

Doppelgänger Radionuclides and Mono-Energetic Electrons

Operational HP Issues at Sandia's RITS-6 Accelerator

Walen Mickey, M.S., CHP

Kelly Green, M.S.

Gilbert Duran, RCT

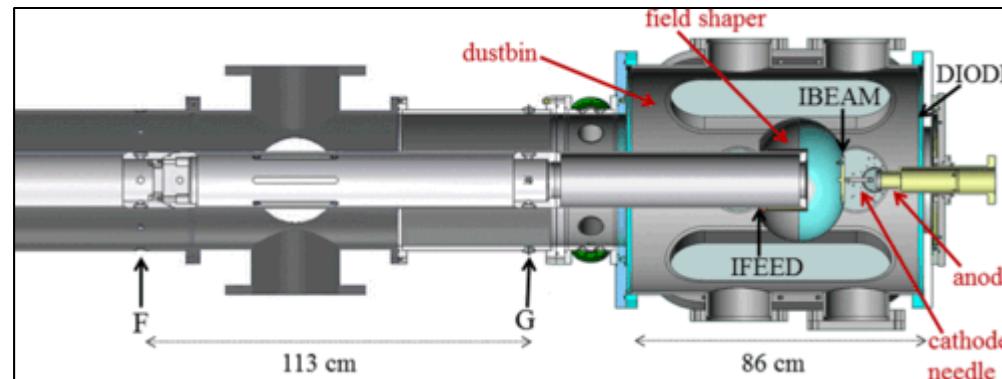
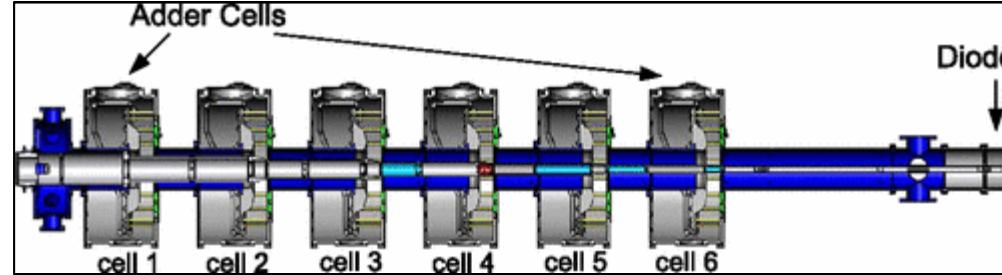
Presented to the Rio Grande Chapter,
Health Physics Society

Santa Fe, NM

23 March 2015

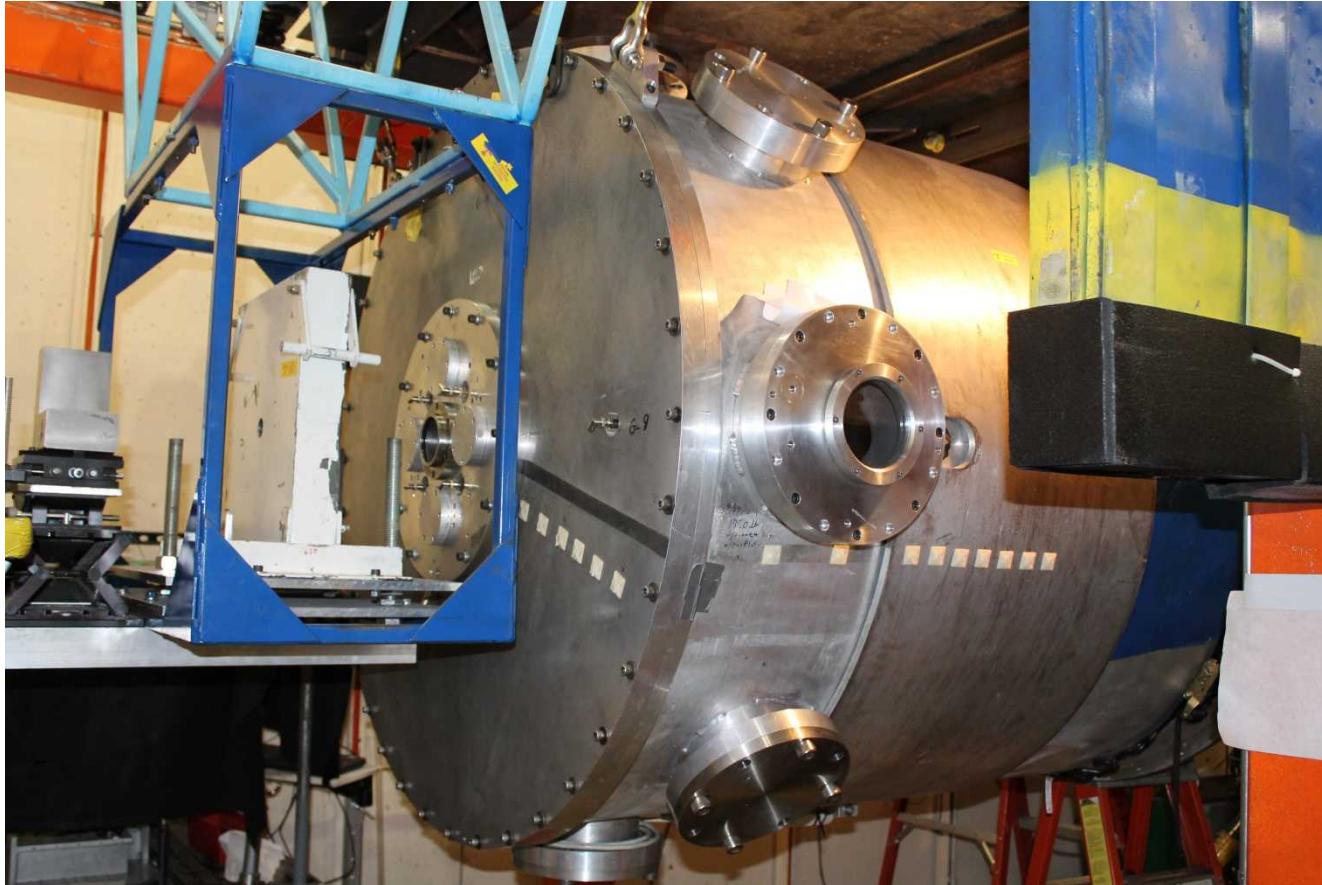
*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Operational HP Issues at RITS-6



- Overview of the RITS-6 accelerator
- Shot turn-around
- Doppelgänger radionuclides
- Counting mono-energetic electrons
- Operational advantage to RITS-6

Part 1: Introduction

OVERVIEW OF THE RITS-6 ACCELERATOR

Exterior of “Dust Bin” Vacuum Chamber

Collimator and experimental target to right

Overview of the RITS-6 Accelerator

- Radiographic Integrated Test Stand
 - Second generation of RITS
 - RITS-3 had three accelerating cavities (cells)
 - RITS-6 has six
 - First operation of RITS-6 in 2005
- Usually just called RITS
- Located in Sandia's Tech Area IV
- Operated by Sandia National Laboratories (SNL) and National Security Technologies, LLC (NSTec) on behalf of DOE/NNSA

Overview of the RITS-6 Accelerator

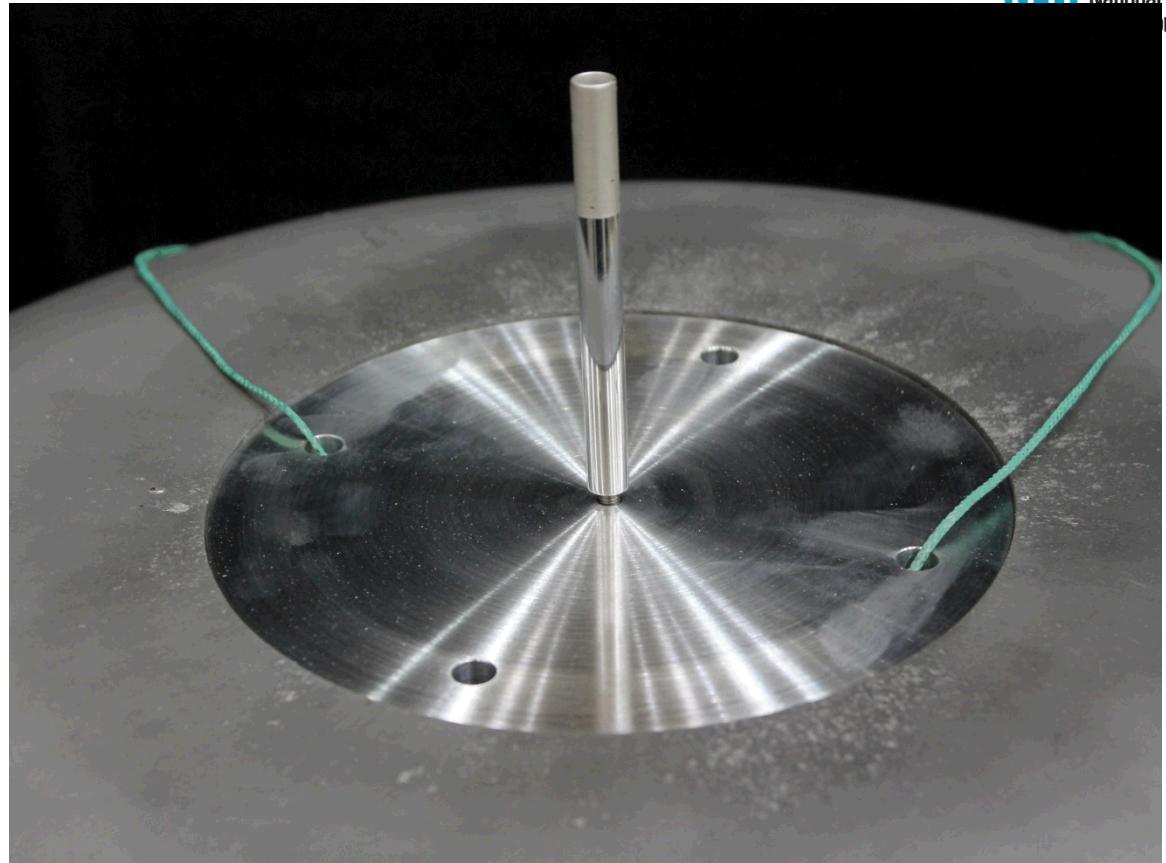
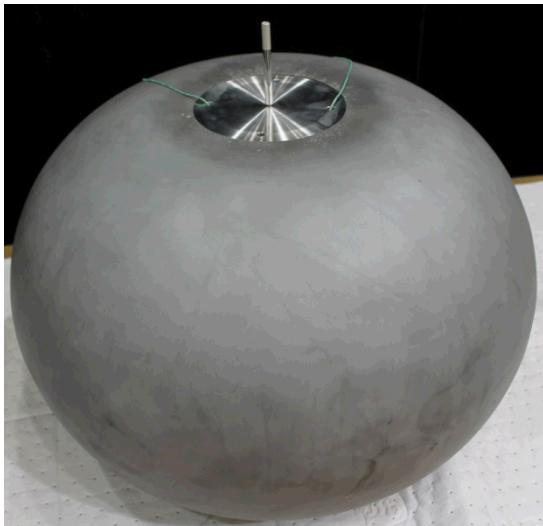
- Experimental purpose
 - Test bed for pulsed-power radiography technology
 - Understanding IVA accelerators
 - Inductive Voltage Adder
 - Experimental diodes
 - architecture and materials
 - High power pulsed radiography
 - 45 ns pulse width
 - < 1 cm x-ray spot size
 - High spatial and temporal resolution
 - In dense and dynamic materials

Overview of the RITS-6 Accelerator

- Physical description
 - Linear electron accelerator
 - One Marx generator with 36 capacitors
 - Two intermediate storage capacitors and laser-triggered gas switches
 - Six pulse forming lines
 - Six voltage adder cells
 - High or low-impedance MITL power-flow surfaces
 - Magnetically Insulated Transmission Line
 - 6 – 11 MV accelerating potential

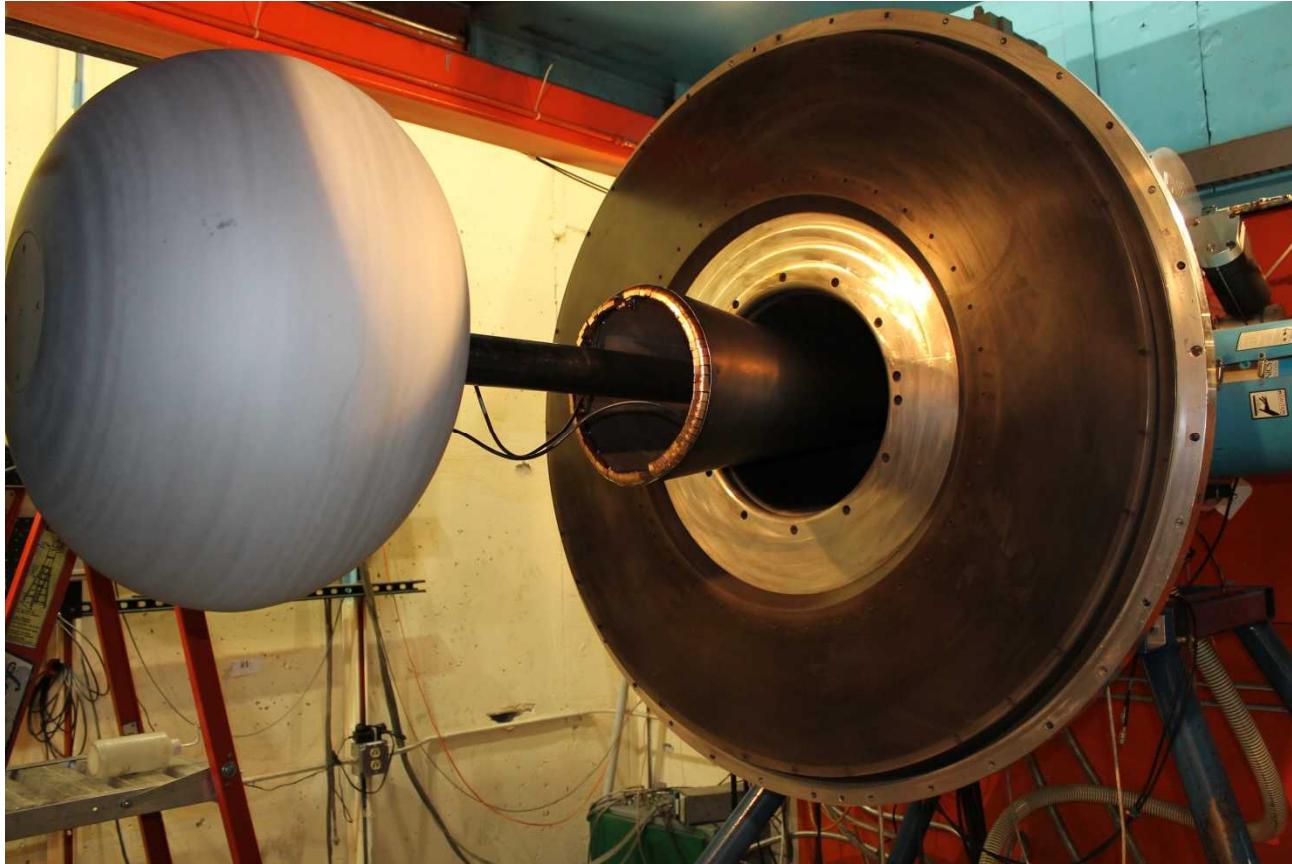
Overview of the RITS-6 Accelerator

- Physical description
 - Bremsstrahlung x-ray secondary beam
 - Electron beam fired into primary target
 - Sometimes called the converter
 - Usually tantalum (Ta)
 - Sometimes tungsten (W)
 - Secondary x-ray beam irradiates the experiment
 - Also called target
 - X-ray spot size < 1 cm
 - End-point energy 6 – 11 MeV



Overview of the RITS-6 Accelerator

- Diode
 - Cathode and anode separated by vacuum
 - A-K gap variable, 1—2 cm
 - Materials and architecture change with experiments
 - Region of plasma formation
 - Also solid debris and molten slag
 - Most of the activation occurs here
 - Dominant reactions
 - γ, n (photo-activation)
 - p, n (ion activation)
 - Neutron activation much less important
 - Protons are created in plasma from hydrocarbon residues present on hardware

Overview of the RITS-6 Accelerator



- Cathode
 - Electron current flows from MITL across a field-shaping surface called the “knob”
 - Beam emerges from a small cathode extension tube called the “needle”
 - The needle is painted with colloidal silver paint to optimize its conductivity

Silver-Painted Cathode Needle and Knob

Emergence of electron beam

Knob Mounted to MITL

Power flow and field shaping surface shown partly assembled
Cathode needle not shown

Overview of the RITS-6 Accelerator

- Anode
 - Typical converter target: 1 mm-thick tantalum (Ta)
 - Occasional substitution of tungsten (W)
 - Various beam stops and collimators

Anode

Generation of x-ray beam via bremsstrahlung on tantalum converter target

Anode Mounted to Dust Bin

Origin of x-ray beam

Part 2: Clearing the machine for re-entry

SHOT TURN-AROUND

Shot Turn-Around

- Usual shot rate is about once per day
- RITS is capable of two or more shots per day
 - Multiple daily shots would aid mission
- Some hardware must be replaced for each shot
 - Some hardware is refurbished, but multiple spares exist
 - Turn-around is not limited by refurbishment
- Induced radioactivity (activation) renders the hardware temporarily radioactive

Shot Turn-Around

- Workers enter vacuum chamber “dust bin” to retrieve and replace hardware
 - But only after contamination measurements fall below Contamination Area (CA) levels
 - Work restriction <CA imposed by the line organization
 - Radiation Protection is willing to support work in CA
 - Line personnel believe the time gained would not be worth the additional controls and slowness necessary for contamination work

Dust Bin

Open for characterization and rebuilding

Shot Turn-Around

- Worker entry allowed when:
 - $\beta\text{-}\gamma < 1 \text{ kdpm}/100 \text{ cm}^2$ removable
 - Also $\beta\text{-}\gamma < 5 \text{ kdpm}/100 \text{ cm}^2$ total
 - And dose rates < 5 mR/hr
 - Removable contamination always dominates at RITS
 - First entry by RCT ~ 15 minutes post-shot to assess conditions
 - Removable contamination swipes usually counted on pancake G-M (PGM) shielded detector

Shot Turn-Around

- Typical post-shot conditions
 - Conditions vary widely with machine configuration
 - Up to 100 kdpm/100 cm²
 - 50 kdpm/100 cm² typical
 - Wait time for decay
 - 4 hours typical
 - Often effectively overnight

Shot Turn-Around

- Compound decay of multiple activation products
 - Early decay is rapid
 - $t_{1/2}$ minutes
 - Limiting decay
 - $t_{1/2}$ several hours

Shot Turn-Around

- What is the limiting radionuclide?
 - Early analysis identified ^{180}Ta
- ^{180}Ta
 - $t_{1/2}$ 8.15 hr
 - Photo-activation of tantalum
 - 99.988% of tantalum is stable ^{181}Ta
 - Remainder is $^{180\text{m}}\text{Ta}$
 - » Warning:
 - » Technical references are inconsistent with each other about isomer designations
 - » $t_{1/2} > 1.2\text{e}15$ yr
 - » Only naturally-occurring excited-state isomer
 - » Rarest primordial isotope of any element having stable isotopes

Shot Turn-Around

- ^{180}Ta
 - Primary gamma 93.4 keV, 4.5% intensity
 - Confirmed present at RITS by numerous gamma-specs
 - Principal decay mode electron capture (ε) 86% $\rightarrow ^{180}\text{W}$
 - Emits no particles directly
 - Not directly countable by PGM
 - Part 4 discusses this problem further
 - Secondary decay mode beta (β^-) 14% $\rightarrow ^{180}\text{Hf}$
 - Mean beta energy 210 keV
 - Resembles ^{36}Cl on energy calibration curves
 - ^{36}Cl has 15% counting efficiency on PGM probe
 - Overall efficiency (14% x 15%) = 2%

Shot Turn-Around

- Ta-180
 - 2% counting efficiency
 - To see $< 1 \text{ kdpm}/100 \text{ cm}^2$
 - Must see $< 20 \text{ cpm}$ net
 - Against background of 30 – 60 cpm
 - We'll return to the low counting efficiency in part 4
- But first, we must solve a mystery!

Part 3: Induced Radioactivity at the RITS-6 Accelerator

DOPPELGÄNGER RADIONUCLIDES

The Mystery

Bright Idea

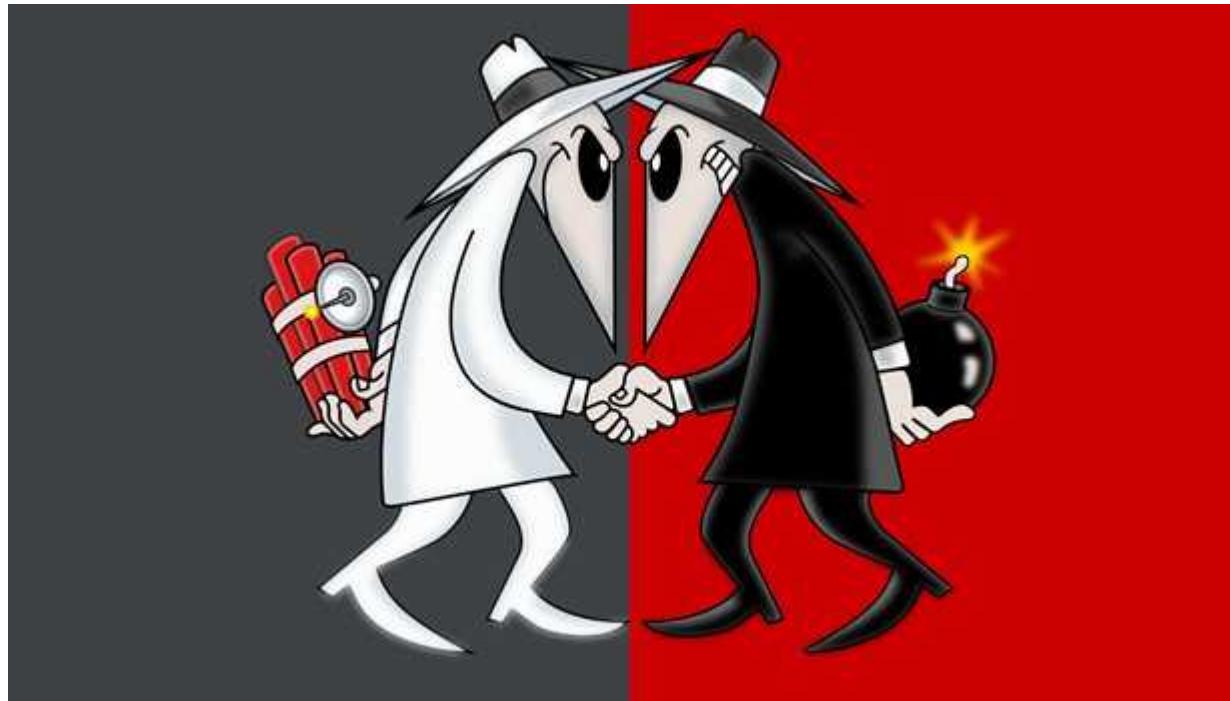
- Let's remove the tantalum!
 - Most x-ray devices use tungsten
 - RITS prefers tantalum for its material properties
 - But tungsten performs similarly as a converter
- Without the ^{180}Ta , turn-around should be as fast as operations can physically manage

Fizzled Idea

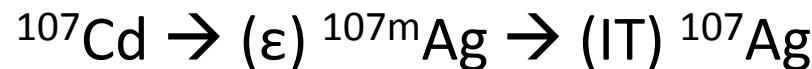
- Several shots were conducted using tungsten converters
- No tantalum in the chamber
- Result?
 - Still got same contamination levels
 - Still got same decay times
 - Gamma-specs still showed ^{180}Ta

What's Going On?

- Can you make ^{180}Ta on tungsten?
 - Short answer: not on RITS
- Are we activating residual tantalum in the chamber?
 - Short answer: not enough to explain persistent levels
- Have we misidentified the ^{180}Ta ?
 - Maybe we should call the sleuths at RP Sample Diagnostics Lab...



Doppelgänger Radionuclides


Doppelgänger Radionuclides

- ^{180}Ta has an evil twin in ^{107}Cd

Doppelgänger Radionuclides

- Remember the silver-painted cathode needle?
- The reverse current at RITS is dominated by protons
- Protons strike the silver-tipped needle and activate it
 - Silver is 51.8% ^{107}Ag

- $^{107\text{m}}\text{Ag}$ $t_{1/2}$ 44.2 sec

Doppelgänger Radionuclides

^{180}Ta

- $t_{1/2}$ 8.15 hr
- Primary gamma 93.4 keV
 - 4.5% intensity
- Other gammas too weak to measure at usual sample activities and count times

^{107}Cd

- $t_{1/2}$ 6.50 hr
- Primary gamma 93.1 keV
 - 4.7% intensity
- Other gammas too weak to measure at usual sample activities and count times

Doppelgänger Radionuclides

- ^{180}Ta and ^{107}Cd are indistinguishable in the field
 - Even with careful measurements
- They are also indistinguishable in the lab without extra effort
 - At usual low activities
- Enter RPSD...

Part 4: Characterizing Instrument Response to RITS-6 Contaminants

COUNTING MONO-ENERGETIC ELECTRONS

^{107}Cd : Friend or Foe?

- Having learned that we have ^{107}Cd contamination – in addition to, or instead of, ^{180}Ta – is that good news or bad?
 - How does the counting efficiency for ^{107}Cd compare to that for ^{180}Ta ?
 - What proportions of the two contaminants are present?

^{107}Cd Counting Efficiency

- Recall that we count ^{180}Ta with 2% efficiency
 - 14% β^- branch \times 15% instrument eff. = 2%
- Problem: determine counting efficiency for ^{107}Cd
- We tried and rejected two solutions before settling on a third

^{107}Cd Counting Efficiency

- **Approach 1:** Consider only **beta** emissions
 - i.e., calculate for ^{107}Cd the same way as we have done for ^{180}Ta
- ^{107}Cd decays to $^{107\text{m}}\text{Ag}$ by two branches
 - Electron capture (ϵ) 99.8%
 - Positron emission (β^+) 0.2%
- $^{107\text{m}}\text{Ag}$ decays back to stable ^{107}Ag by isomeric transition (IT) 100%
 - No betas from this decay

^{107}Cd Counting Efficiency

- **Approach 1:** Consider only **beta** emissions
- ^{107}Cd resembles ^{137}Cs on our calibration curve
 - ^{137}Cs efficiency 14%
- 0.2% β branch ratio \times 14% instr. eff. = **0.03%**
- With 1 min. sample and background counts, **MDA > 135 kdpm** (with bkgd = 60 cpm)
 - We can't count long enough (**25 days**) to get to 1 kdpm

^{107}Cd Counting Efficiency

- **Approach 2:** Consider gammas from $^{107\text{m}}\text{Ag}$
- $^{107\text{m}}\text{Ag}$ decays back to stable ^{107}Ag by isomeric transition (IT) 100%
- Isomeric Transition is the decay mode responsible for gamma rays
 - 93.1 keV with 4.7% yield in the case of $^{107\text{m}}\text{Ag}$
- Perhaps we can count the ^{107}Cd with a gamma probe?

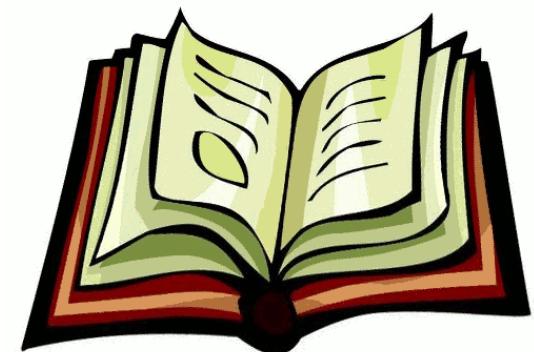
^{107}Cd Counting Efficiency

- **Approach 2:** Consider gammas from $^{107\text{m}}\text{Ag}$
- The Ludlum 44-17 “LEG” probe has a background of ~ 2 kcpm and an efficiency of $\sim 10\%$ at 93 keV
- $4.7\% \gamma$ branch ratio $\times 10\% \text{ instr. eff.} = \underline{\underline{0.47\%}}$
- With 1 min. sample and background counts, **MDA > 45 kdpm**
 - We still can't count long enough ($3\frac{1}{2}$ days) to get to 1 kdpm

Mystery #2

Mystery #2

- It seems like we can't count ^{107}Cd without first dying of old age
- But two things kept nagging at us
 - Common sense
 - Physics



Mystery #2

- **Common sense** reality check:
- If the counting efficiency is really so poor for ^{107}Cd and its progeny, how come are we seeing **so much response** on the instrument?
 - Consider the implication of the “betas only” approach:
 - If we measure 100 kdpm @ 2% (assuming ^{180}Ta) but we’re really counting ^{107}Cd , that implies we have nearly **7 Mdpm** ^{107}Cd at 0.03%
 - We’re pretty sure that’s not the case

Mystery #2

- Physics reality check:
- If ^{107m}Ag decays 100% by Isomeric Transition, how come it emits a gamma **only 4.7%** of the time?
 - Isn't IT the same thing as gamma decay?
 - What becomes of the **other 95.3%**?
- If I remember anything from college, conservation of energy would be high on that list
- Time to crack the old textbooks!

Isomeric Transition

- Although we associate IT with gamma emission, there is another IT mode
- **Internal Conversion (IC)** competes with gamma emission in some nuclides
 - Gamma emission is a sub-mode of IT
 - IC is a sub-mode of IT
- In **IC**, the excitation energy present in the isomer's nucleus, instead of appearing as a gamma ray, is transferred to an orbital electron, which is ejected forcefully from the atom

Conversion Electrons

- The ejected electron is called a **conversion electron**
 - It carries an energy quantum equal to what a gamma would have carried from the same transition, less the binding energy
 - The binding energy is usually << the radiated energy
 - Some nuclides emit gammas and conversion electrons of essentially equal energy

Conversion Electrons

- How do conversion electrons differ from betas?
 - Internal conversion is a **two-body** problem
 - Daughter nucleus
 - Conversion electron
 - Contrast with beta decay, a **three-body** problem
 - Daughter nucleus
 - Beta particle
 - Neutrino
 - In a two-body problem, conservation of energy and momentum gives a **single** solution
 - In a three-body problem, a **range** of solutions exist
 - Where beta decay yields a range of energies, IC yields an electron at a definite (discrete) energy

Auger Electrons

- In the same way **IC** competes with **gamma** emission for excited **nuclei**...
- The **Auger Effect** competes with **x-ray** emission for excited **atoms**
- Excitation energy in the form of an electron-shell vacancy can be emitted, not as an x-ray, but as an **Auger electron**
- The Auger Effect is also a two-body problem
 - Daughter nucleus
 - Auger electron
- Thus Auger electrons are emitted, like conversion electrons, at definite discrete energies

Mono-Energetic Electrons

- Conversion and Auger electrons are mono-energetic
 - They are called electrons, not betas
- Most nuclei have several varieties of emitted electrons, but each variety corresponds to a specific nuclear or atomic transition
 - Each is emitted at a discrete energy

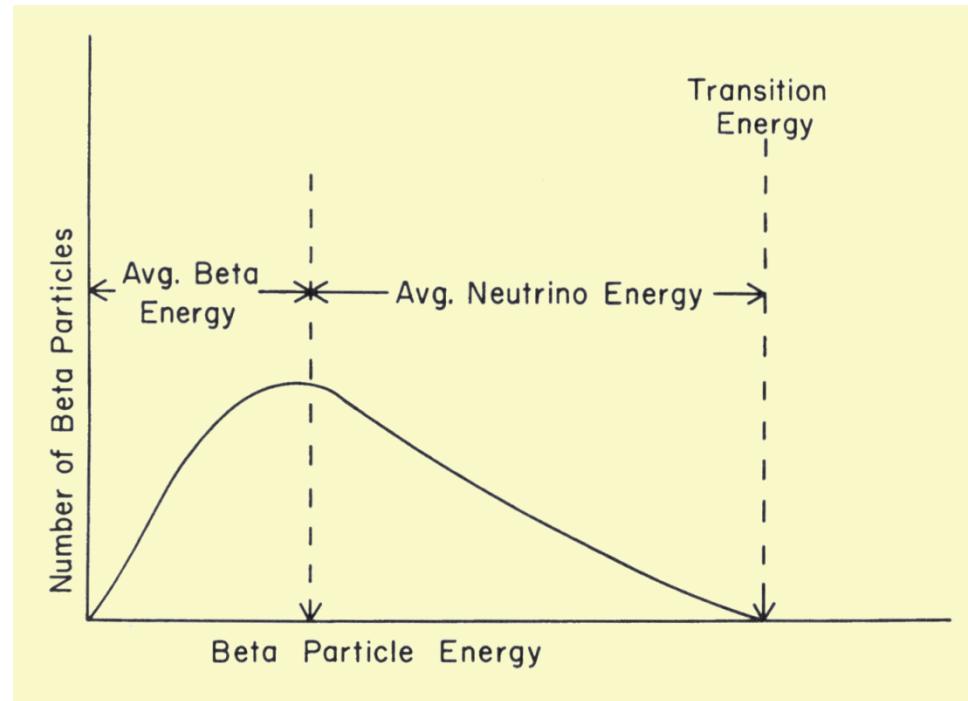
Counting Mono-Energetic Electrons

- A particle detector does not know the origin of the particle it counts
 - It doesn't care if it was a beta or an electron
- Most Auger electrons, and some conversion electrons, have too little energy to be detected by contamination probes
- But the ones that are sufficiently energetic get counted just like betas of comparable energy

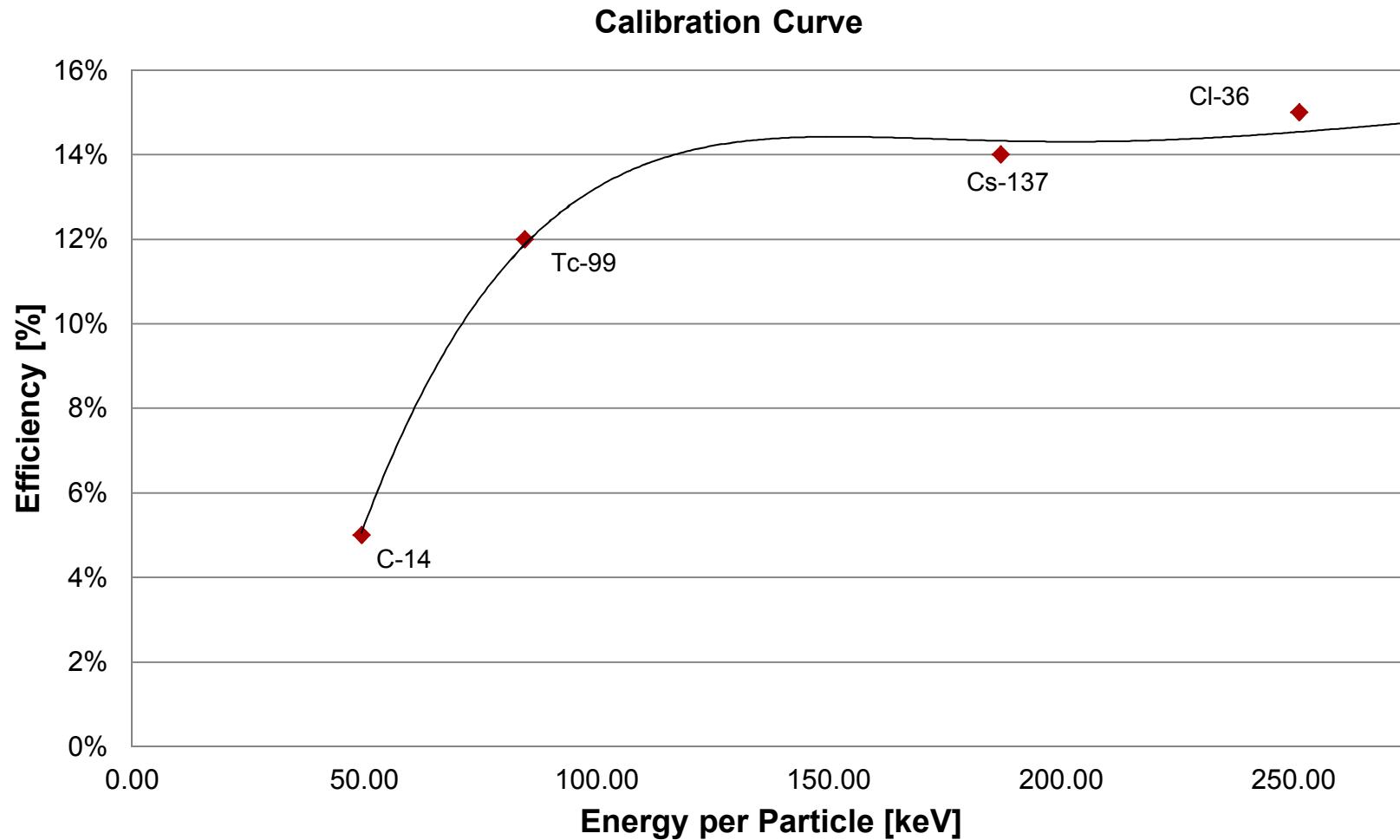
Counting Mono-Energetic Electrons

- Ignoring electrons can be a serious mistake
 - Yet HPs rarely discuss them
- In the case of ^{107}Cd , it makes a difference of **hundreds-fold** in the counting efficiency
 - The “beta only” view gives an efficiency of 0.03%
 - Including the electrons gives an efficiency of 10%
- In the case of ^{180}Ta , it **doubles** the efficiency
 - 4% vs. 2%

Efficiency vs. Energy


- A particle detector cares only about the amount of energy carried by the particle when it arrives at the detector
 - Not its origin or what we call it
 - In some detectors, it matters only that it got into the sensitive volume
 - The energy affects whether it makes it in
- In contamination probes, counting efficiency generally rises with energy
 - Sharply so at low energies

Efficiency Curves


- Efficiency calibration curves are measured with known **beta** sources
- For other **beta** emitters, we interpolate between the calibrated energies
 - Usually by reference to maximum energies
 - It is probably more accurate to interpolate by reference to average energies

Efficiency Curves

- For **electron** emitters, we interpolate as before, but with reference to beta average energies

Efficiency Curve for a PGM

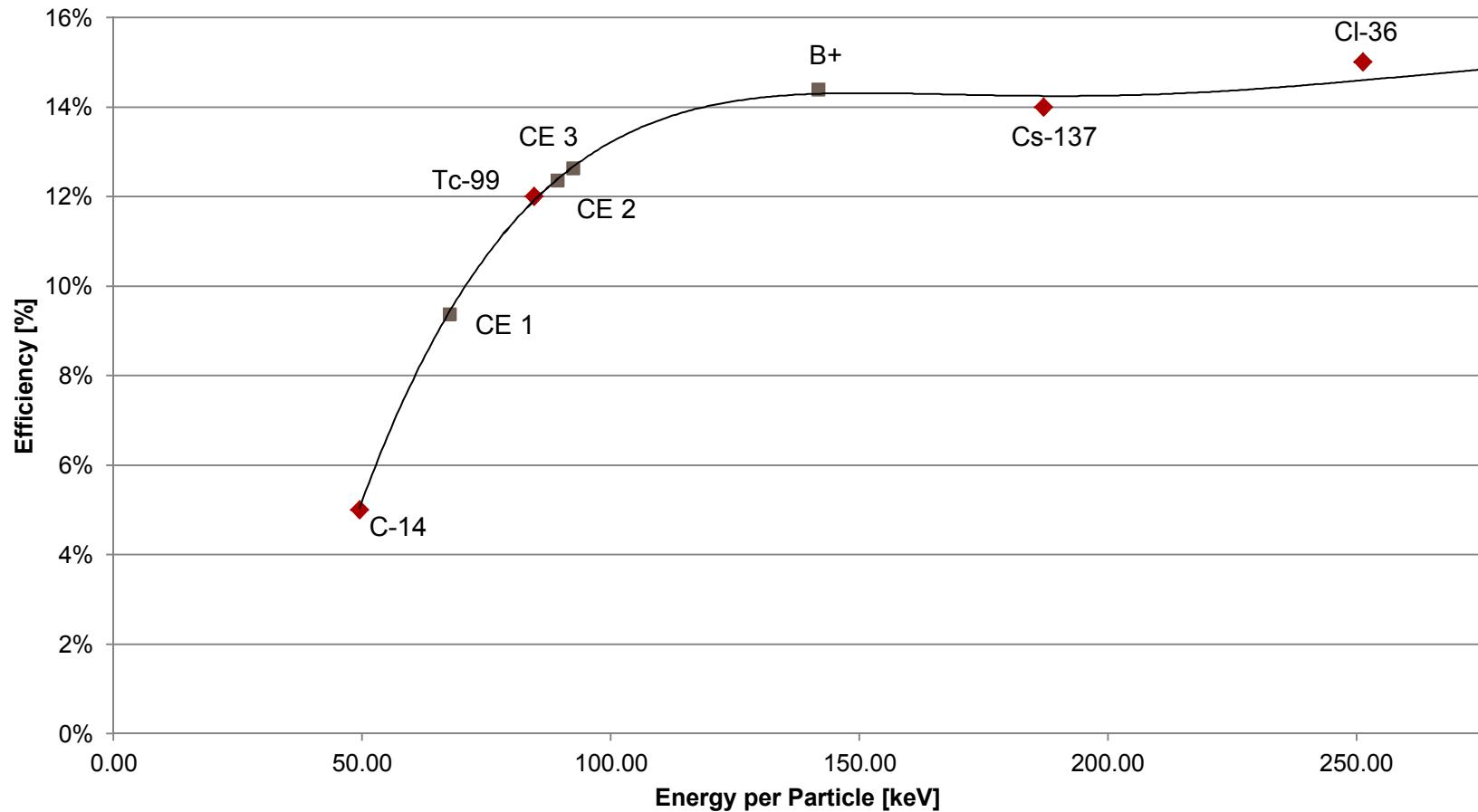
Energy Comparisons

- The detector cares, in terms of its efficiency, about the energy of the countable particles
- We calculate efficiency for a nuclide in three steps
 - Screen out uncountable and low-abundance particles
 - Compare by interpolation on calibration curve, for each countable particle
 - β : average energy per particle
 - Conversion electron: particle energy
 - Auger electron: particle energy
 - Multiply counting efficiency times particle abundance
 - Sum the products for total efficiency for that nuclide

Particle Screening

- Screen uncountable and low-abundance particles
 - For the PGM, consider only those particles whose
 - Energy, $E > 40$ keV
 - This reflects the weakest detectable particle on the PGM
 - Abundance $A > 0.01\%$
 - This is an arbitrary value

Total Efficiency

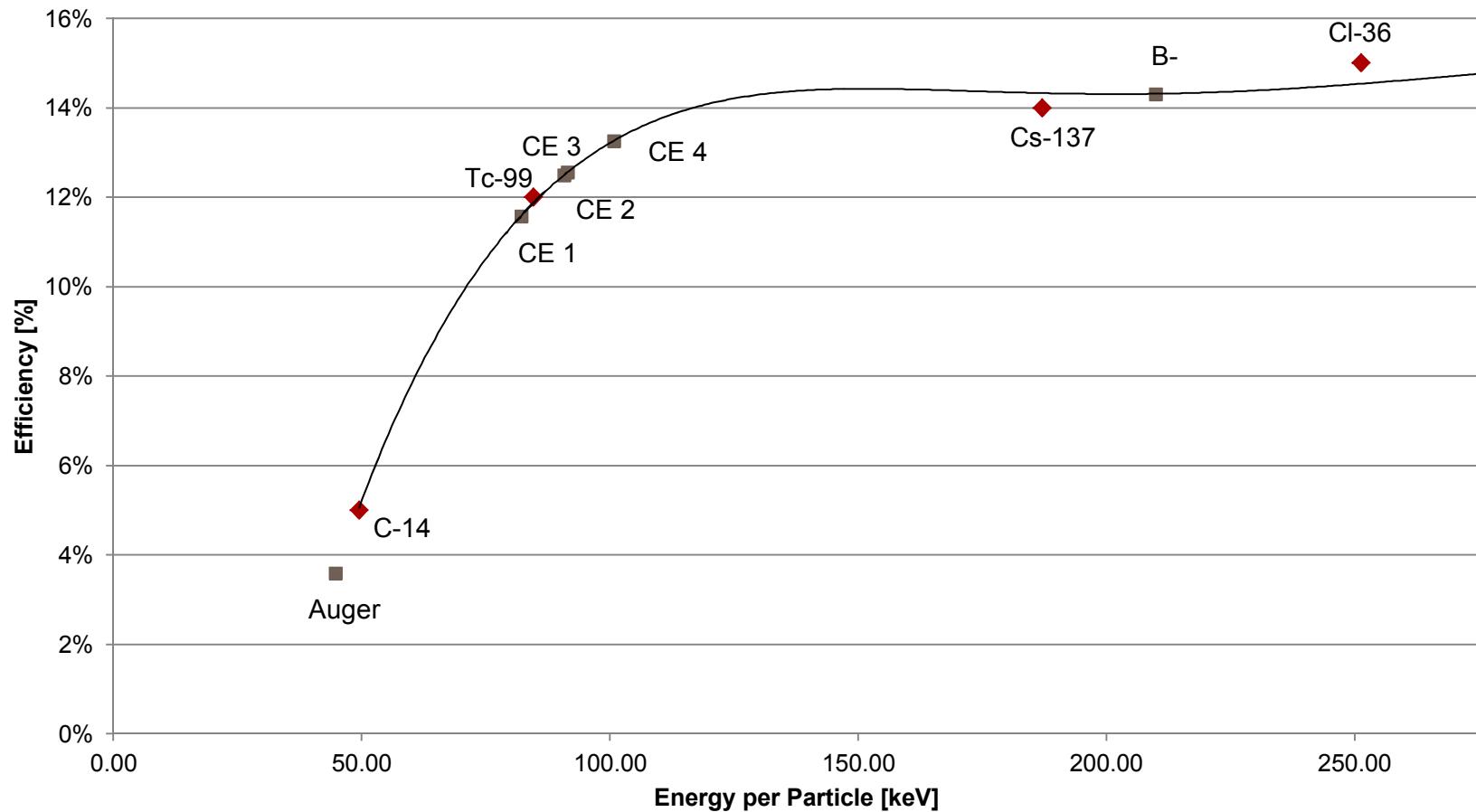

- Calculate the total efficiency for all countable particles

$$Eff = \sum_i Eff_i A_i$$

- Where Eff_i is the particle-specific efficiency
- And A_i is the particle-specific abundance

Calculation for ^{107}Cd

Calibration Curve with Cd-107 Particles



Calculation for ^{107}Cd

^{107}Cd				
	Energy [keV]	Abundance	Instrument Efficiency (Interpolated)	Particle Efficiency
CE 1	67.61	0.44	9.38%	4.13%
CE 2	89.318	0.41	12.36%	5.07%
CE 3	92.407	0.084	12.64%	1.06%
β^+	141.8	0.002	14.40%	0.03%
			Total Efficiency	10.28%

Calculation for ^{180}Ta

Calibration Curve with Ta Particles

Calculation for ^{180}Ta

^{180}Ta				
	Energy	Abundance	Instrument Efficiency (Interpolated)	Particle Efficiency
Auger	44.8 keV	0.036	3.59%	0.13%
CE 1	82.13 keV	0.12257	11.58%	1.42%
CE 2	90.8 keV	0.030463	12.50%	0.38%
CE 3	91.5 keV	0.016	12.56%	0.20%
CE 4	100.78 keV	0.004	13.26%	0.05%
β^-	210 keV	0.136	14.31%	1.95%
			Total Efficiency	4.13%

Part 5: Why this matters

OPERATIONAL ADVANTAGE TO RITS-6

Proportions between ^{107}Cd and ^{180}Ta

- We don't know yet what proportion of the two contaminants we're producing
- We hope to get an electron-spectroscopy analysis soon
- Several indications suggest that cadmium dominates
- For now, we'll conservatively assume a 50/50 split

Advantage to RITS

- This yields a **7%** counting efficiency
 - Compared to the old 2%
- This **3½ times gain** in efficiency means waiting 1.8 fewer half-lives
- This is a gain of **>10 hours** turn-around (ideally)
 - Not all that gain will be realized
 - Should effectively eliminate the long-lived waiting

Questions?

