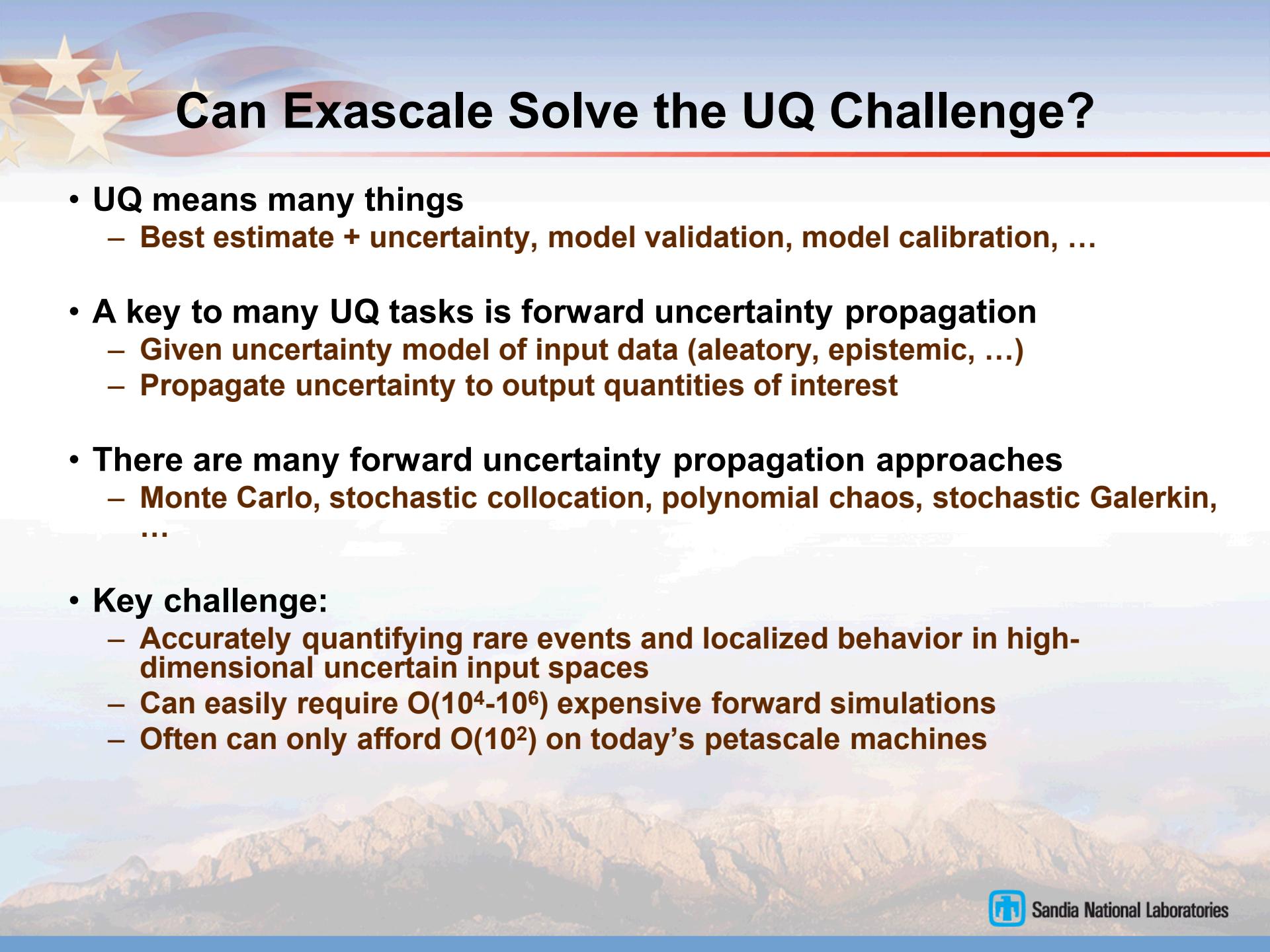


# Exploring Embedded Uncertainty Quantification Methods on Next-Generation Computer Architectures

Eric Phipps ([etphipp@sandia.gov](mailto:etphipp@sandia.gov)),  
H. Carter Edwards, Marta D'Elia, Jonathan Hu, and  
Siva Rajamanickam  
Sandia National Laboratories

**SIAM Conference on Computational Science and  
Engineering**  
**March 13-18, 2015**

**SAND 2015-xxxxC**



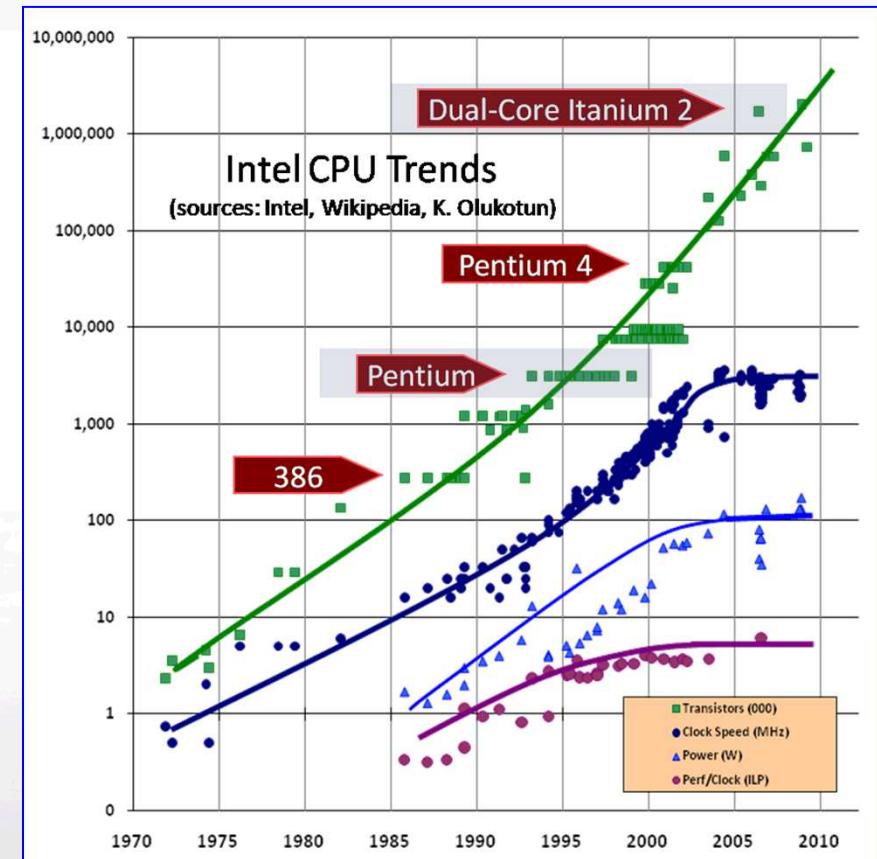
# Can Exascale Solve the UQ Challenge?

- UQ means many things
  - Best estimate + uncertainty, model validation, model calibration, ...
- A key to many UQ tasks is forward uncertainty propagation
  - Given uncertainty model of input data (aleatory, epistemic, ...)
  - Propagate uncertainty to output quantities of interest
- There are many forward uncertainty propagation approaches
  - Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin,  
...
- Key challenge:
  - Accurately quantifying rare events and localized behavior in high-dimensional uncertain input spaces
  - Can easily require  $O(10^4-10^6)$  expensive forward simulations
  - Often can only afford  $O(10^2)$  on today's petascale machines



# Computer Architectures Are Changing Dramatically

- Historically (super)computers have gotten faster by
  - Decreasing transistor size
  - Increasing clock frequency
  - Adding more compute nodes that communicate through an interconnect
- Power requirements make this approach untenable for future performance increases
- Instead performance increases are now achieved through increases in node-level fine-grained parallelism
  - Many, many threads executing simultaneously
  - Memory access, arithmetic on wide vectors
  - Complex memory hierarchies that require threads to share data



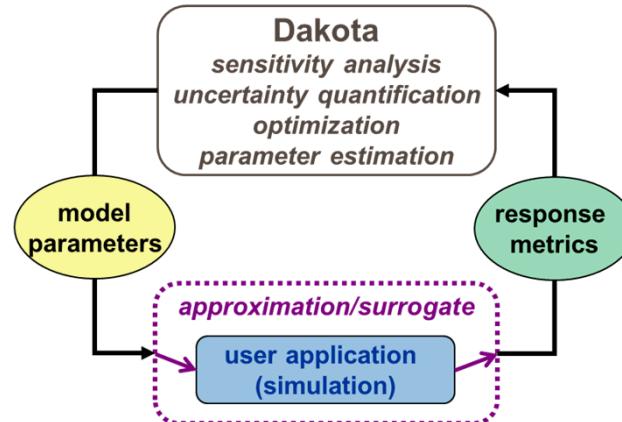
Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”, Dr. Dobb’s Journal



Sandia National Laboratories

# Emerging Architectures Motivate New Approaches to Predictive Simulation

- UQ approaches traditionally implemented as an outer loop:



<http://dakota.sandia.gov>

- Easily exploit coarse-grained sampling parallelism by executing samples in parallel on collections of compute nodes
- Aggregate performance limited by deterministic simulation
- Increasing UQ performance will require
  - Evaluating more samples in parallel
  - Speeding-up each sample evaluation
- Many important scientific simulations will struggle with upcoming architectures
  - Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
  - Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
  - Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)
- Investigate improving performance and scalability through embedded UQ approaches that propagate UQ information at lowest levels of simulation
  - Improve memory access patterns and cache reuse
  - Expose new dimensions of structured fine-grained parallelism
  - Reduce aggregate communication



Sandia National Laboratories



# Polynomial Chaos Expansions (PCE)

- Steady-state finite dimensional model problem:

Find  $u(\xi)$  such that  $f(u, \xi) = 0$ ,  $\xi : \Omega \rightarrow \Gamma \subset R^M$ , density  $\rho$

- (Global) Polynomial Chaos approximation:

$$u(\xi) \approx \hat{u}(\xi) = \sum_{i=0}^P u_i \psi_i(\xi), \quad \langle \psi_i \psi_j \rangle \equiv \int_{\Gamma} \psi_i(y) \psi_j(y) \rho(y) dy = \delta_{ij} \langle \psi_i^2 \rangle$$

- Multivariate orthogonal polynomials
- Typically constructed as tensor products with total order at most N
- Can be adapted (anisotropic, local support)

- Non-intrusive polynomial chaos (NIPC, NISP):

$$u_i = \frac{1}{\langle \psi_i^2 \rangle} \int_{\Gamma} \hat{u}(y) \psi_i(y) \rho(y) dy \approx \frac{1}{\langle \psi_i^2 \rangle} \sum_{k=0}^Q w_k u^k \psi_i(y^k), \quad f(u^k, y^k) = 0$$

- Sparse-grid quadrature methods for scalability to moderate stochastic dimensions



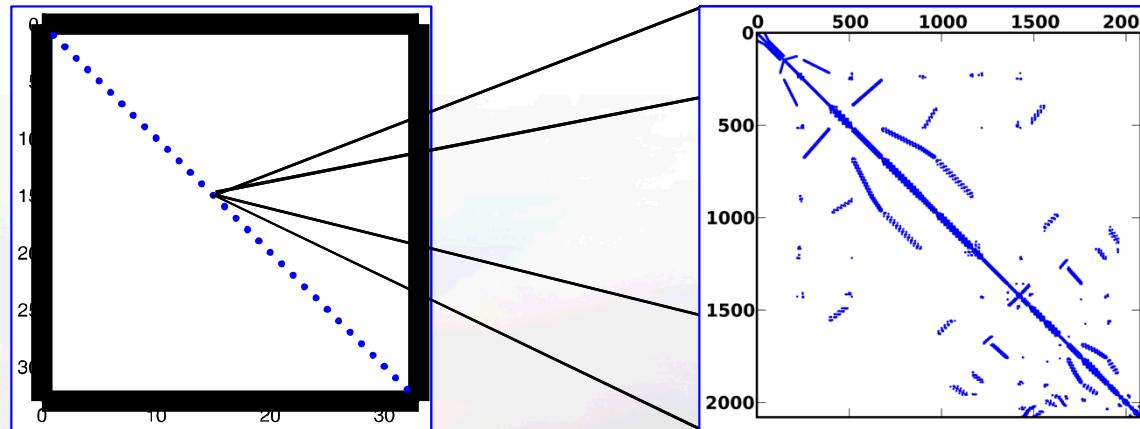
# Simultaneous ensemble propagation

- PDE:

$$f(u, y) = 0$$

- Propagating  $m$  samples – block diagonal (nonlinear) system:

$$F(U, Y) = 0, \quad U = \sum_{i=1}^m e_i \otimes u_i, \quad Y = \sum_{i=1}^m e_i \otimes y_i, \quad F = \sum_{i=1}^m e_i \otimes f(u_i, y_i), \quad \frac{\partial F}{\partial U} = \sum_{i=1}^m e_i e_i^T \otimes \frac{\partial f}{\partial u_i}$$

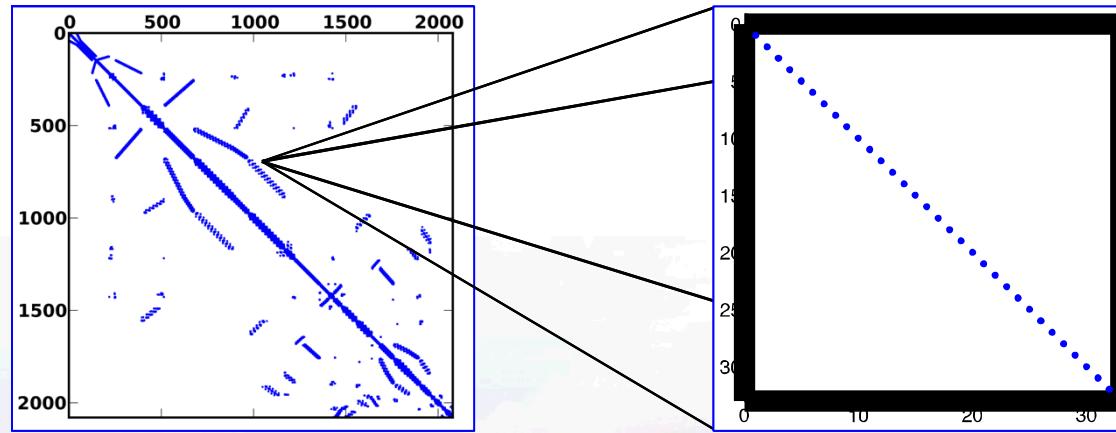


- Spatial DOFs for each sample stored consecutively
- Implemented by ensemble loop around PDE matrix/RHS assembly, solve

# Simultaneous ensemble propagation

- Commute Kronecker products:

$$F_c(U_c, Y_c) = 0, \quad U_c = \sum_{i=1}^m u_i \otimes e_i, \quad Y_c = \sum_{i=1}^m y_i \otimes e_i, \quad F_c = \sum_{i=1}^m f(u_i, y_i) \otimes e_i, \quad \frac{\partial F_c}{\partial U_c} = \sum_{i=1}^m \frac{\partial f}{\partial u_i} \otimes e_i e_i^T$$

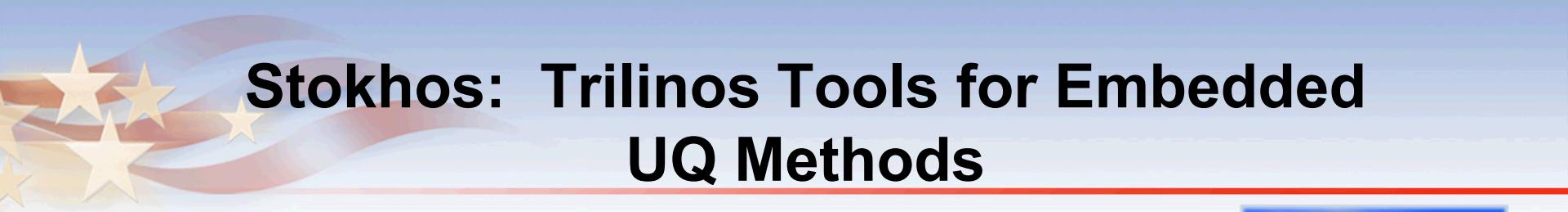


- $m$  sample values for each DOF stored consecutively
- Implemented by placing ensemble loop at “scalar” level of PDE assembly, solve
- Still have loop over ensembles around PDE assembly, solve
  - Suitable for coarse-grained parallelism



# Implementing simultaneous ensemble propagation

- Each sample-dependent scalar replaced by length- $m$  array
  - Automatically reuse non-sample dependent data (e.g., mesh in matrix/RHS assembly, matrix-graph in solvers, ...)
  - Sparse access latency amortized across ensemble (e.g., sparse mat-vecs)
  - Communication latency amortized across ensemble (sparse mat-vecs, dot-products, ...)
  - Math on ensemble naturally maps to vector arithmetic (consistent vectorization)
- Could implement this by rewriting simulation code
  - Expand size of matrix/vector data structures by  $m$
  - Replace each scalar operation by a length- $m$  loop
- Or automatically (in C++) by introducing an *ensemble* scalar type
  - C++ class containing an array with length fixed at compile-time
  - Overload all math operations by mapping operation across array
$$a = \{a_1, \dots, a_m\}, \quad b = \{b_1, \dots, b_m\}, \quad c = a \times b = \{a_1 \times b_1, \dots, a_m \times b_m\}$$
  - Replace floating-point type with ensemble type in
    - Matrix/vector data structures
    - Matrix/RHS assembly routines
    - Solvers



# Stokhos: Trilinos Tools for Embedded UQ Methods

- Provides ensemble scalar type
  - Uses expression templates to fuse loops

$$d = a \times b + c = \{a_1 \times b_1 + c_1, \dots, a_m \times b_m + c_m\}$$



- Enabled in simulation codes through template-based generic programming
  - Template C++ code on scalar type
  - Instantiate template code on ensemble scalar type
- Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
  - Specializes Kokkos data-structures, execution policies to map vectorization parallelism across ensemble
- Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
  - Exploits templating on scalar type
  - Krylov solvers (Belos)
  - Algebraic multigrid preconditioners (MueLu)
  - Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers (Ifpack2)
  - Sparse-direct solvers (Amesos2)



Sandia National Laboratories



# Techniques Prototyped in FENL Mini-App

- Simple nonlinear diffusion equation

$$-\nabla \cdot (\kappa(x, y) \nabla u) + u^2 = 0$$

- 3-D, linear FEM discretization
- 1x1x1 cube, unstructured mesh
- KL truncation of exponential random field model for diffusion coefficient
- Trilinos-couplings package



<http://trilinos.sandia.gov>

- Hybrid MPI+X parallelism

- Traditional MPI domain decomposition using threads within each domain

- Employs Kokkos for thread-scalable

- Graph construction
- PDE matrix/RHS assembly

- Employs Tpetra for distributed linear algebra

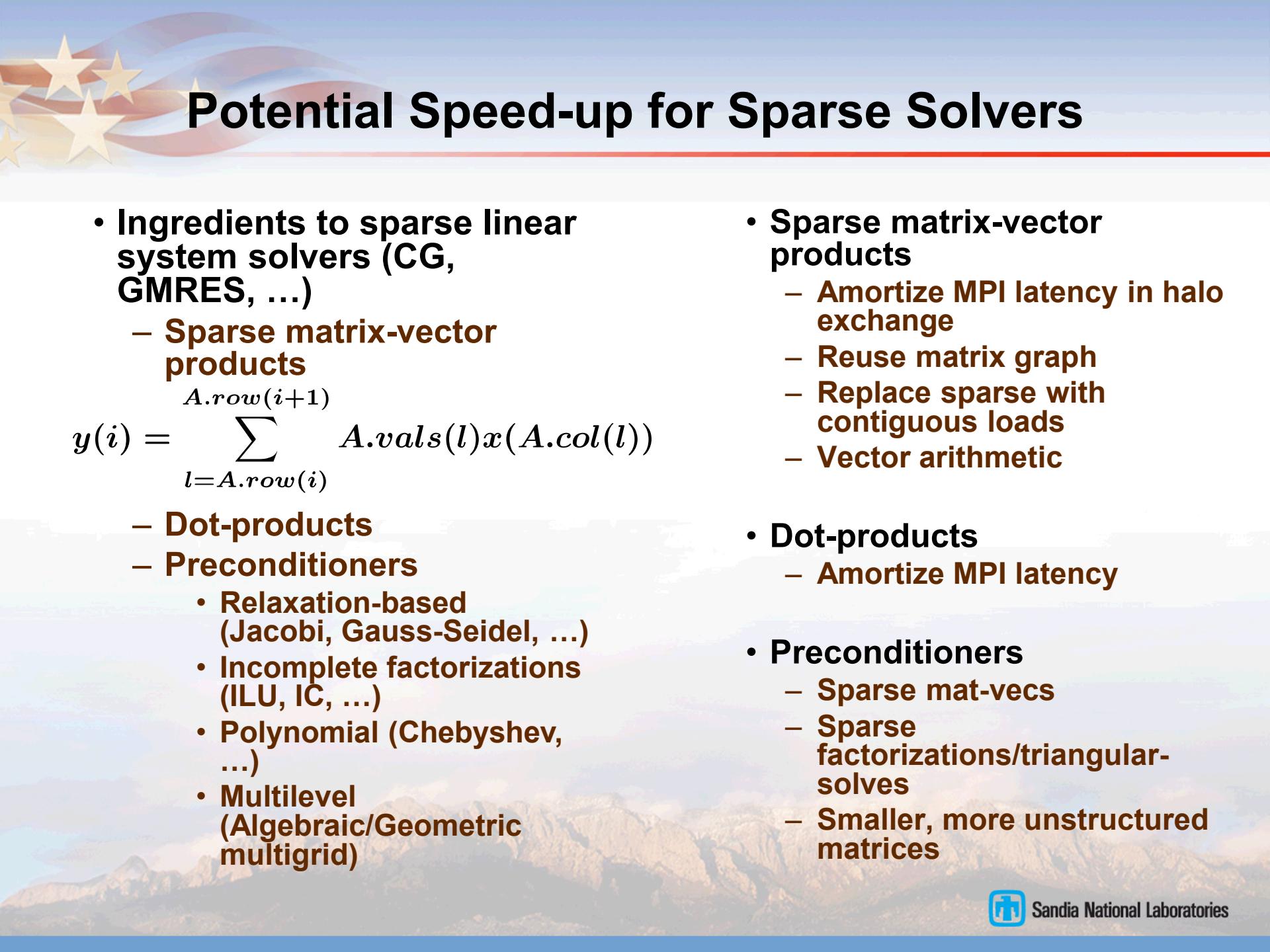
- CG iterative solver (Belos package)
- Smoothed Aggregation AMG preconditioning (MueLu)

- Supports embedded ensemble propagation via Stokhos through entire assembly and solve

- Samples generated via Smolyak sparse grid quadrature for NISP method



Sandia National Laboratories



# Potential Speed-up for Sparse Solvers

- Ingredients to sparse linear system solvers (CG, GMRES, ...)

- Sparse matrix-vector products

$$y(i) = \sum_{l=A.row(i)}^{A.row(i+1)} A.vals(l)x(A.col(l))$$

- Dot-products
  - Preconditioners
    - Relaxation-based (Jacobi, Gauss-Seidel, ...)
    - Incomplete factorizations (ILU, IC, ...)
    - Polynomial (Chebyshev, ...)
    - Multilevel (Algebraic/Geometric multigrid)

- Sparse matrix-vector products

- Amortize MPI latency in halo exchange
  - Reuse matrix graph
  - Replace sparse with contiguous loads
  - Vector arithmetic

- Dot-products

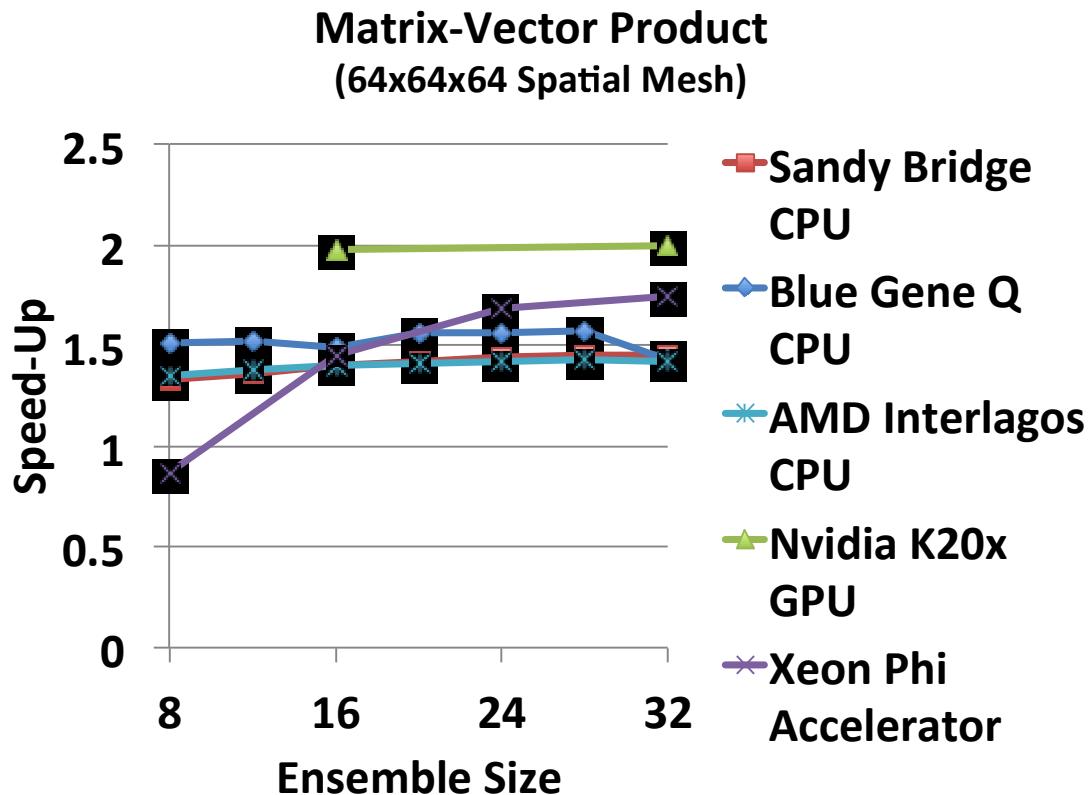
- Amortize MPI latency

- Preconditioners

- Sparse mat-vecs
  - Sparse factorizations/triangular-solves
  - Smaller, more unstructured matrices



# Ensemble Sparse Matrix-Vector Product Speed-Up



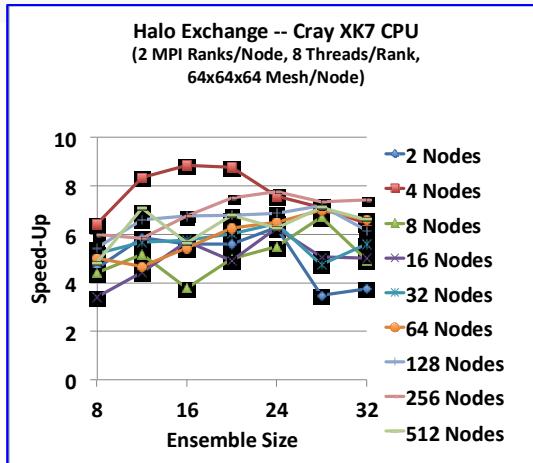
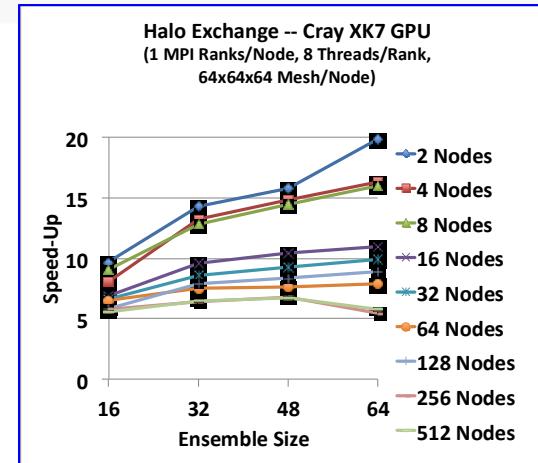
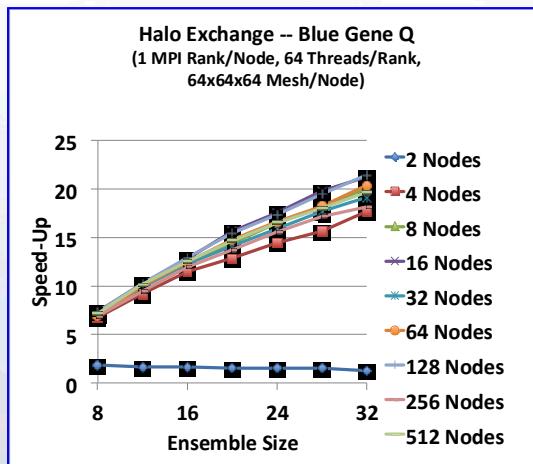
- Speed-up results from
  - Reuse of matrix graph (20%)
  - Replacement of sparse gather with contiguous load
  - Perfect vectorization of multiply-add

$$\text{Speed-Up} = \frac{\text{Ensemble size} \times \text{Time for single sample}}{\text{Time for ensemble}}$$



Sandia National Laboratories

# Interprocessor Halo Exchange

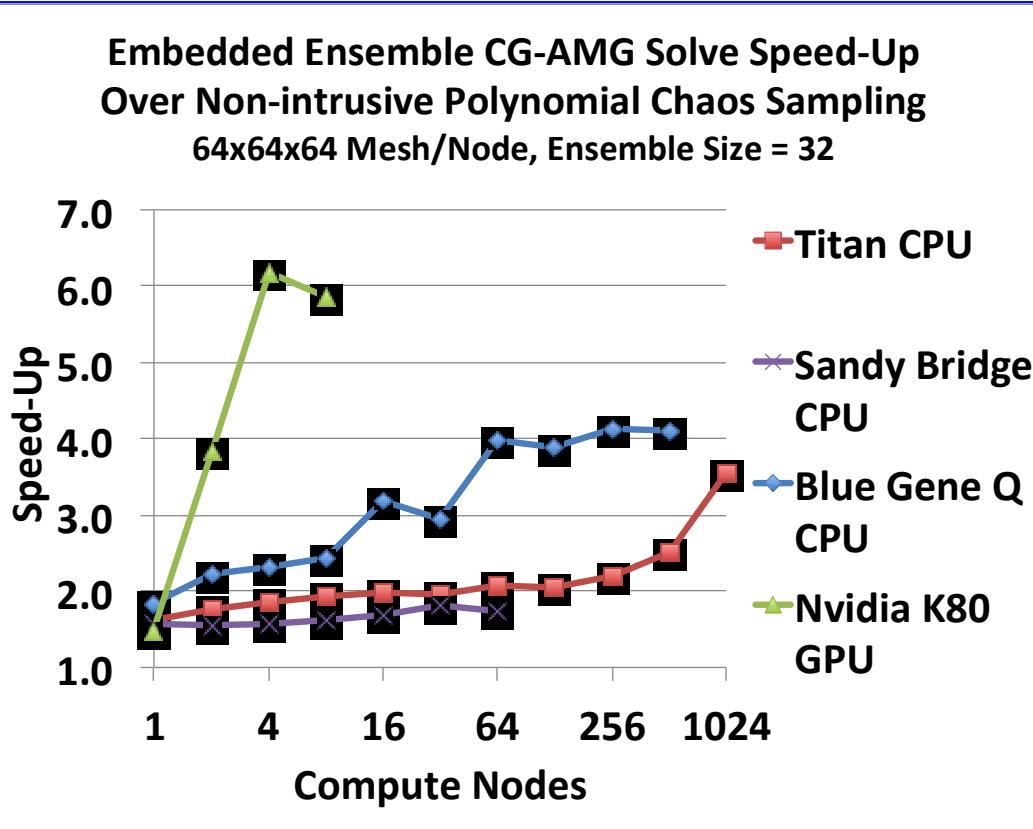


- **Speed-up results from reduced aggregate communication latency**
  - Fewer, larger MPI messages
  - Communication volume is the same

$$\text{Speed-Up} = \frac{\text{Ensemble size} \times \text{Time for single sample}}{\text{Time for ensemble}}$$



# AMG Preconditioned CG Solve

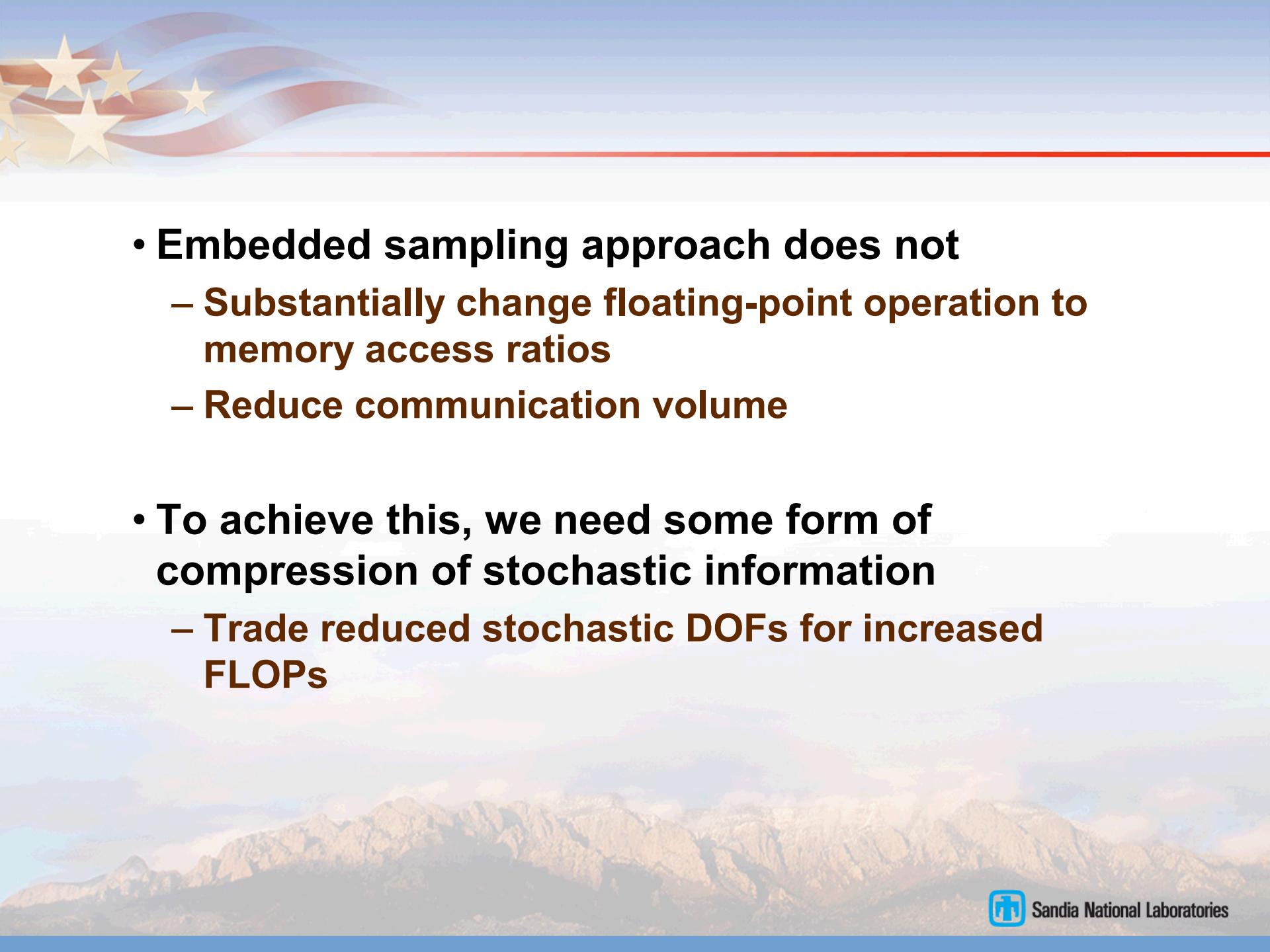


- Smoothed-aggregation algebraic multigrid preconditioning (MueLu)
  - Chebyshev smoothers
  - Sparse-direct coarse-grid solver (Amesos2/Basker)
  - Multi-jagged parallel repartitioning (Zoltan2)
- Assumes number of CG iterations same for all samples
  - True for problems with tame diffusion coefficient on regular meshes
  - See poster by M. D'Elia, PP201

$$\text{Speed-Up} = \frac{\text{Ensemble size} \times \text{Time for single sample}}{\text{Time for ensemble}}$$



Sandia National Laboratories



- **Embedded sampling approach does not**
  - Substantially change floating-point operation to memory access ratios
  - Reduce communication volume
- **To achieve this, we need some form of compression of stochastic information**
  - Trade reduced stochastic DOFs for increased FLOPs



Sandia National Laboratories

# Embedded Stochastic Galerkin UQ Methods

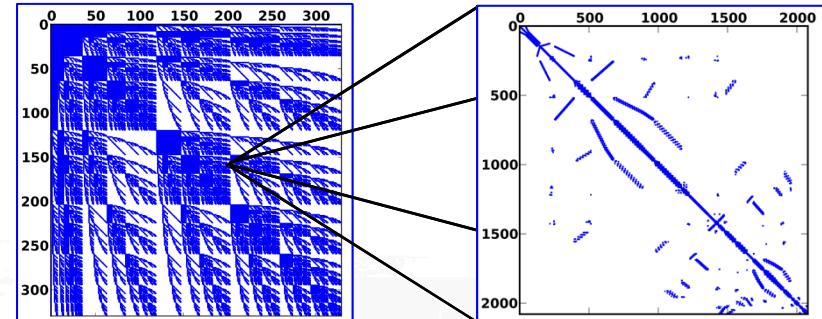
- Stochastic Galerkin method (Ghanem and many, many others...):

$$\hat{u}(\xi) = \sum_{i=0}^P u_i \psi_i(\xi) \rightarrow f_i(u_0, \dots, u_P) \equiv \frac{1}{\langle \psi_i^2 \rangle} \int_{\Gamma} f(\hat{u}(y), y) \psi_i(y) \rho(y) dy = 0, \quad i = 0, \dots, P$$

- Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

$$F(U) = 0, \quad U = \sum_{i=1}^P e_i \otimes u_i, \quad F = \sum_{i=1}^P e_i \otimes f_i$$

$$\frac{\partial F}{\partial U} \approx \sum_{k=0}^P G_k \otimes A_k, \quad G_k(i, j) \equiv C_{ijk} \equiv \frac{\langle \psi_i \psi_j \psi_k \rangle}{\langle \psi_i^2 \rangle}$$



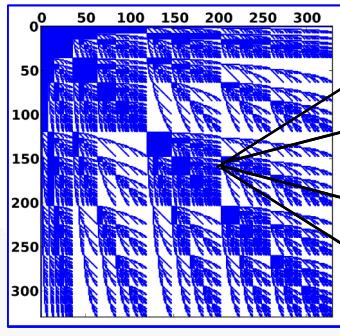
- Many fewer stochastic degrees-of-freedom for comparable level of accuracy:

| N = 3 |     |     | N = 5 |      |       |
|-------|-----|-----|-------|------|-------|
| M     | P+1 | Q+1 | M     | P+1  | Q+1   |
| 1     | 4   | 5   | 1     | 6    | 7     |
| 3     | 20  | 39  | 3     | 56   | 153   |
| 5     | 56  | 151 | 5     | 252  | 933   |
| 7     | 120 | 407 | 7     | 792  | 3697  |
| 9     | 220 | 871 | 9     | 2002 | 11581 |

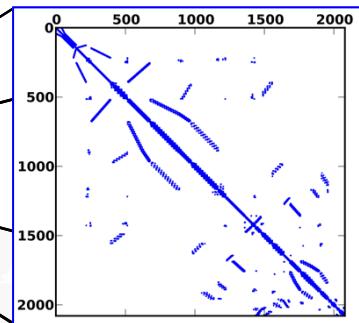
# Commuted SG Structure for Emerging Architectures

- DOF layout can be reorganized in similar manner to embedded sampling:
  - Store PC coefficients for each spatial DOF consecutively

$$A^{trad} = \sum_{k=0}^P G_k \otimes A_k$$

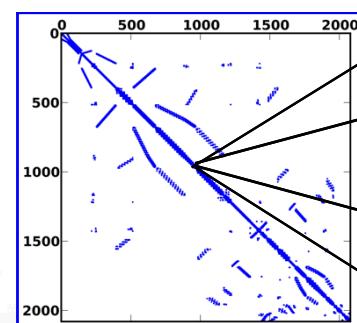


Stochastic sparsity

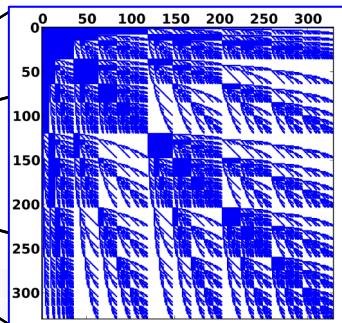


Spatial sparsity

$$A^{com} = \sum_{k=0}^P A_k \otimes G_k$$



Spatial sparsity



Stochastic sparsity



- Implemented in same manner as embedded sample propagation

- Scalars replace by PC coefficient arrays
- Similar C++ operator overloading approach:

$$a = \sum_{i=0}^P a_i \psi_i, \quad b = \sum_{j=0}^P b_j \psi_j, \quad c = ab \approx \sum_{k=0}^P c_k \psi_k, \quad c_k = \sum_{i,j=0}^P a_i b_j \frac{\langle \psi_i \psi_j \psi_k \rangle}{\langle \psi_k^2 \rangle}$$

- Approach implemented within Stokhos package



Sandia National Laboratories

# Commuted SG Matrix-Vector Multiply

$$Y^{com} = A^{com} X^{com} \implies \sum_{i=0}^P y_i \otimes e_i = \left( \sum_{k=0}^P A_k \otimes G_k \right) \left( \sum_{j=0}^P x_j \otimes e_j \right)$$

- **Two level algorithm**
  - Outer: **sparse (CRS) matrix-vector multiply algorithm**
  - Inner: **sparse stochastic Galerkin product**

$$\aleph_A(l) = \{m \mid A_0(l, m) \neq 0\} \quad \aleph_C(i) = \{(j, k) \mid C(i, j, k) \neq 0\}$$

stochastic basis

stochastic bases sum

stochastic basis

stochastic basis

triple product

$$y(i, l) = \sum_{m \in \aleph_A(l)} \sum_{(j, k) \in \aleph_C(i)} A(k, l, m) x(j, m) C(i, j, k)$$

FEM basis

FEM bases sum

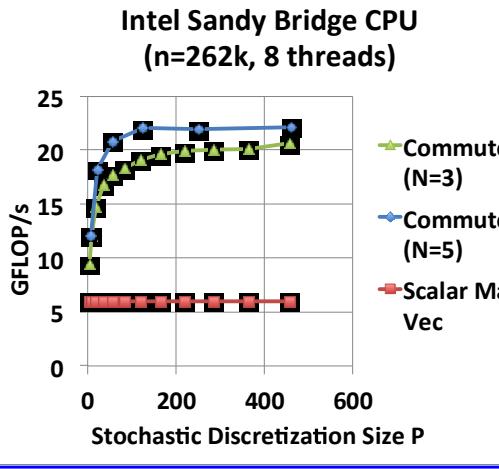
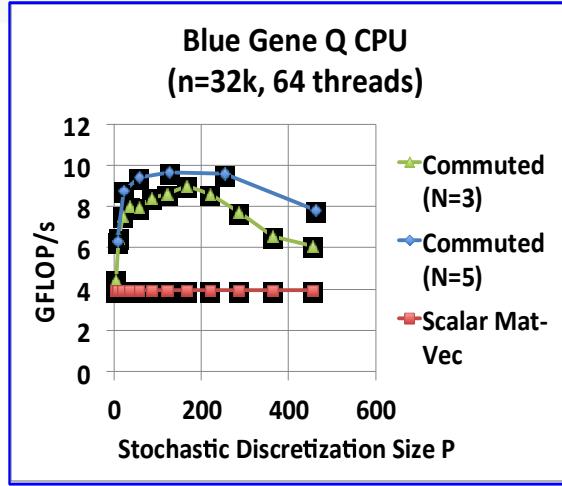
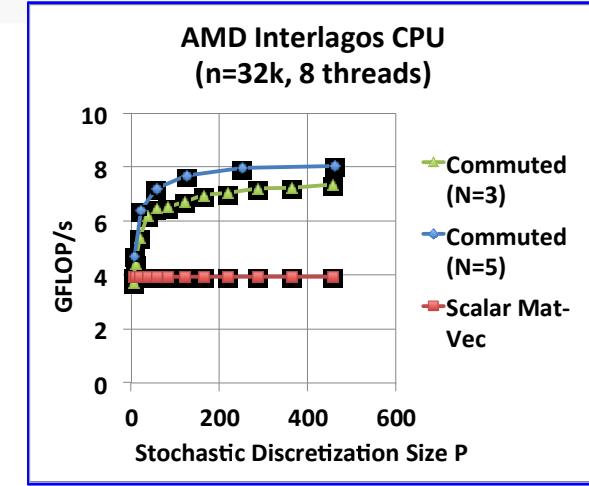
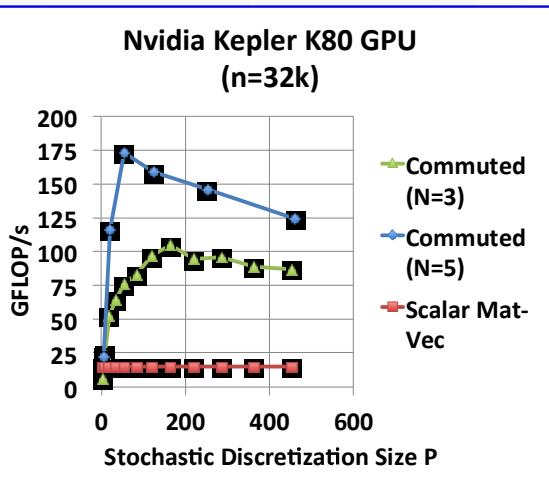
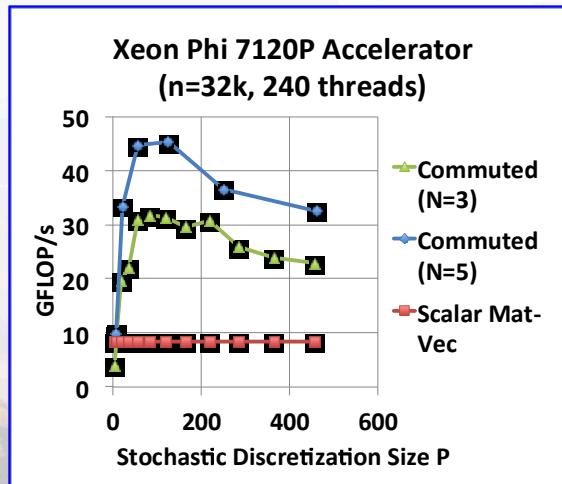
FEM basis

FEM basis



Sandia National Laboratories

# Sparse Matrix-Vector Product\*



- Increased throughput arises from substantial reuse within PCE multiply



# Stochastic Galerkin Preconditioning

- Preconditioning stochastic Galerkin system is a significant challenge
- Common approach is mean-based preconditioning:

$$(A^{com})^{-1} \approx M_{mean}^{com} = M_0 \otimes I_P, \quad M_0 \approx A_0^{-1}$$

- Applying mean preconditioner in commuted layout is very efficient:

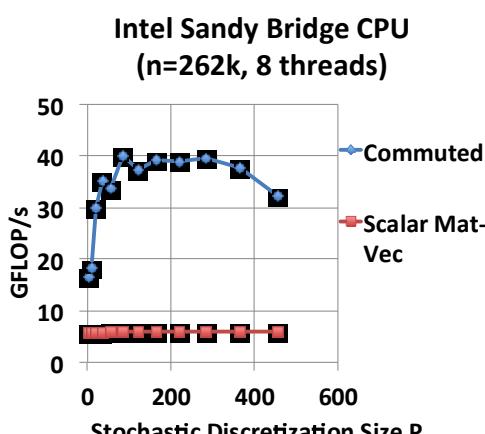
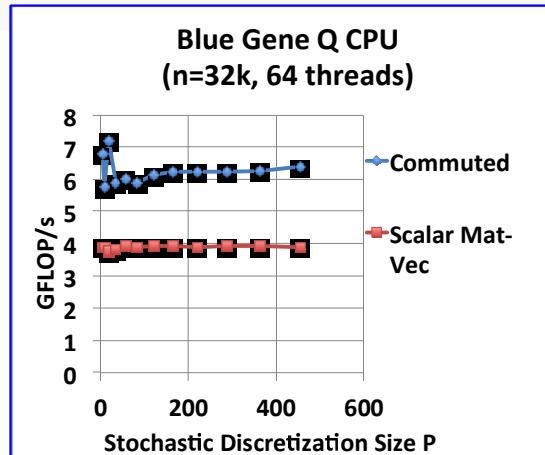
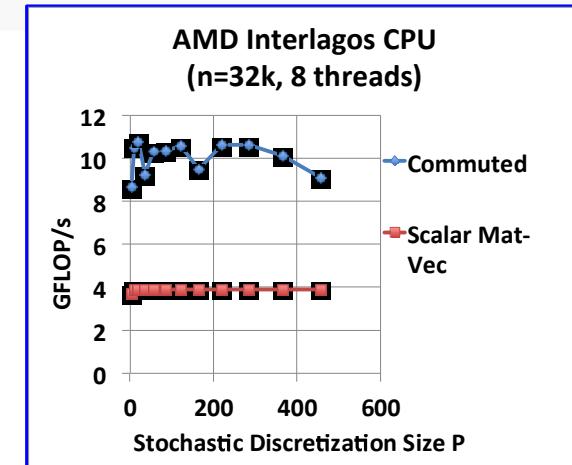
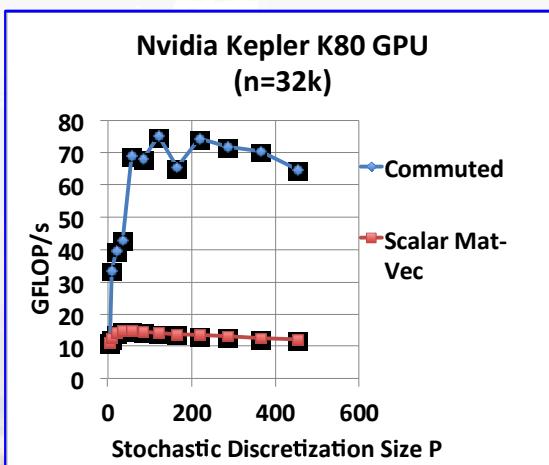
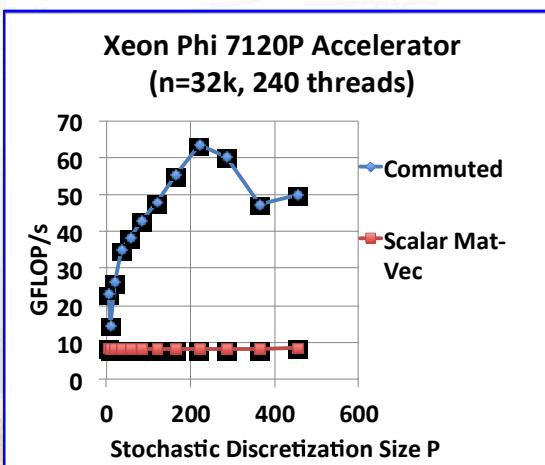
$$\begin{aligned} Y^{com} = M_{mean}^{com} X^{com} &\implies \sum_{i=0}^P y_i \otimes e_i = \left( M_0 \otimes I_P \right) \left( \sum_{j=0}^P x_j \otimes e_j \right) \\ &\implies [y_0, \dots, y_P] = M_0 [x_0, \dots, x_P] \end{aligned}$$

- Matrix-times-multivector with row-wise layout
- Vectorize over multivector columns
- Reuse of matrix/graph entries

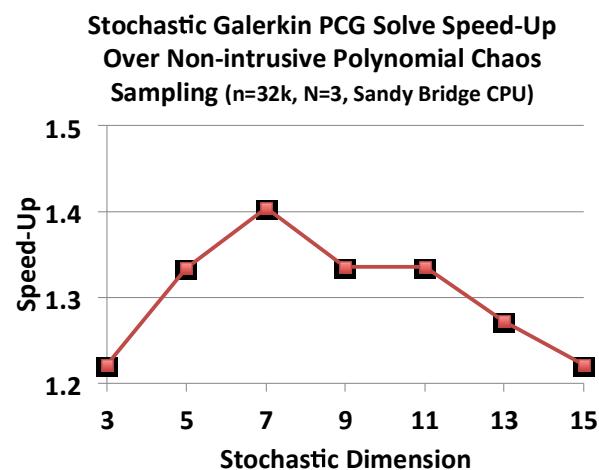
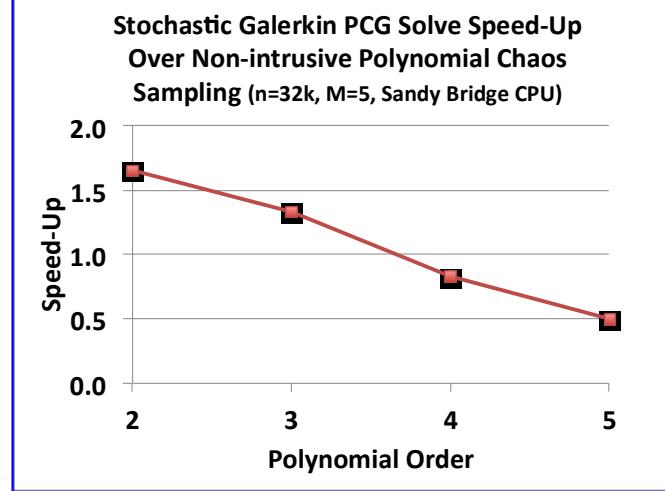
- Applying preconditioner is often dominant cost



# Mean Matrix-Vector Multiply



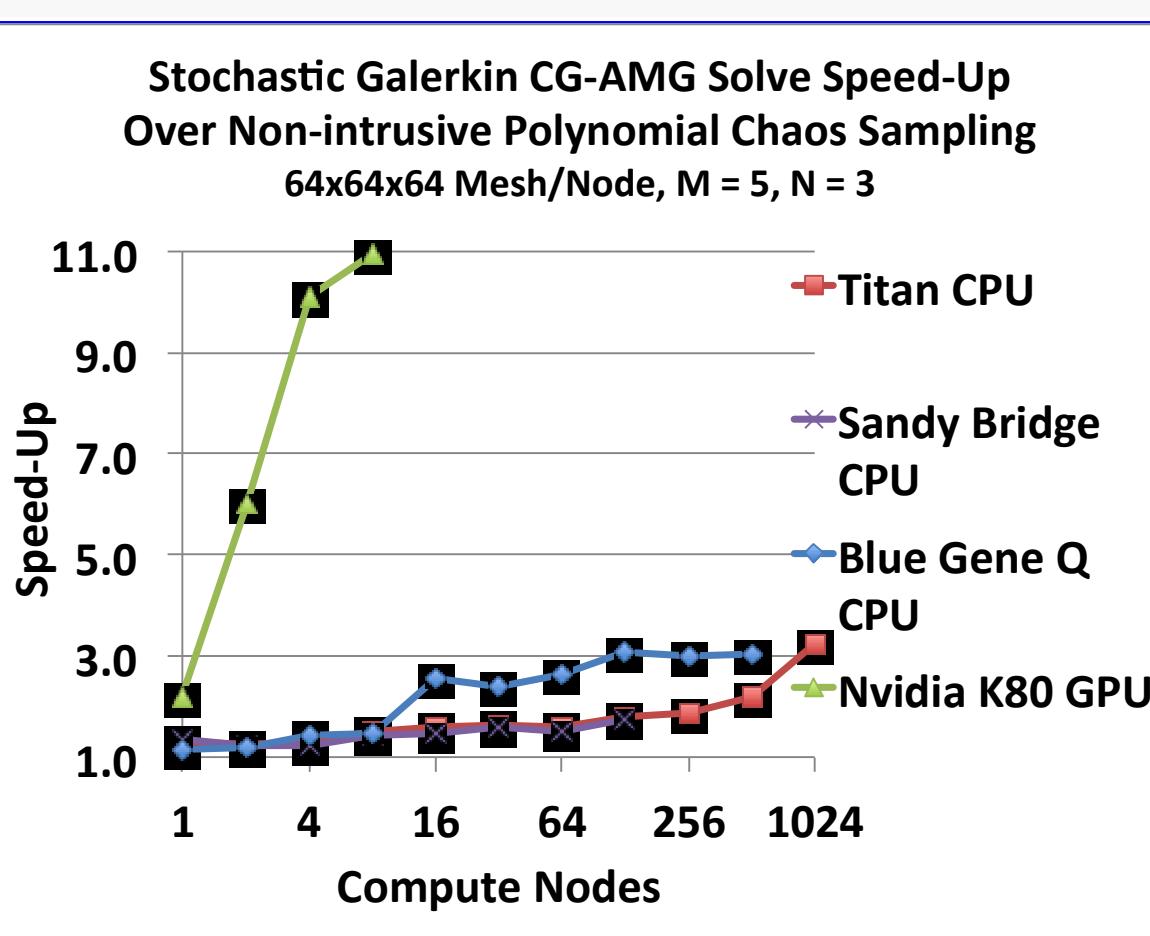
# SG Method Performs Well Over Moderate Range of Stochastic Problem Size



- Speed-up in time-to-solution of SG method compared to non-intrusive sampling
  - Smolyak sparse-grids for building PC basis
  - Gaussian abscissas
  - Comparable accuracy between SG solution and NISP solution
- Increased floating-point throughput (mat-vec, prec-vec) + reduced prec applies (P/Q) offset by increased FLOPs in mat-vec

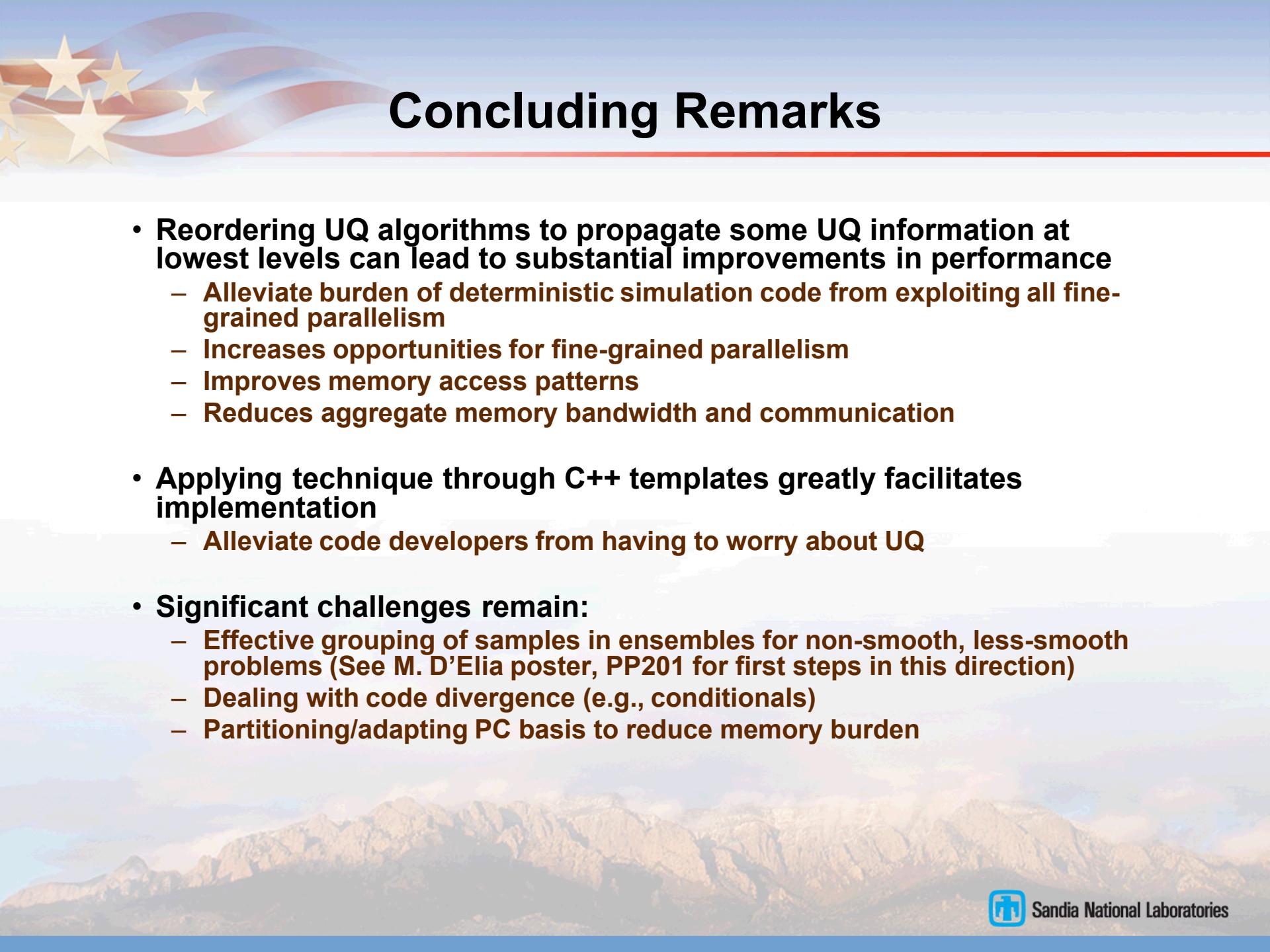


# AMG Preconditioned CG Solve



- Speed-up arises from:
  - Increased floating-point throughput
  - Reduced preconditioner applies
  - Reduced aggregate communication volume





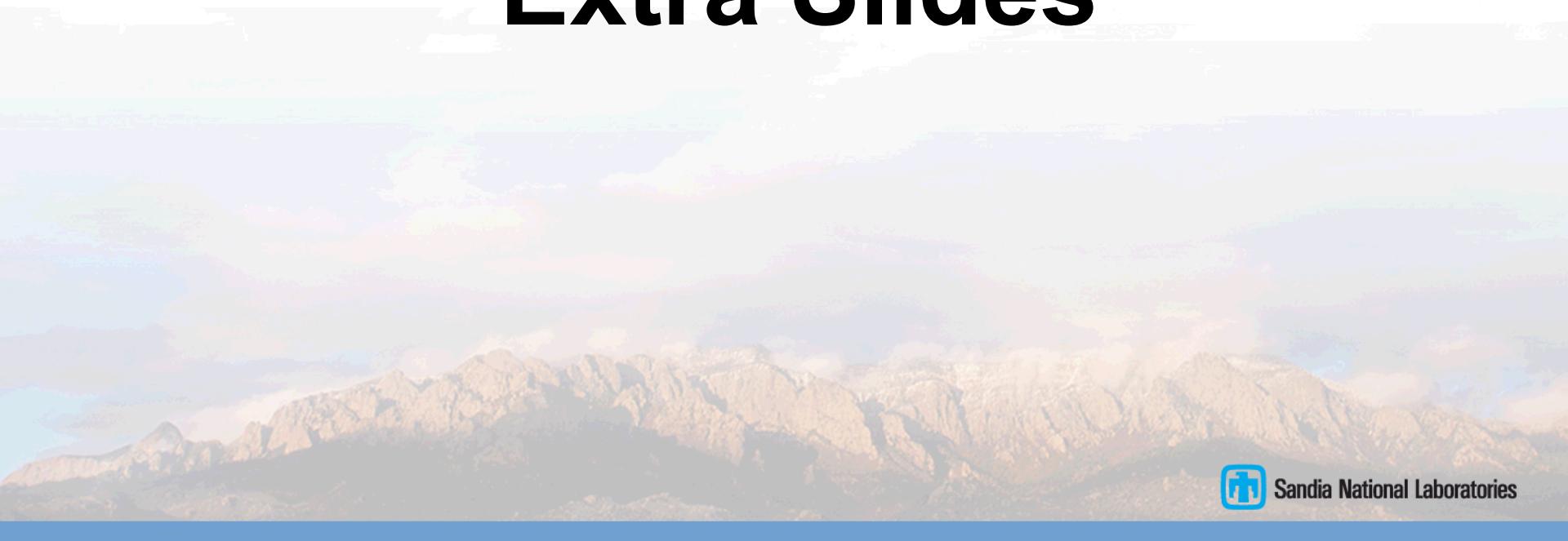
# Concluding Remarks

- **Reordering UQ algorithms to propagate some UQ information at lowest levels can lead to substantial improvements in performance**
  - Alleviate burden of deterministic simulation code from exploiting all fine-grained parallelism
  - Increases opportunities for fine-grained parallelism
  - Improves memory access patterns
  - Reduces aggregate memory bandwidth and communication
- **Applying technique through C++ templates greatly facilitates implementation**
  - Alleviate code developers from having to worry about UQ
- **Significant challenges remain:**
  - Effective grouping of samples in ensembles for non-smooth, less-smooth problems (See M. D'Elia poster, PP201 for first steps in this direction)
  - Dealing with code divergence (e.g., conditionals)
  - Partitioning/adapting PC basis to reduce memory burden



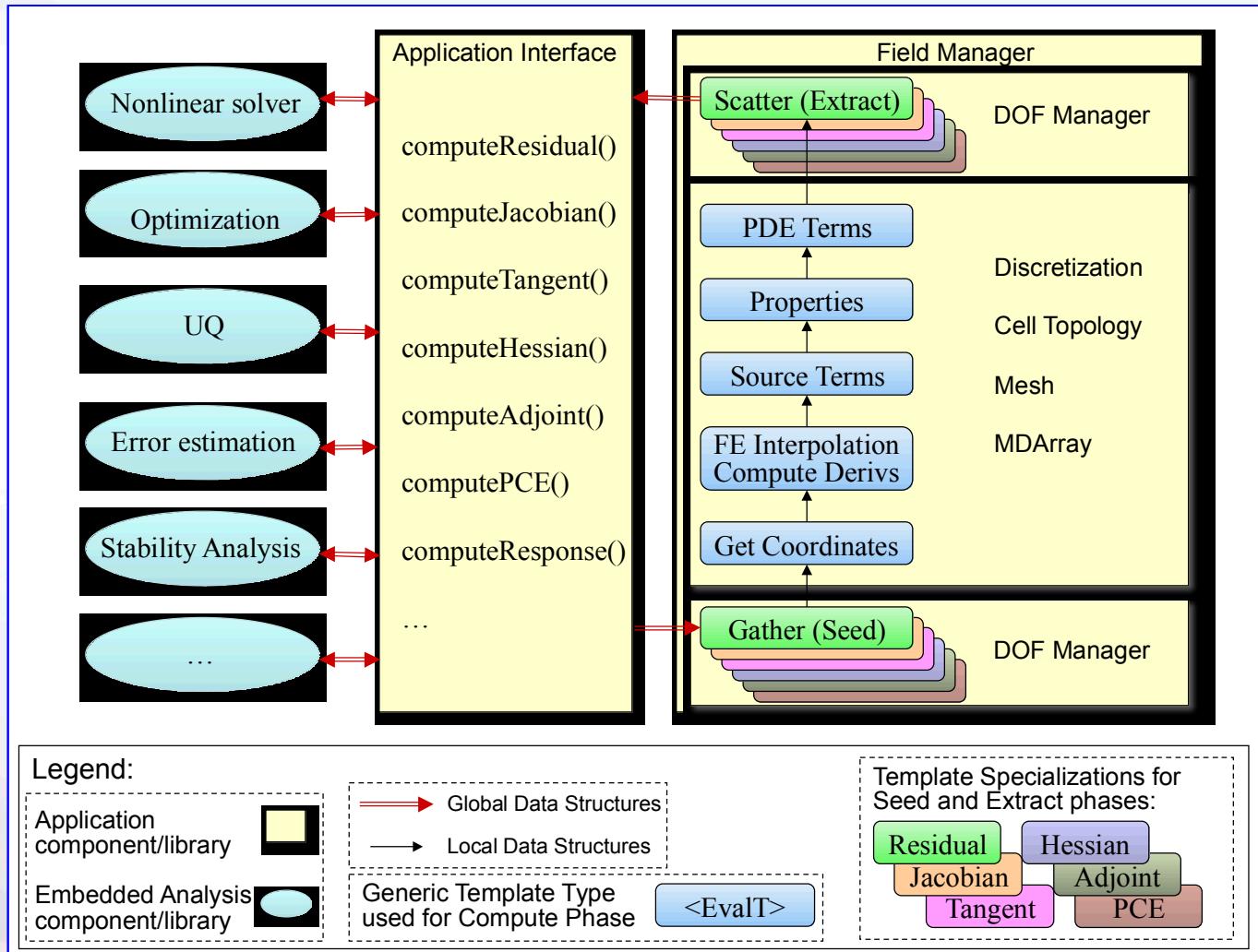


# Extra Slides



Sandia National Laboratories

# Templated Components Orthogonalize Physics and Embedded Algorithm R&D



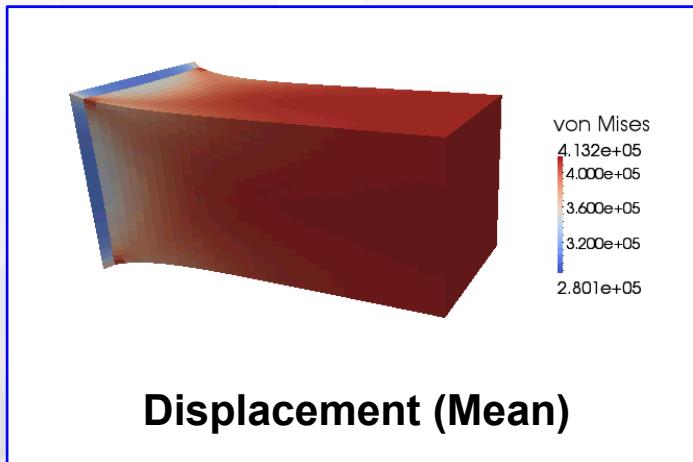
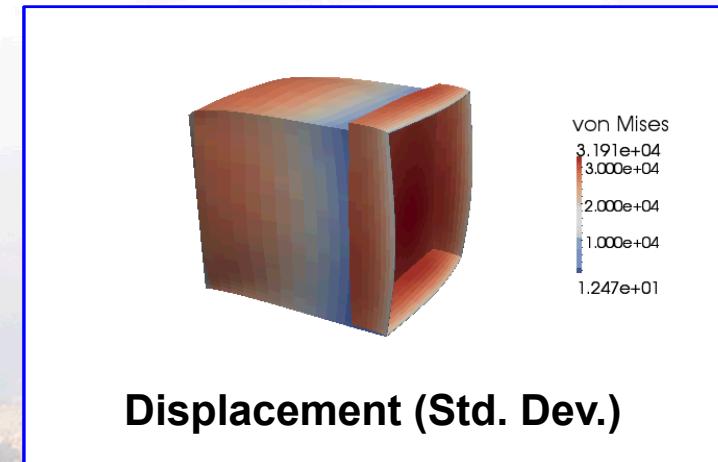
Sandia National Laboratories

# 3-D Linear & Nonlinear Elasticity Model Problems<sup>1</sup>

- Linear finite elements, 32x32x32 mesh
  - Nonlinear: neo-Hookean strain energy potential
- Uncertain Young's modulus random field
  - Truncated KL expansion (exponential covariance)
- Albany/LCM code (Salinger, Ostien, et al)
  - Trilinos discretization and solver tools
  - Automatic differentiation
  - Embedded UQ
  - MPI parallelism



<http://trilinos.sandia.gov>



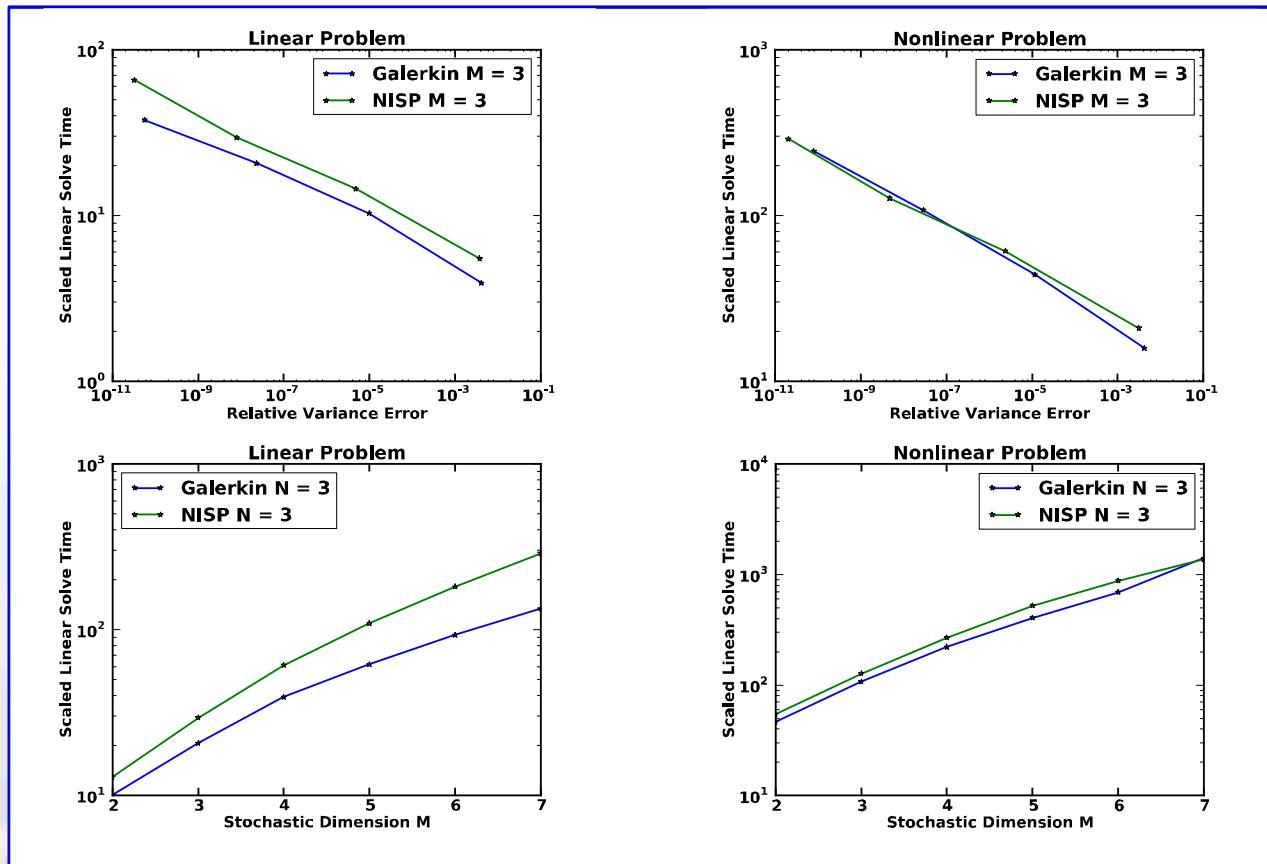
<sup>1</sup>Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013.



Sandia National Laboratories

# Solve Performance

- Comparison to non-intrusive polynomial chaos/spectral projection (NISP)
  - Isotropic sparse-grid quadrature, Gauss-Legendre abscissas, linear growth rules
  - GMRES, algebraic multigrid preconditioning



# Kokkos: A Manycore Device Performance Portability Library for C++ HPC Applications\*

- Standard C++ library, not a language extension
  - Core: multidimensional arrays, parallel execution, atomic operations
  - Containers: Thread-scalable implementations of common data structures (vector, map, CRS graph, ...)
  - LinAlg: Sparse matrix/vector linear algebra
- Relies heavily on C++ template meta-programming to introduce abstraction without performance penalty
  - Execution spaces (CPU, GPU, ...)
  - Memory spaces (Host memory, GPU memory, scratch-pad, texture cache, ...)
  - Layout of multidimensional data in memory
  - Scalar type



<http://trilinos.sandia.gov>

\*H.C. Edwards, D. Sunderland, C. Trott (SNL)

## Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

atories

# Tpetra: Foundational Layer / Library for Sparse Linear Algebra Solvers on Next-Generation Architectures\*

- Tpetra: Sandia's templated C++ library for distributed memory (MPI) sparse linear algebra
  - Builds distributed memory linear algebra on top of Kokkos library
  - Distributed memory vectors, multi-vectors, and sparse matrices
  - Data distribution maps and communication operations
  - Fundamental computations: axpy, dot, norm, matrix-vector multiply, ...
  - Templated on “scalar” type: float, double, automatic differentiation, polynomial chaos, ensembles, ...
- Higher level solver libraries built on Tpetra
  - Preconditioned iterative algorithms (Belos)
  - Incomplete factorization preconditioners (Ifpack2, ShyLU)
  - Multigrid solvers (MueLu)
  - All templated on the scalar type

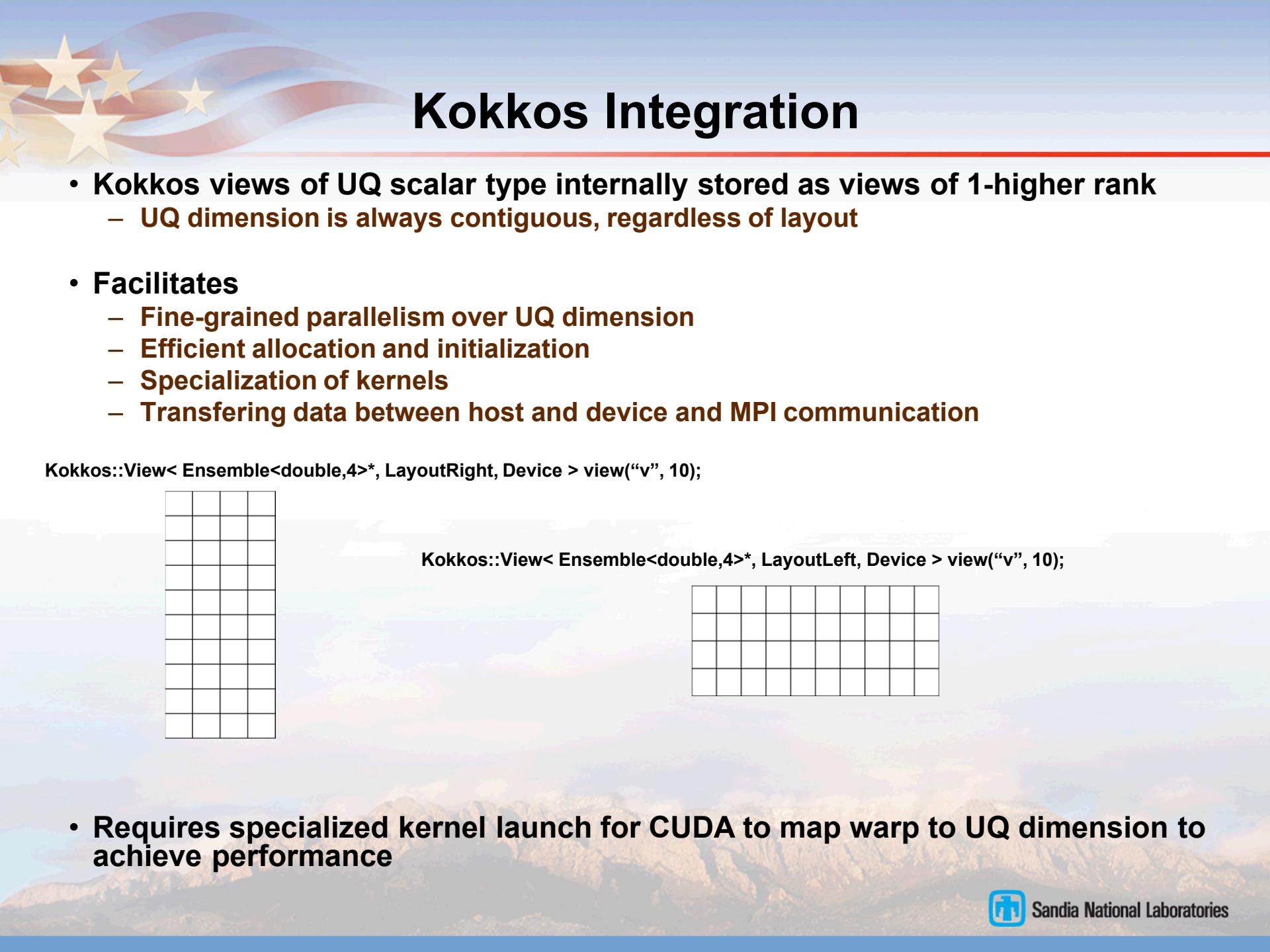


<http://trilinos.sandia.gov>

\*M. Heroux, M. Hoemmen, et al (SNL)



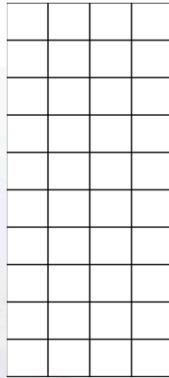
Sandia National Laboratories



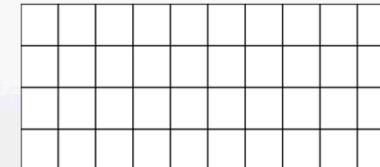
# Kokkos Integration

- Kokkos views of UQ scalar type internally stored as views of 1-higher rank
  - UQ dimension is always contiguous, regardless of layout
- Facilitates
  - Fine-grained parallelism over UQ dimension
  - Efficient allocation and initialization
  - Specialization of kernels
  - Transferring data between host and device and MPI communication

```
Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view("v", 10);
```



```
Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view("v", 10);
```

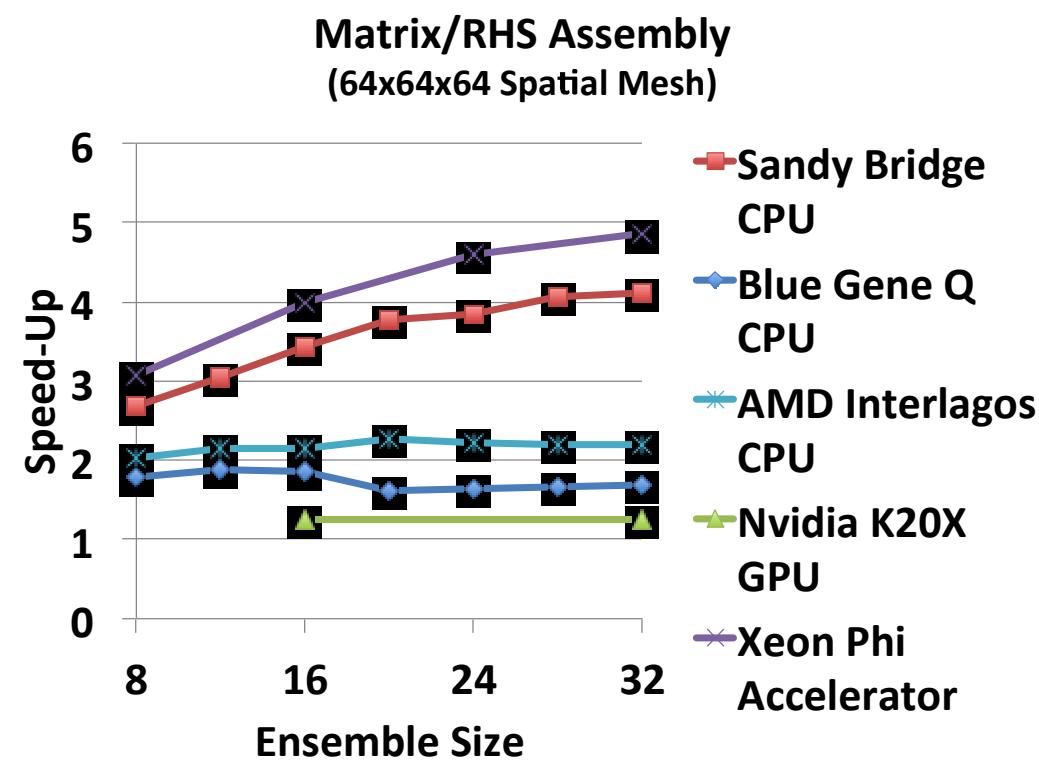


- Requires specialized kernel launch for CUDA to map warp to UQ dimension to achieve performance



Sandia National Laboratories

# PDE Matrix/RHS Assembly



# Embedded Ensemble Scalar Type for PDE “Assembly”

- Evaluation of discrete SG residual/Jacobian entries is a significant challenge for nonlinear problems
- For general nonlinear problems, found a “pseudospectral” approach most-effective:

$$F_i = \int_{\Gamma} f(\hat{u}(y), y) \psi_i(y) \rho(y) dy \approx \sum_{k=0}^P w_k f(\hat{u}(y_k), y_k) \psi_i(y_k)$$

- Sparse-grid quadrature on residual/Jacobian (“non-intrusive”)
- Requires only two additional assembly kernels: PCE evaluation and quadrature
- Use ensemble scalar type for evaluating residual/Jacobian at multiple quadrature points simultaneously

# Stochastic Galerkin Assembly

