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Operational HP Issues at RITS-6

 Overview of the RITS-6 accelerator

 Shot turn-around

 Doppelgänger radionuclides

 Counting mono-energetic electrons

 Operational advantage to RITS-6



OVERVIEW OF THE RITS-6 
ACCELERATOR

Part 1: Introduction



Exterior of “Dust Bin” Vacuum Chamber

Collimator and experimental target to right



Overview of the RITS-6 Accelerator

 Radiographic Integrated Test Stand
 Second generation of RITS

 RITS-3 had three accelerating cavities (cells)

 RITS-6 has six

 First operation of RITS-6 in 2005

 Usually just called RITS

 Located in Sandia’s Tech Area IV

 Operated by Sandia National Laboratories (SNL) and National 
Security Technologies, LLC (NSTec) on behalf of DOE/NNSA



Overview of the RITS-6 Accelerator

 Experimental purpose
 Test bed for pulsed-power radiography technology

 Understanding IVA accelerators

– Inductive Voltage Adder

 Experimental diodes

– architecture and materials

 High power pulsed radiography

 45 ns pulse width

 < 1 cm x-ray spot size

 High spatial and temporal resolution

– In dense and dynamic materials



Overview of the RITS-6 Accelerator

 Physical description
 Linear electron accelerator

 One Marx generator with 36 capacitors

 Two intermediate storage capacitors and laser-triggered gas switches

 Six pulse forming lines

 Six voltage adder cells

 High or low-impedance MITL power-flow surfaces

– Magnetically Insulated Transmission Line

 6 – 11 MV accelerating potential



Overview of the RITS-6 Accelerator

 Physical description
 Bremsstrahlung x-ray secondary beam

 Electron beam fired into primary target

– Sometimes called the converter

– Usually tantalum (Ta)

– Sometimes tungsten (W)

 Secondary x-ray beam irradiates the experiment

– Also called target

 X-ray spot size < 1 cm

 End-point energy 6 – 11 MeV



Overview of the RITS-6 Accelerator

 Diode
 Cathode and anode separated by vacuum

 A-K gap variable, 1—2 cm

 Materials and architecture change with experiments

 Region of plasma formation

 Also solid debris and molten slag

 Most of the activation occurs here

 Dominant reactions

– γ, n (photo-activation)

– p, n (ion activation)

 Neutron activation much less important

 Protons are created in plasma from hydrocarbon residues present on 
hardware



Overview of the RITS-6 Accelerator

 Cathode
 Electron current flows from MITL across a field-shaping surface called 

the “knob”

 Beam emerges from a small cathode extension tube called the 
“needle”

 The needle is painted with colloidal silver paint to optimize its 
conductivity



Silver-Painted Cathode Needle and Knob

Emergence of electron beam



Knob Mounted to MITL

Power flow and field shaping surface shown partly assembled

Cathode needle not shown



Overview of the RITS-6 Accelerator

 Anode
 Typical converter target: 1 mm-thick tantalum (Ta)

 Occasional substitution of tungsten (W)

 Various beam stops and collimators



Anode

Generation of x-ray beam via bremsstrahlung on tantalum converter 
target



Anode Mounted to Dust Bin

Origin of x-ray beam



SHOT TURN-AROUND
Part 2: Clearing the machine for re-entry



Shot Turn-Around

 Usual shot rate is about once per day

 RITS is capable of two or more shots per day
 Multiple daily shots would aid mission

 Some hardware must be replaced for each shot
 Some hardware is refurbished, but multiple spares exist

 Turn-around is not limited by refurbishment

 Induced radioactivity (activation) renders the hardware 
temporarily radioactive



Shot Turn-Around

 Workers enter vacuum chamber “dust bin” to retrieve and 
replace hardware
 But only after contamination measurements fall below Contamination 

Area (CA) levels

 Work restriction <CA imposed by the line organization

 Radiation Protection is willing to support work in CA

 Line personnel believe the time gained would not be worth the additional 
controls and slowness necessary for contamination work



Dust Bin

Open for characterization and rebuilding



Shot Turn-Around

 Worker entry allowed when:
 β-γ < 1 kdpm/100 cm2 removable

 Also β-γ < 5 kdpm/100 cm2 total

 And dose rates < 5 mR/hr

 Removable contamination always dominates at RITS

 First entry by RCT ~15 minutes post-shot to assess conditions

 Removable contamination swipes usually counted on pancake G-M (PGM) 
shielded detector



Shot Turn-Around

 Typical post-shot conditions
 Conditions vary widely with machine configuration

 Up to 100 kdpm/100 cm2

 50 kdpm/100 cm2 typical

 Wait time for decay

 4 hours typical

 Often effectively overnight



Shot Turn-Around

 Compound decay of multiple activation products
 Early decay is rapid

 t½ minutes

 Limiting decay

 t½ several hours



Shot Turn-Around

 What is the limiting radionuclide?
 Early analysis identified 180Ta

 180Ta
 t½ 8.15 hr

 Photo-activation of tantalum
 99.988% of tantalum is stable 181Ta

– Remainder is 180mTa

» Warning:

» Technical references are inconsistent with each other about 
isomer designations

» t½ > 1.2e15 yr

» Only naturally-occurring excited-state isomer

» Rarest primordial isotope of any element having stable isotopes

181Ta + γ  180Ta + n



Shot Turn-Around

 180Ta
 Primary gamma 93.4 keV, 4.5% intensity

 Confirmed present at RITS by numerous gamma-specs

 Principal decay mode electron capture (ε) 86%  180W

 Emits no particles directly

 Not directly countable by PGM

– Part 4 discusses this problem further

 Secondary decay mode beta (β-) 14%  180Hf

 Mean beta energy 210 keV

 Resembles 36Cl on energy calibration curves

– 36Cl has 15% counting efficiency on PGM probe

 Overall efficiency (14% x 15%) = 2%



Shot Turn-Around

 Ta-180
 2% counting efficiency

 To see < 1 kdpm/100 cm2

 Must see < 20 cpm net

 Against background of 30 – 60 cpm

 We’ll return to the low counting efficiency in part 4

 But first, we must solve a mystery!



DOPPELGÄNGER RADIONUCLIDES
Part 3: Induced Radioactivity at the RITS-6 Accelerator



The Mystery



Bright Idea

 Let’s remove the tantalum!
 Most x-ray devices use tungsten

 RITS prefers tantalum for its material 
properties

 But tungsten performs similarly as a converter

 Without the 180Ta, turn-around should 
be as fast as operations can physically 
manage



Fizzled Idea

 Several shots were conducted using 
tungsten converters

 No tantalum in the chamber

 Result?
 Still got same contamination levels

 Still got same decay times

 Gamma-specs still showed 180Ta



What’s Going On?

 Can you make 180Ta on tungsten?
 Short answer: not on RITS

 Are we activating residual tantalum in 
the chamber?
 Short answer: not enough to explain 

persistent levels

 Have we misidentified the 180Ta?
 Maybe we should call the sleuths at RP 

Sample Diagnostics Lab…



Doppelgänger Radionuclides



Doppelgänger Radionuclides

 180Ta has an evil twin in 107Cd



Doppelgänger Radionuclides

 Remember the silver-painted cathode needle?

 The reverse current at RITS is dominated by protons

 Protons strike the silver-tipped needle and activate it
 Silver is 51.8% 107Ag

107Ag + p  107Cd + n

107Cd  (ε) 107mAg  (IT) 107Ag

 107mAg t½ 44.2 sec



Doppelgänger Radionuclides

180Ta

 t½ 8.15 hr

 Primary gamma 93.4 keV
 4.5% intensity

 Other gammas too weak to 
measure at usual sample 
activities and count times

107Cd

 t½ 6.50 hr

 Primary gamma 93.1 keV
 4.7% intensity

 Other gammas too weak to 
measure at usual sample 
activities and count times



Doppelgänger Radionuclides

 180Ta and 107Cd are indistinguishable in the field
 Even with careful measurements

 They are also indistinguishable in the lab without extra effort
 At usual low activities

 Enter RPSD…





COUNTING MONO-ENERGETIC 
ELECTRONS

Part 4: Characterizing Instrument Response to RITS-6 Contaminants



107Cd: Friend or Foe?

 Having learned that we have 107Cd contamination – in 
addition to, or instead of, 180Ta – is that good news or bad?
 How does the counting efficiency for 107Cd compare to that for 180Ta?

 What proportions of the two contaminants are present?



107Cd Counting Efficiency

 Recall that we count 180Ta with 2% efficiency
 14% β- branch x 15% instrument eff. = 2%

 Problem: determine counting efficiency for 107Cd

 We tried and rejected two solutions before settling on a third



107Cd Counting Efficiency

 Approach 1: Consider only beta emissions
 i.e., calculate for 107Cd the same way as we have done for 180Ta

 107Cd decays to 107mAg by two branches
 Electron capture (ε) 99.8%

 Positron emission (β+) 0.2%

 107mAg decays back to stable 107Ag by isomeric transition (IT) 
100%
 No betas from this decay



107Cd Counting Efficiency

 Approach 1: Consider only beta emissions

 107Cd resembles 137Cs on our calibration curve
 137Cs efficiency 14%

 0.2% β branch ratio x 14% instr. eff. = 0.03%

 With 1 min. sample and background counts, MDA > 135 kdpm
(with bkgd = 60 cpm)
 We can’t count long enough (25 days) to get to 1 kdpm



107Cd Counting Efficiency

 Approach 2: Consider gammas from 107mAg

 107mAg decays back to stable 107Ag by isomeric transition (IT) 
100%

 Isomeric Transition is the decay mode responsible for gamma 
rays
 93.1 keV with 4.7% yield in the case of 107mAg

 Perhaps we can count the 107Cd with a gamma probe?



107Cd Counting Efficiency

 Approach 2: Consider gammas from 107mAg

 The Ludlum 44-17 “LEG” probe has a background of ~2 kcpm
and an efficiency of ~10% at 93 keV

 4.7% γ branch ratio x 10% instr. eff. = 0.47%

 With 1 min. sample and background counts, MDA > 45 kdpm
 We still can’t count long enough (3½ days) to get to 1 kdpm



Mystery #2
This 

machine is 
kicking my 

butt!



Mystery #2

 It seems like we can’t count 107Cd without first dying of old 
age

 But two things kept nagging at us
 Common sense

 Physics



Mystery #2

 Common sense reality check:

 If the counting efficiency is really so poor for 107Cd and its 
progeny, how come are we seeing so much response on the 
instrument?
 Consider the implication of the “betas only” approach:

 If we measure 100 kdpm @ 2% (assuming 180Ta) but we’re really 
counting 107Cd, that implies we have nearly 7 Mdpm 107Cd at 0.03%

 We’re pretty sure that’s not the case



Mystery #2

 Physics reality check:

 If 107mAg decays 100% by Isomeric Transition, how come it 
emits a gamma only 4.7% of the time?
 Isn’t IT the same thing as gamma decay?

 What becomes of the other 95.3%?

 If I remember anything from college, conservation of energy 
would be high on that list

 Time to crack the old textbooks!



Isomeric Transition

 Although we associate IT with gamma emission, there is 
another IT mode

 Internal Conversion (IC) competes with gamma emission in 
some nuclides
 Gamma emission is a sub-mode of IT

 IC is a sub-mode of IT

 In IC, the excitation energy present in the isomer’s nucleus, 
instead of appearing as a gamma ray, is transferred to an 
orbital electron, which is ejected forcefully from the atom



Conversion Electrons

 The ejected electron is called a conversion electron
 It carries an energy quantum equal to what a gamma would have 

carried from the same transition, less the binding energy

 The binding energy is usually << the radiated energy

 Some nuclides emit gammas and conversion electrons of essentially 
equal energy



Conversion Electrons

 How do conversion electrons differ from betas?
 Internal conversion is a two-body problem

 Daughter nucleus

 Conversion electron

 Contrast with beta decay, a three-body problem

 Daughter nucleus

 Beta particle

 Neutrino

 In a two-body problem, conservation of energy and momentum gives 
a single solution

 In a three-body problem, a range of solutions exist

 Where beta decay yields a range of energies, IC yields an electron at a 
definite (discrete) energy



Auger Electrons

 In the same way IC competes with gamma emission for 
excited nuclei… 

 The Auger Effect competes with x-ray emission for excited 
atoms

 Excitation energy in the form of an electron-shell vacancy can 
be emitted, not as an x-ray, but as an Auger electron

 The Auger Effect is also a two-body problem
 Daughter nucleus

 Auger electron

 Thus Auger electrons are emitted, like conversion electrons, 
at definite discrete energies



Mono-Energetic Electrons

 Conversion and Auger electrons are mono-energetic
 They are called electrons, not betas

 Most nuclei have several varieties of emitted electrons, but 
each variety corresponds to a specific nuclear or atomic 
transition
 Each is emitted at a discrete energy



Counting Mono-Energetic Electrons

 A particle detector does not know the origin of the particle it 
counts
 It doesn’t care if it was a beta or an electron

 Most Auger electrons, and some conversion electrons, have 
too little energy to be detected by contamination probes

 But the ones that are sufficiently energetic get counted just 
like betas of comparable energy



Counting Mono-Energetic Electrons

 Ignoring electrons can be a serious mistake
 Yet HPs rarely discuss them

 In the case of 107Cd, it makes a difference of hundreds-fold in 
the counting efficiency
 The “beta only” view gives an efficiency of 0.03%

 Including the electrons gives an efficiency of 10%

 In the case of 180Ta, it doubles the efficiency
 4% vs. 2%



Efficiency vs. Energy

 A particle detector cares only about the amount of energy 
carried by the particle when it arrives at the detector
 Not its origin or what we call it

 In some detectors, it matters only that it got into the sensitive volume

 The energy affects whether it makes it in

 In contamination probes, counting efficiency generally rises 
with energy
 Sharply so at low energies



Efficiency Curves

 Efficiency calibration curves are measured with known beta
sources

 For other beta emitters, we interpolate between the 
calibrated energies
 Usually by reference to maximum energies

 It is probably more accurate to interpolate by reference to average 
energies



Efficiency Curves

 For electron emitters, we interpolate as before, but with 
reference to beta average energies



Efficiency Curve for a PGM
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Energy Comparisons

 The detector cares, in terms of its efficiency, about the energy 
of the countable particles

 We calculate efficiency for a nuclide in three steps
 Screen out uncountable and low-abundance particles

 Compare by interpolation on calibration curve, for each countable 
particle

 β: average energy per particle

 Conversion electron: particle energy

 Auger electron: particle energy

 Multiply counting efficiency times particle abundance

 Sum the products for total efficiency for that nuclide



Particle Screening

 Screen uncountable and low-abundance particles
 For the PGM, consider only those particles whose

 Energy, E > 40 keV

– This reflects the weakest detectable particle on the PGM

 Abundance A > 0.01%

– This is an arbitrary value



Total Efficiency

 Calculate the total efficiency for all countable particles

� �

�
 Where Effi is the particle-specific efficiency

 And Ai is the particle-specific abundance



Calculation for 107Cd
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Calculation for 107Cd

107Cd

Energy [keV] Abundance
Instrument Efficiency

(Interpolated)
Particle 

Efficiency

CE 1 67.61 0.44 9.38% 4.13%

CE 2 89.318 0.41 12.36% 5.07%

CE 3 92.407 0.084 12.64% 1.06%

β+ 141.8 0.002 14.40% 0.03%

Total Efficiency 10.28%



Calculation for 180Ta
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Calculation for 180Ta

180Ta

Energy Abundance
Instrument Efficiency

(Interpolated)
Particle 

Efficiency

Auger 44.8 keV 0.036 3.59% 0.13%

CE 1 82.13 keV 0.12257 11.58% 1.42%

CE 2 90.8 keV 0.030463 12.50% 0.38%

CE 3 91.5 keV 0.016 12.56% 0.20%

CE 4 100.78 keV 0.004 13.26% 0.05%

β- 210 keV 0.136 14.31% 1.95%

Total Efficiency 4.13%



OPERATIONAL ADVANTAGE TO 
RITS-6

Part 5: Why this matters



Proportions between 107Cd and 180Ta

 We don’t know yet what proportion of the two contaminants 
we’re producing

 We hope to get an electron-spectroscopy analysis soon

 Several indications suggest that cadmium dominates

 For now, we’ll conservatively assume a 50/50 split



Advantage to RITS

 This yields a 7% counting efficiency
 Compared to the old 2%

 This 3½ times gain in efficiency means waiting 1.8 fewer half-
lives

 This is a gain of >10 hours turn-around (ideally)
 Not all that gain will be realized

 Should effectively eliminate the long-lived waiting



Questions?


