributing the UGVs throughout the facility. A “patrol border” objective was 
created at the open gate because the operator knew this was a weak point in the current security situation. The tracked 
UGV began to immediately move back and forth along the open gate, streaming video back to the operator. Once that 
objective was assigned the human operator manually specified waypoints for the other two vehicles to spread them 
throughout the facility, figure 7. Then, a “visit point” and another “patrol border” objective were used to place the other 
UGVs at strategic locations (at the corner of a building and patrolling an entry point) in the RVR facility, figure 9. 

The intruder attempted to sneak through the open gate past the UGV patrolling the Eastern gate. The wide-angle camera
on the UGV detected the intruder as he tried to cross the patrolled perimeter. In an actual security application, machine 
vision processing would have been used to alert the human operator to the detection, and to continue tracking the 
intruder’s location. However, for demonstration purposes this capability was simulated through a GPS backpack worn by 
the intruder, figure 8.

Upon detecting the intruder, the human operator created a “track target” objective. This was assigned to the UAV 
because of the UAV’s ability to more rapidly reach and track the person, figure 8. The UAV continued to track the 
intruder until the intruder disappeared from sight by moving under a tarp, figure 9.



Figure 6. Demonstration of SAHUC’s potential at the Robotic Vehicle Range at Sandia National Laboratories.

Figure 7. The GUI perspective of a tracked UGV patrolling an open gate and the other two UGVs spreading out (left). A 
photograph of all three UGVs underway (right).

Figure 8. An intruder attempting to gather intelligence at the RVR site (left). A UAV being launched to automatically track 
the intruder, and the UGV performing the border patrol objective that detected the intruder in the background (right). 



Figure 9. The GUI display when the intruder disappears under a blue tarp. The bottom-right live video feed shows that the 
intruder is no longer visible to the UAV (left). The intruder is then detected and confronted using a UGV (right).

The human operator created a new “look at point” objective to get streaming video of what was under the tarp. The 
closest UGV was assigned and provided video of the intruder. Finally, the human operator informed the intruder that 
they had been detected and should surrender immediately using speakers on the UGV. 

The demonstration illustrated how multiple UMSs could aid in the physical security of a high-consequence site. The 
need for heterogeneity was shown when the UAV could better track the intruder but could then not see under the blue 
tarp, whereas the UGV could easily see under the blue tarp but would have had trouble keeping pace with the intruder in 
the open. The impact of the autonomy was evident since the human operator was controlling 4 UMSs simultaneously, 
monitoring the live sensor feeds, while also explaining the system and answering questions to demonstration attendees.  

5. CONCLUSIONS

The Sandia Architecture for Heterogeneous Unmanned System Control has demonstrated that small heterogeneous 
teams of UMS can be controlled by a single human operator to aid in securing high-consequence sites. Several autonomy 
algorithms have been adapted to emphasize timely responsiveness over optimality, producing a system that responds in 
seconds to changing security conditions. SAHUC’s proof-of-concept implementation has illustrated that this is possible, 
even using comparatively inexpensive COTS hardware.

The flexibility within SAHUC to enable heterogeneous UMS to use heterogeneous algorithms is an important strength. 
As new algorithms become available and applicable they can replace the existing algorithms, promoting extensibility. As 
computation capabilities continue to improve, more advanced and computationally expensive algorithms may be run 
onboard the UMSs.  These algorithms must continue to run quickly enough to maintain SAHUC’s responsiveness. The 
distributed computation of the metrics required for the assignment algorithm is also a strength. The ability to plan paths 
and estimate metrics at varying levels of coarseness (depending on the UMS’s computational capability) further aids in 
responsiveness. The major drawback to distributed algorithms is their need for high-quality communications. While this 
is true with SAHUC, the communications burden required to move SAHUC’s information is significantly lower than 
streaming the live video feeds. 

Future work will include larger scale demonstrations. These will potentially include several pan/tilt sensors acting as 
stationary UMSs. The inclusion of all three UAVs will further improve the performance of the system and yield more 
complete demonstrations. Currently the GUI displays the live video feeds next to the 3D map; overlaying the video 
directly onto the 3D representation will make it easier to intuitively see what each UMS is seeing and compare that to 
what it should be seeing (e.g. there should not be a black truck there). GPS tagging intruders with a backpack should be 
fully replaced with computer vision algorithms run onboard the UMSs. These algorithms may require the onboard 
computing to be increased to handle the additional workload. Finally, demonstrations should be run with intentionally 
degraded communications to evaluate how the overall system would perform under natural or man-made interference.
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