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Introduction

 Algebraic multigrid (AMG) used by many applications at 
Sandia and elsewhere to great success

 As core counts increase, greater demand for good 
performance (total wall clock time)

 Setup cost of AMG has nontrivial setup cost

 Can cost be reduced by reusing information from previous 
setup?
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Algebraic multigrid (AMG)

• Scalable solution method for elliptic PDEs

• Typically used as preconditioner to Krylov method

• Idea: capture error at multiple resolutions:
– Smoothing reduces oscillatory error (high energy) 

– Coarse grid correction reduces smooth error (low energy)

• Ri’s, Pi’s and Ai’s generated by AMG algorithm
• Ri=Pi

T for symmetric problems

• Ai = Ri Ai-1 Pi

P1

P2

R1

R2

• Two main variants

• Classical (Ruge-Stuben) AMG
• Coarse grid DOFs are subset of fine DOFs

• Smoothed aggregation 
• Coarse grid DOFs are groups of fine DOFs



Smoothed Aggregation (SA)
Main Kernels

 Setup
 Form coarse unknowns (aggregation)

 Prolongator creation

 P=(I – ωD-1A)P(tent)

 Matrix matrix multiply

 Ak = R Ak-1 P

 Load balancing of Ak’s

 (Smoother initialization)

 Apply
 Matrix-vector multiply

 (Triangular solves)

Au=f

A2e2=r2

A1e1=r1



MueLu: Trilinos Multigrid Library
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 Compatible with either 32-bit (Epetra) or templated (Tpetra) 
Trilinos linear algebra stack.

 Coarsening algorithms
 smoothed aggregation (SA), Petrov-Galerkin SA, Maxwell, emin

 Smoothers:  Jacobi, GS, l1 GS, polynomial, ILU

 Direct solvers: Trilinos native, SuperLU

 Load balancing: multijagged, RCB

 Indirectly uses Kokkos (high-performance node-level kernels)
 SPMV

 More details in poster session

Tpetra



Drekar (J Shadid, R Pawlowski, E Cyr, T Smith, T Wildey)

Scalable parallel implicit FE code

 Includes: Navier-Stokes, MHD, LES, RANS

 Architecture admits new coupled physics

 Support of advanced discretizations

 mixed, physics compatible and high-order 

basis functions

 multi-physics capable (conjugate heat transfer)

 Advanced UQ tools/techniques

 Adjoint based sensitivities and error-estimates

 Advanced solution methods

 Parallel solvers from SNL’s Trilinos framework

 Physics-based preconditioning

 Fully-coupled multigrid for monolithic systems

LES: Flow over spacer grid

MHD: Hydromagnetic Kelvin-Helmholtz

Conjugate Heat Transfer

Vorticity



Some motivation for reuse

 AMG setup times growing with #MPI tasks

 Main offenders: matrix matrix multiply, smoother setup, 
prolongator setup
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MPI tasks DOFs AMG (ILU) (s)

128 845k 9.5 (7.2)

1024 6.5m 10.8 (8.7)

8192 51m 12.2 (9.4)

65,536 401m 25.5 (10.4)

524,288 3.2b 1312 (452)

Weak scaling, BG/Q, MHD generator*
AMG and ILU(0) smoother setup time

*Data courtesy P. Lin



Reuse: tentative prolongator

 Many possibilities for data reuse between multigrid setup 
phases.  What works best is problem dependent.

 Reuse
 Tentative interpolants P(tent), R(tent)

 Recompute

 Final prolongators P=(I – ωD-1A)P(tent)

 Matrices Ai , i > 0

 Smoothers Si

 Avoids construction of tentative ops.

 Preserves import object for rebalancing

✗Requires matrix-matrix product for P and RAP
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Reuse: smoothed prolongators

 Reuse
 Prolongators/restricters Pi, Ri

 Recompute
 Matrices Ai , i > 0

 Smoothers Si

 Avoids matrix-matrix product for final Pi

 Preserves import object for rebalancing Ai,i>0

✗Requires matrix-matrix product RAP
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Reuse: all but fine grid smoother

 Reuse
 Prolongators/restricters Pi, Ri

 Matrices Ai , i > 0

 Smoothers Si, i>0

 Recompute
 Smoother S0

 No matrix-matrix products required

 Preserves coarse smoother data

 Preserves rebalancing information

✗ Least likely to converge
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Reuse experiments: Jet problem

 Drekar; 3D Jet, Re=106, CFL ~0.25, no slip BCs

 SA AMG, V(3,3) symmetric Gauss-Seidel smoothing

11
24k24



 Drekar; 3D Jet, Re=106, CFL ~0.25, no slip BCs

 SA AMG, V(3,3) symmetric Gauss-Seidel smoothing

 Setup cost almost entirely
 Smoothed prolongator

 P=(I – ωD-1A)P(tent)

 Galerkin product

 For this particular problem, 
convergence maintained

Reuse experiments: Jet problem
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Reuse experiments: MHD
 Steady-state 3D MHD generator, Drekar

 Resistive MHD model

 stabilized FE; Newton-Krylov solve

 8 DOFs/mesh node
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 Monolithic preconditioner

 Prolongator is unsmoothed
 Requires more robust smoothing

 In this case, DD/ILU(0)

 P cheap to construct 
compared to smoothers

 Cannot reuse coarse Ai’s
 Linear solve does not converge

17.5k



Reuse experiments: MHD
 Steady-state 3D MHD generator, Drekar

 Resistive MHD model

 stabilized FE; Newton-Krylov solve

 8 DOFs/mesh node
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 Steady-state 3D MHD generator, Drekar
 Resistive MHD model

 stabilized FE; Newton-Krylov solve

 8 DOFs/mesh node

 Time dominated by smoother
 Opportunity to reuse local graph

 No reuse results yet for this…

 As problem grows, expect 
additional comm. costs
 matrix-matrix product

Reuse experiments: MHD

1517.5k



Future: reuse within smoothers

 Additive Schwarz/subdomain ILU
 Data import infrastructure

 Local symbolic factorizations

✗Data transfers unavoidable

 Polynomial smoothers
 reuse eigenvalue estimate

 Reuse initial guesses for eigenvalue estimates (reduce matvecs)

 Jacobi, Gauss-Seidel, etc. – no reuse
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Future: Reuse within Sparse
Matrix Matrix Multiply

 SPGEMM is a dominant kernel in AMG setup
 AC=RAFP,  (I-ωD-1A)P(tent)

 First product required even if reuse grid transfers

 Trilinos implementation extends Gustavson algorithm [1]

 At least two reuse opportunities in Trilinos algorithm by 
keeping graph of product matrix
 Eliminate “neighbor of neighbor” discovery

 Eliminate memory reallocation and lookups required in serial phase

17[1] Gustavson, ACM TOMS, 1978



Future: Greater nonlinear solver
control of reuse within linear solver

 Currently, AMG reuse is either on or off.
 If reuse is requested as AMG option, it will happen at every time step 

and at every Newton step.

 May not want to reuse early in simulation due to startup conditions

 Features we’d like
 Ability to enable/disable AMG reuse for particular nonlinear solves

 Ability to vary how aggressive AMG reuse is

 Requires greater information exchange between nonlinear 
and linear solve

 Overall strategy for controlling this?
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Conclusions

 Reducing AMG setup times important for large-scale 
applications

 Effectiveness of reusing setup information is problem 
dependent.  Preliminary results show some potential.

 Opportunities for reducing cost through reuse
 Grid transfers

 Heavy weight smoothers

 Matrix-matrix mult., nonlinear/linear interactions

 Still have some low-hanging fruit to pick
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