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Monitoring Weapons Usable Material in Reactors

AR e
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WATer CHerenkov Monitor of AntiNeutrinos
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@ ~6 antineutrinos per fission

© ~2x10'"7 antineutrinos per
second per MegaWatt thermal
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If It Barely Interacts How Do We Detect It?
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© Light is detected with a sensor
in the detector
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antineutrino interaction
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Time Correlated Backgrounds Are Initiated From
Nearby Or Through-Going Muon

n
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Measurement Concept For The Neutron Energy

Multiplicity
v

© Use spallation
reaction (n,kn)

© ko Energy of

neutron
© Use hydrogenous
media to quickly i MatRle®
thermalize neutrons . T
© Neutrons capture i e
on Gd dopant

30
Multiplicity
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Unfolding Requires More Information Than Just
Multiplicity

@ Initial elastic scatter energy

Simulated Data
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Unfolding Requires More Information Than Just
Multiplicity

@ Initial elastic scatter energy

@ Gd captures and showers
(~8 MeV) "multiplicity”
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Unfolding Requires More Information Than Just
Multiplicity

@ Initial elastic scatter energy Simulated Data
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Unfolding Requires More Information Than Just
Multiplicity

@ Initial elastic scatter energy

@ Gd captures and showers
(~8 MeV) "multiplicity"

© Total energy from Gd
shower in multiplicity
sequence

© Solve using MLEM approach
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Unfolding Requires More Information Than Just
Multiplicity

@ Initial elastic scatter energy

@ Gd captures and showers
(~8 MeV) "multiplicity"

© Total energy from Gd

shower in multiplicity
sequence

© Solve using MLEM approach

© Detector response from
simulation+calibrations
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MARS Design: Capture-Gated Spectrometer and
Multiplicity Meter

@ 12 1.0x0.75x0.025m? plastic
scintillator sheets

© Plastic sheets coated with
white Gd doped paint

© 16 PMTs split between 2 sides
per detector

© Lead neutron amplifier
between two detectors
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MARS Neutron Measurement Campaign at KURF

© Measurements taken at 380
and 600 m.w.e.

© Several thousand high energy
neutron events at both 380
and 600 m.w.e.

© Ongoing measurement at
1450 m.w.e.
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Measuring The Position Dependent Response

@ Mapped response

» 5x5 grid on the top detector

» 3 positions in the long 2
PMT vetoes

» 2 positions in the square 1
PMT vetoes

@ Collimated Cs137/Co60
source

© Smear simulated response
Q Minimize x?
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Detector Characterization Of Tagged Cf252 Source

@ Apply detector response to
simulation

© Require >3 events between
100ns and 100us after tag

© Calculate total efficiency
based upon ratio of higher
order multiplicity events

© Able to tune Gd concentration

based upon capture time and
total efficiency

Counts / Total Counts
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Experimental Results At KURF

Thermalization Energy Comparison
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© Require 6 multiplicity, 500 keV
per deposition

© Count rate decreases as a
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Preliminary Results

@ Assume one neutron S10°¢ EORpY—
per interaction 51077% —K— MARS 600 m.w.e.

e ASSume SmOOth reSUlt é 785 ¢ —¥— Malgin et. al. 550 m.w.e.
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reconstruct spectra TE o x oy T ANS *
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Why The Preliminary Results Are Wrong

Uncertainty in depth at
600 m.w.e.
measurement

Poor background
rejection at 600 m.w.e.

© Default Geant4 Gd

shortname

capture model does not
conserve Q value

Geant4 evaporation
model changes tuned
capture time —
different Gd loading
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Conclusions

@ A spallation based multiplicity detector has been constructed to
measure the high energy neutron flux as a function of depth
underground

© The detector response has been characterized by gamma ray
sources and thermal neutrons

© MLEM has been used to unfold preliminary results
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Future Work

@ Tune Gd loading based upon Cf252 response

© Re-simulate detector response with correct Geant4 models

© Use detector singles data to simulate background contamination
© Unfold results with updated model at all 3 levels

© Perform surface measurement next month to validate
underground results
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This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award
Number: DE-NA0000979 through the Nuclear Science and Security Consortium.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or limited, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
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WATCHMAN Deployment Options

1 kton fiducial Gd-water detector

© Low Power Reactor
Relatively shallow depth (100 meter)
Relatively high background
Relatively close (1 km)

© High Power Reactor
Relatively deep depth (500 meter)
Relatively low background
Relatively far (10 km)
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Geant4.9.6.p02 Simulation
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How To Unfold A Signal That Is Not Directly
Measured

Solve g(y) = [ A(E.y)f(E) dE +b(y)
@ g(y) is the measured data space
© f(E) is the energy spectrum we want

© A(E,y) is the kernel from simulation: predicted relationship
between energy and the measured data space

© Db(y) is the background, typically measured
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Neutron Energy Spectrum Unfolding - MLEM

General Algorithm: Solve g(y) = [A(E,y)f(E) dx+ b(y)
Q Discretize Gmeas = Af+b, Ghoy = AFK

n
Q@ Likelihood LX(f) = IT P(Gmeas.|Ffed,)
j=

O Find Min( - /n[Lk(f)]) or Min (—In[L¥(f)] + BR(E))
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Simulation Test Case Of Algorithm

Wang|Mei and Hime: x?/ndf=0.47
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© Separate simulation of o 1
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Simulated Unfolding Results

Hayakawa Reconstruction: x?/ndf=0.2

@ Initial kernel had sparse 3
. . ElO E
statistics at lower neutron N
energy E
© Good agreement above 100 g1’

MeV
© No background in model ‘
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