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Can Exascale Solve the UQ Challenge?

- UQ means many things
— Best estimate + uncertainty, model validation, model calibration, ...

* A key to many UQ tasks is forward uncertainty propagation
— Given uncertainty model of input data (aleatory, epistemic, ...)
— Propagate uncertainty to output quantities of interest

* There are many forward uncertainty propagation approaches
— Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin,

* Key challenge:

— Accurately quantifying rare events and localized behavior in high-
dimensional uncertain input spaces

— Can easily require O(104-10¢) expensive forward simulations
— Often can only afford O(102) on today’s petascale machines
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Computer Architectures Are Changing
Dramatically

 Historically (super)computers have gotten
faster by

Decreasing transistor size
Increasing clock frequency

— Adding more compute nodes that

communicate through an interconnect

* Power requirements make this approach
untenable for future performance increases

 Instead performance increases are now
achieved through increases in node-level
fine-grained parallelism

Many, many threads executing
simultaneously

Memory access, arithmetic on wide vectors

Complex memory hierarchies that require
threads to share data
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Emerging Architectures Motivate New

Approaches to Predictive Simulation

UQ approaches traditionally implemented as an outer loop:

Dakota
sensitivity analysis
uncertainty quantification

optimization
parameter estimation

response
metrics

. .,

user application http://dakota.sandia.gov

(simulation)

Easily exploit coarse-grained sampling parallelism by executing samples in parallel on collections of compute

nodes
Aggregate performance limited by deterministic simulation

Increasing UQ performance will require

Evaluating more samples in parallel
Speeding-up each sample evaluation

Many important scientific simulations will struggle with upcoming architectures

Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
Inconsistent vectorization (e.g., complex loop structures with variable trip-count)

Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

Investigate improving performance and scalability through embedded UQ approaches that propagate UQ
information at lowest levels of simulation

Improve memory access patterns and cache reuse
Expose new dimensions of structured fine-grained parallelism
Reduce aggregate communication

i
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Polynomial Chaos Expansions (PCE)

» Steady-state finite dimensional model problem:

Find u(¢) such that f(u,£) =0, ¢:Q — I C RM, density p

* (Global) Polynomial Chaos approximation:

u(©) = 4(€) = Y uithi(®), (i) = / i ()i () p(y)dy = b:; (?)

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N
— Can be adapted (anisotropic, local support)

* Non-intrusive polynomial chaos (NIPC, NISP):

u; —

/ a(y)w: (1) p(y)dy ~

(¥7) (102

Z’wku @bz(yk)a f(u 'Y )

0

— Sparse-grid quadrature methods for scalability to moderate stochastic dimensions

i
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Simultaneous ensemble propagation

 PDE:
f(ua y) =0

* Propagating m samples — block diagonal (nonlinear) system:

FU,Y)=0, U= i;%@ui, Y = ;&:@yi, F = i;&@f(ui,yi), U = ;eieff@aui
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— Spatial DOFs for each sample stored consecutively
— Implemented by ensemble loop around PDE matrix/RHS assembly, solve

fk’o‘ U.S. DEPARTMENT OF Ofﬁce Of . 5 . ;
v\) ENERGY science 11| Sandia National Laboratories




Simultaneous ensemble propagation

« Commute Kronecker products:

m m m Z)ITL m é)
Fc(UcaYc) =0, U, = Z"h’,@eiv Y. = Z@h@e'in F. = Z f(uiayi)®eia 8—ch = Z 8f ®eie;7p
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— m sample values for each DOF stored consecutively
— Implemented by placing ensemble loop at “scalar” level of PDE assembly, solve
— Still have loop over ensembles around PDE assembly, solve

» Suitable for coarse-grained parallelism

L < ) U.S. DEPARTMENT OF Off‘ce of . . 2 X
4% ENERGY scence 1) Sandia National Laboratories




Implementing simultaneous ensemble
propagation

« Each sample-dependent scalar replaced by length-m array

— Automatically reuse non-sample dependent data (e.g., mesh in matrix/RHS assembly,
matrix-graph in solvers, ...)

— Sparse access latency amortized across ensemble (e.g., sparse mat-vecs)
— Communication latency amortized across ensemble (sparse mat-vecs, dot-products, ...)
— Math on ensemble naturally maps to vector arithmetic (consistent vectorization)

» Could implemented this by rewriting simulation code
— Expand size of matrix/vector data structures by m
— Replace each scalar operation by a length-m loop

« Or automatically (in C++) by introducing an ensemble scalar type
— C++ class containing an array with length fixed at compile-time
— Overload all math operations by mapping operation across array
a={ai,...,an}, b={b1,...,bp}, c=axb={ai1xXby,...,07,Xbn}
— Replace floating-point type with ensemble type in
* Matrix/vector data structures
» Matrix/RHS assembly routines
» Solvers

. DEPARTMENT OF Off‘ce of 0 o ¥ .
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Stokhos: Trilinos Tools for Embedded
UQ Methods

Provides ensemble scalar type
— Uses expression templates to fuse loops

d=axb+c={ay Xbi+ci1,...,am X by +cm}

http://trilinos.sandia.qgov

Enabled in simulation codes through template-based generic programming
— Template C++ code on scalar type
— Instantiate template code on ensemble scalar type

Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism

— Specializes Kokkos data-structures, execution policies to map vectorization parallelism
across ensemble

Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
— Exploits templating on scalar type
— Krylov solvers (Belos)
— Algebraic multigrid preconditioners (MuelLu)

— Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers
(Ifpack2)

— Sparse-direct solvers (Amesos2)
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Techniques Prototyped in FENL Mini-App

Simple nonlinear diffusion equation
—V - (k(z,y)Vu) +u® =0

— 3-D, linear FEM discretization

— 1x1x1 cube, unstructured mesh

— KL truncation of exponential random field model for diffusion coefficient
— Trilinos-couplings package

Hybrid MPI+X parallelism

— Traditional MPI domain decomposition using threads within each domain

Employs Kokkos for thread-scalable
— Graph construction
— PDE matrix/RHS assembly

Employs Tpetra for distributed linear algebra
— CG iterative solver (Belos package)
— Smoothed Aggregation AMG preconditioning (MueLu)

http://trilinos.sandia.qgov

Supports embedded ensemble propagation via Stokhos through entire assembly and

solve
— Samples generated via Smolyak sparse grid quadrature for NISP method

i
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Potential Speed-up for Sparse Solvers

* Ingredients to sparse linear « Sparse matrix-vector
system solvers (CG, products
GMRES, ...) — Amortize MPI latency in halo
— Sparse matrix-vector exchange
products — Reuse matrix graph
A.row(i+1) — Replace sparse with
y@)= Y Awals(l)z(A.col(l)) contiguous loads

— Vector arithmetic
I=A.row(7)

— Dot-products * Dot-products

— Preconditioners — Amortize MPI latency
* Relaxation-based
(Jacobi, Gauss-Seidel, ...)

 Incomplete factorizations * Preconditioners

(ILU, IC, ...) — Sparse mat-vecs

» Polynomial (Chebyshev, — Sparse ]
factorizations/triangular-

+ Multilevel solves
(Algebraic/Geometric — Smaller, more unstructured
multigrid) matrices
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Ensemble Sparse Matrix-Vector Product

Speed-Up

Speed-Up

2.5

[T

0.5

Matrix-Vector Product
(64x64x64 Spatial Mesh)
-=-Sandy Bridge
s 7Y CPU
=-Blue Gene Q
CPU
AMD Interlagos
CPU
Nvidia K20x
GPU
“<Xeon Phi
16 24 32 Accelerator
Ensemble Size

» Speed-up results from
— Reuse of matrix
graph (20%)
— Replacement of

sparse gather with
contiguous load

— Perfect vectorization
of multiply-add

Ensemble size X Time for single sample

Speed-Up =
¥ & Time for ensemble
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Interprocessor Halo Exchange

Halo Exchange -- Cray XK7 CPU
(2 MPI Ranks/Node, 8 Threads/Rank,
64x64x64 Mesh/Node)
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Halo Exchange -- Cray XK7 GPU
(1 MPI Ranks/Node, 8 Threads/Rank,
64x64x64 Mesh/Node)
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» Speed-up results from reduced
aggregate communication latency

— Fewer, larger MPI messages
— Communication volume is the same

g 4.U Ensemble size X Time for single sample
eed- =
~ 4 Time for ensemble
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AMG Preconditioned CG Solve

Embedded Ensemble CG-AMG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Sampling
64x64x64 Mesh/Node, Ensemble Size = 32

7.0 .
<*Titan CPU

6.0 R
55.0 -<Sandy Bridge
g 4.0 CPU
Q =-Blue Gene Q
v 3.0

CPU
2.0 Nvidia K80
1.0 GPU

1 4 16 64 256 1024
Compute Nodes

Speed-Up =

« Smoothed-aggregation
algebraic multigrid
preconditioning (MueLu)

— Chebyshev smoothers

— Sparse-direct coarse-
grid solver
(Amesos2/Basker)

— Multi-jagged paraliel
repartioning (Zoltan2)

« Assumes number of CG
iterations same for all
samples

— True for problems with
tame diffusion
coefficient on regular
meshes

— See poster by M. D’Elia,
PP201

Ensemble size X Time for single sample

Time for ensemble
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- Embedded sampling approach does not

— Substantially change floating-point operation to
memory access ratios

— Reduce communication volume

* To achieve this, we need some form of
compression of stochastic information

— Trade reduced stochastic DOFs for increased
FLOPs
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LABORATORY DIRECTED RESEARCH 8 DEVELOPMENT

Embedded Stochastic Galerkin UQ Methods

« Stochastic Galerkin method (Ghanem and many, many others...):

P
a(€) = Y uithi(§) = filuoy - up) = / F(a(y), )i (w)p(y)dy =0, i=0,...,P

(¥7)

« Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

P P ‘M 0 2 \500 1000 1500 2000
FU)=0, U=} ei@ui, F=} e®f: o NN
= = '/ \\
OF <¢z¢ ¢k> 1000) 7 '-‘,,"% - & 3
~ Z Gk ® Ak:, Gk(zaj) = 'L]k = 32 .o M N
oU = (2) i
o ¢ _\’\. \%\q{

_ Stochastic sparsity Spatial sparsity
« Many fewer stochastic degrees-of-freedom for comparable level of accuracy:

1 4 5 1 6 7
3 20 39 3 56 153
5 56 151 5 252 933
7 120 407 7 792 3697
9 220 871 9 2002 11581

Sandia National Laboratories



Commuted SG Structure for Emerging
Architectures

* DOF layout can be reorganized in similar manner to embedded sampling:
— Store PC coefficients for each spatial DOF consecutively
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Stochastic sparsity

* Implemented in same manner as embedded sample propagation

— Scalars replace by PC coefficient arrays

— Similar C++ operator overloading approach:
P

= P
a=> app, b= bjp;, c=abr
1=0 j=0

— Approach implemented within Stokhos package

>tk o= >

k=0

P

2%

=0

a; bj

(Vi i)
(i)

i
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Commuted SG Matrix-Vector Multiply

P P P
Yy com = Aom X" — Zyi ®e; = <Z Ak ® Gk) (Z Tj ® ej)
i=0

1=0 k=0
* Two level algorithm
— Outer: sparse (CRS) matrix-vector multiply algorithm
— Inner: sparse stochastic Galerkin product

Ra(l) ={m | Ao(l,m) # 0} Rc(i) ={(4,k) | C(i,5,k) # 0}

stochastic stochastic stochastic stochastic triple
basis bases sum basis basis product

y(i, ) = > > Ak, m)x(3,m)C(i, j, k)

meRa(l) (4,k)ERc(2)

FEM FEM bases FEM FEM
basis sum basis basis

P—
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Sparse Matrix-Vector Product’

Intel Sandy Bridge CPU Blue Gene Q CPU AMD Interlagos CPU
(n=262k, 8 threads) (n=32k, 64 threads) (n=32k, 8 threads)
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"Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013.
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Stochastic Galerkin Preconditioning

* Preconditioning stochastic Galerkin system is a significant challenge

« Common approach is mean-based preconditioning:

(A°™) "1 Mo™ = My Q Ip, My~ Ay"

mean

» Applying mean preconditioner in commuted layout is very efficient:

P P
Yoo = Ml XM = ) yi®ei = (MO ° IP> (Z oo ej)
§=0

1=0
— [Yo,...-Yyp] = Mo[xo,...,Tp]

— Matrix-times-multivector with row-wise layout
— Vectorize over multivector columns
— Reuse of matrix/graph entries

« Applying preconditioner is often dominant cost
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Mean Matrix-Vector Multiply

Intel Sandy Bridge CPU
(n=262k, 8 threads)
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SG Method Performs Well Over Moderate Range
of Stochastic Problem Size

Stochastic Galerkin PCG Solve Speed-Up Stochastic Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Over Non-intrusive Polynomial Chaos
Sampling (n=32k, N=3, Sandy Bridge CPU) Sampling (n=32k, M=5, Sandy Bridge CPU)
15 2.0
1.5
S1.4 5
? ©1.0
) )
&1.3 &
0.5
1.2 0.0
3 5 7 9 11 13 15 2 3 4 5
Stochastic Dimension Polynomial Order
Stochastic Galerkin PCG Solve Speed-Up + Speed-up in time-to-solution of SG method

compared to non-intrusive sampling
— Smolyak sparse-grids for building PC basis
— Gaussian abscissas

Over Non-intrusive Polynomial Chaos
Sampling (n=32k, M=5, N=3, Sandy Bridge CPU)

1.6
— Comparable accuracy between SG solution

12 n_n\n\ﬂ—ﬂ\n\ﬂ and NISP solution
-
1;, 0.8 * Increased floating-point throughput (mat-
g vec, prec-vec) + reduced prec applies (P/Q)
o4 offset by increased FLOPs in mat-vec

0.0

01 02 03 04 05 06 0.7
Random Field Coefficient of Variation
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AMG Preconditioned CG Solve

Stochastic Galerkin CG-AMG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Sampling
64x64x64 Mesh/Node, M=5,N=3

11.0 n ]
ry “Titan CPU
9.0
= =<Sandy Bridge
370 CPU
@ i
=3 5.0 =-Blue Gene Q
CPU
3.0 Nvidia K80 GPU
1.0 I ! .
1 4 16 64 256 1024

Compute Nodes

» Speed-up arises
from:

— Increased floating-
point throughput

— Reduced
preconditioner
applies

— Reduced
aggregate
communication
volume
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Concluding Remarks

* Reordering UQ algorithms to propagate some UQ information at
lowest levels can lead to substantial improvements in performance

— Alleviate burden of deterministic simulation code from exploiting all fine-
grained parallelism

— Increases opportunities for fine-grained parallelism
— Improves memory access patterns
— Reduces aggregate memory bandwidth and communication

« Applying technique through C++ templates greatly facilitates
implementation

— Alleviate code developers from having to worry about UQ

« Significant challenges remain:

— Effective grouping of samples in ensembles for non-smooth, less-smooth
problems (See M. D’Elia poster, PP201 for first steps in this direction)

— Dealing with code divergence (e.g., conditionals)
— Partitioning/adapting PC basis to reduce memory burden
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Templated Components Orthogonalize Physics
and Embedded Algorithm R&D

é Nonlinear solver

Application Interface

Field Manager

C

computeResidual() C

| Scatter (EXtraCt)mh] DOF Manager

C

C

computeJacobian() [ PDE Terms ]
T Discretization
computeTangent
P 0 [ Properties ]
. f Cell Topology
computeHessian() { - B ]
ource Terms Mesh
computeAdjoint() t
[FE Interpolation ’ MDArray
computePCE() ComputTe Derivs
computeResponse() { Get Coordinates ]

DOF Manager

Gather (Seed) TI

Legend

' Application
' component/library L] 3
Embedded Analysis
| component/library 3

=———p Global Data Structuresf

— Local Data Structures
i Generic Template Type
i used for Compute Phase

Template Specializations for
3 Seed and Extract phases:
[ResidualH Hessian
| Jacobian Adjoint
| Tangent | | PCE

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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3-D Linear & Nonlinear Elasticity
Model Problems’

* Linear finite elements, 32x32x32 mesh
— Nonlinear: neo-Hookean strain energy potential
* Uncertain Young’s modulus random field
— Truncated KL expansion (exponential covariance)
« Albany/LCM code (Salinger, Ostien, et al) hitp:/trlinos.sandia.gov
— Trilinos discretization and solver tools
— Automatic differentiation
— Embedded UQ
— MPI parallelism

"

von Mises

.191e+04
3.000e+04

von Mises
4.132e+05
|4 000e+05

3.600¢+05 2.000e+04

+1.000e+04

1.247e+01

13.200e+06

2.801e+05

Displacement (Mean) Displacement (Std. Dev.)

"Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013. 111/ Sandia National Laboratories
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Solve Performance

« Comparison to non-intrusive polynomial chaos/spectral projection (NISP)
— lIsotropic sparse-grid quadrature, Gauss-Legendre abscissas, linear growth rules
— GMRES, algebraic multigrid preconditioning

Scaled Linear Solve Time
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Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications’

« Standard C++ library, not a language extension
— Core: multidimensional arrays, parallel execution, atomic operations
— Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, ...) @—!9 .

— LinAlg: Sparse matrix/vector linear algebra

* Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty http://trilinos.sandia.gov

— Execution spaces (CPU, GPU, ...)

— Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, ...)

— Layout of multidimensional data in memory

— Scalar type "H.C. Edwards, D. Sunderland, C. Trott (SNL)

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...  |uois



http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures’

» Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra

Builds distributed memory linear algebra on top of
Kokkos library

Distributed memory vectors, multi-vectors, and sparse | ./ilinos.sandia.qov

matrices
Data distribution maps and communication operations

Fundamental computations: axpy, dot, norm, matrix-
vector multiply, ...

Templated on “scalar” type: float, double, automatic
differentiation, polynomial chaos, ensembiles, ...

= Higher level solver libraries built on Tpetra

Preconditioned iterative algorithms (Belos)
Incomplete factorization preconditioners (Ifpack2,
ShyLU)

Multigrid solvers (MuelLu)

All templated on the scalar type

M. Heroux, M. Hoemmen, et al (SNL)

i
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Kokkos Integration

« Kokkos views of UQ scalar type internally stored as views of 1-higher rank

— UQ dimension is always contiguous, regardless of layout

 Facilitates
— Fine-grained parallelism over UQ dimension
— Efficient allocation and initialization
— Specialization of kernels
— Transfering data between host and device and MPlI communication

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”,

10);

* Requires specialized kernel launch for CUDA to map warp to UQ dimension to

achieve performance

i
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PDE Matrix/RHS Assembly

Matrix/RHS Assembly
(64x64x64 Spatial Mesh)
6 -“-Sandy Bridge
5 CPU
a4 =~Blue Gene Q
_36 CPU
3 3 AMD Interlagos
Srp—B—H & E-E-@® cpy
1 A A “~Nvidia K20X
GPU
0 =<Xeon Phi
8 16 24 32

Accelerator
Ensemble Size
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Embedded Ensemble Scalar Type for PDE
“Assembly”

« Evaluation of discrete SG residual/Jacobian entries is
a significant challenge for nonlinear problems

* For general nonlinear problems, found a
“pseudospectral” approach most-effective:

F, = / F(a(y), v) b @)pw)dy = 3 wi f (@), vi) s (ue)
r k=0

— Sparse-grid quadrature on residual/Jacobian (“non-
intrusive”)

— Requires only two additional assembly kernels: PCE
evaluation and quadrature

— Use ensemble scalar type for evaluating
residual/Jacobian at multiple quadrature points
simultaneously

33
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Stochastic Galerkin Assembly
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Stochastic Galerkin Pseudospectral
Assembly Slow-Down Over Non-intrusive

Polynomial Chaos Sampling
(n=32k, N=3, Sandy Bridge CPU)
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