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Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin, 

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines



Computer Architectures Are Changing 
Dramatically

• Historically (super)computers have gotten 
faster by

– Decreasing transistor size
– Increasing clock frequency
– Adding more compute nodes that 

communicate through an interconnect

• Power requirements make this approach 
untenable for future performance increases

• Instead performance increases are now 
achieved through increases in node-level 
fine-grained parallelism

– Many, many threads executing 
simultaneously

– Memory access, arithmetic on wide vectors
– Complex memory hierarchies that require 

threads to share data

Herb Sutter, “The Free Lunch Is Over: A 
Fundamental Turn Toward Concurrency in 
Software”, Dr. Dobb’s Journal 



Emerging Architectures Motivate New 
Approaches to Predictive Simulation

• UQ approaches traditionally implemented as an outer loop:

– Easily exploit coarse-grained sampling parallelism by executing samples in parallel on collections of compute 
nodes

– Aggregate performance limited by deterministic simulation

• Increasing UQ performance will require
– Evaluating more samples in parallel
– Speeding-up each sample evaluation

• Many important scientific simulations will struggle with upcoming architectures
– Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
– Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
– Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

• Investigate improving performance and scalability through embedded UQ approaches that propagate UQ 
information at lowest levels of simulation

– Improve memory access patterns and cache reuse
– Expose new dimensions of structured fine-grained parallelism
– Reduce aggregate communication

http://dakota.sandia.gov 

http://trilinos.sandia.gov


Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

• (Global) Polynomial Chaos approximation:

– Multivariate orthogonal polynomials
– Typically constructed as tensor products with total order at most N
– Can be adapted (anisotropic, local support)

• Non-intrusive polynomial chaos (NIPC, NISP):

– Sparse-grid quadrature methods for scalability to moderate stochastic dimensions



Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

– Spatial DOFs for each sample stored consecutively
– Implemented by ensemble loop around PDE matrix/RHS assembly, solve



Simultaneous ensemble propagation

• Commute Kronecker products:

– m sample values for each DOF stored consecutively
– Implemented by placing ensemble loop at “scalar” level of PDE assembly, solve
– Still have loop over ensembles around PDE assembly, solve

• Suitable for coarse-grained parallelism



Implementing simultaneous ensemble 
propagation

• Each sample-dependent scalar replaced by length-m array
– Automatically reuse non-sample dependent data (e.g., mesh in matrix/RHS assembly, 

matrix-graph in solvers, …)
– Sparse access latency amortized across ensemble (e.g., sparse mat-vecs)
– Communication latency amortized across ensemble (sparse mat-vecs, dot-products, …)
– Math on ensemble naturally maps to vector arithmetic (consistent vectorization)

• Could implemented this by rewriting simulation code
– Expand size of matrix/vector data structures by m
– Replace each scalar operation by a length-m loop

• Or automatically (in C++) by introducing an ensemble scalar type
– C++ class containing an array with length fixed at compile-time
– Overload all math operations by mapping operation across array

– Replace floating-point type with ensemble type in
• Matrix/vector data structures
• Matrix/RHS assembly routines
• Solvers 



Stokhos:  Trilinos Tools for Embedded 
UQ Methods

• Provides ensemble scalar type
– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic programming
– Template C++ code on scalar type

– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism 

across ensemble

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type

– Krylov solvers (Belos)

– Algebraic multigrid preconditioners (MueLu)

– Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers 
(Ifpack2)

– Sparse-direct solvers (Amesos2)

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL truncation of exponential random field model for diffusion coefficient
– Trilinos-couplings package

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE matrix/RHS assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and 
solve

– Samples generated via Smolyak sparse grid quadrature for NISP method

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Potential Speed-up for Sparse Solvers

• Sparse matrix-vector 
products
– Amortize MPI latency in halo 

exchange
– Reuse matrix graph
– Replace sparse with 

contiguous loads
– Vector arithmetic

• Dot-products
– Amortize MPI latency

• Preconditioners
– Sparse mat-vecs
– Sparse 

factorizations/triangular-
solves

– Smaller, more unstructured 
matrices

• Ingredients to sparse linear 
system solvers (CG, 
GMRES, …)
– Sparse matrix-vector 

products

– Dot-products
– Preconditioners

• Relaxation-based 
(Jacobi, Gauss-Seidel, …)

• Incomplete factorizations 
(ILU, IC, …)

• Polynomial (Chebyshev, 
…)

• Multilevel 
(Algebraic/Geometric 
multigrid)



Ensemble Sparse Matrix-Vector Product 
Speed-Up
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• Speed-up results from
– Reuse of matrix 

graph (20%)
– Replacement of 

sparse gather with 
contiguous load

– Perfect vectorization
of multiply-add



Interprocessor Halo Exchange
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• Speed-up results from reduced 
aggregate communication latency

– Fewer, larger MPI messages
– Communication volume is the same



AMG Preconditioned CG Solve
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• Smoothed-aggregation 
algebraic multigrid
preconditioning (MueLu)

– Chebyshev smoothers
– Sparse-direct coarse-

grid solver 
(Amesos2/Basker)

– Multi-jagged parallel 
repartioning (Zoltan2)

• Assumes number of CG 
iterations same for all 
samples

– True for problems with 
tame diffusion 
coefficient on regular 
meshes

– See poster by M. D’Elia, 
PP201



• Embedded sampling approach does not

– Substantially change floating-point operation to 
memory access ratios

– Reduce communication volume

• To achieve this, we need some form of 
compression of stochastic information

– Trade reduced stochastic DOFs for increased 
FLOPs



• Stochastic Galerkin method (Ghanem and many, many others…):

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Many fewer stochastic degrees-of-freedom for comparable level of accuracy:
Stochastic sparsity Spatial sparsity

Embedded Stochastic Galerkin UQ Methods

N = 3 N = 5

M P+1 Q+1 M P+1 Q+1

1 4 5 1 6 7

3 20 39 3 56 153

5 56 151 5 252 933

7 120 407 7 792 3697

9 220 871 9 2002 11581



Commuted SG Structure for Emerging 
Architectures

• DOF layout can be reorganized in similar manner to embedded sampling:
– Store PC coefficients for each spatial DOF consecutively

• Implemented in same manner as embedded sample propagation
– Scalars replace by PC coefficient arrays
– Similar C++ operator overloading approach:

– Approach implemented within Stokhos package

Stochastic sparsity Spatial sparsity Stochastic sparsitySpatial sparsity



Commuted SG Matrix-Vector Multiply

• Two level algorithm

– Outer: sparse (CRS) matrix-vector multiply algorithm

– Inner: sparse stochastic Galerkin product

stochastic 
basis

stochastic 
basis

FEM 
basis

FEM 
basis

FEM 
basis

stochastic 
basis

triple 
product

stochastic 
bases sum

FEM bases 
sum



Sparse Matrix-Vector Product*

*Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013. 

0

2

4

6

8

10

12

0 200 400 600
G

FL
O

P
/s

Stochas c Discre za on Size P

Blue Gene Q CPU
(n=32k, 64 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

2

4

6

8

10

12

0 200 400 600
G

FL
O

P
/s

Stochas c Discre za on Size P

Blue Gene Q CPU
(n=32k, 64 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

25

50

75

100

125

150

175

200

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Nvidia Kepler K80 GPU
(n=32k)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

25

50

75

100

125

150

175

200

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Nvidia Kepler K80 GPU
(n=32k)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

10

20

30

40

50

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

10

20

30

40

50

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

5

10

15

20

25

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=262k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

5

10

15

20

25

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=262k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

2

4

6

8

10

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

AMD Interlagos CPU
(n=32k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

2

4

6

8

10

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

AMD Interlagos CPU
(n=32k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

• Increased throughput 
arises from substantial 
reuse within PCE multiply



Stochastic Galerkin Preconditioning

• Preconditioning stochastic Galerkin system is a significant challenge

• Common approach is mean-based preconditioning:

• Applying mean preconditioner in commuted layout is very efficient:

– Matrix-times-multivector with row-wise layout
– Vectorize over multivector columns
– Reuse of matrix/graph entries

• Applying preconditioner is often dominant cost



Mean Matrix-Vector Multiply
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SG Method Performs Well Over Moderate Range 
of Stochastic Problem Size
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• Speed-up in time-to-solution of SG method 
compared to non-intrusive sampling

– Smolyak sparse-grids for building PC basis
– Gaussian abscissas
– Comparable accuracy between SG solution 

and NISP solution

• Increased floating-point throughput (mat-
vec, prec-vec) + reduced prec applies (P/Q) 
offset by increased FLOPs in mat-vec



AMG Preconditioned CG Solve
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• Speed-up arises 
from:
– Increased floating-

point throughput
– Reduced 

preconditioner
applies

– Reduced 
aggregate 
communication 
volume



Concluding Remarks

• Reordering UQ algorithms to propagate some UQ information at 
lowest levels can lead to substantial improvements in performance

– Alleviate burden of deterministic simulation code from exploiting all fine-
grained parallelism

– Increases opportunities for fine-grained parallelism
– Improves memory access patterns
– Reduces aggregate memory bandwidth and communication

• Applying technique through C++ templates greatly facilitates 
implementation

– Alleviate code developers from having to worry about UQ

• Significant challenges remain:
– Effective grouping of samples in ensembles for non-smooth, less-smooth 

problems (See M. D’Elia poster, PP201 for first steps in this direction)
– Dealing with code divergence (e.g., conditionals)
– Partitioning/adapting PC basis to reduce memory burden
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Templated Components Orthogonalize Physics 
and Embedded Algorithm R&D
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3-D Linear & Nonlinear Elasticity 
Model Problems1

• Linear finite elements, 32x32x32 mesh
– Nonlinear:  neo-Hookean strain energy potential

• Uncertain Young’s modulus random field
– Truncated KL expansion (exponential covariance)

• Albany/LCM code (Salinger, Ostien, et al)
– Trilinos discretization and solver tools
– Automatic differentiation
– Embedded UQ
– MPI parallelism

Displacement (Mean) Displacement (Std. Dev.)

http://trilinos.sandia.gov

1Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013. 

http://trilinos.sandia.gov


Solve Performance

• Comparison to non-intrusive polynomial chaos/spectral projection (NISP)
– Isotropic sparse-grid quadrature, Gauss-Legendre abscissas, linear growth rules
– GMRES, algebraic multigrid preconditioning



Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for 
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core:  multidimensional arrays, parallel execution, atomic operations
– Containers:  Thread-scalable implementations of common data 

structures (vector, map, CRS graph, …)
– LinAlg:  Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce 
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture 
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov 

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov


Tpetra: Foundational Layer / Library for Sparse Linear 
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for 
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of 

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse 

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic 

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2, 

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov 

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov


• Kokkos views of UQ scalar type internally stored as views of 1-higher rank
– UQ dimension is always contiguous, regardless of layout

• Facilitates
– Fine-grained parallelism over UQ dimension
– Efficient allocation and initialization
– Specialization of kernels
– Transfering data between host and device and MPI communication

• Requires specialized kernel launch for CUDA to map warp to UQ dimension to 
achieve performance

Kokkos Integration

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”, 10);



PDE Matrix/RHS Assembly
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Embedded Ensemble Scalar Type for PDE 
“Assembly”

• Evaluation of discrete SG residual/Jacobian entries is 
a significant challenge for nonlinear problems

• For general nonlinear problems, found a 
“pseudospectral” approach most-effective:

– Sparse-grid quadrature on residual/Jacobian (“non-
intrusive”)

– Requires only two additional assembly kernels:  PCE 
evaluation and quadrature

– Use ensemble scalar type for evaluating 
residual/Jacobian at multiple quadrature points 
simultaneously

33



Stochastic Galerkin Assembly
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