
Exploring Embedded Uncertainty
Quantification Methods on Next-Generation

Computer Architectures

Eric Phipps (etphipp@sandia.gov),
H. Carter Edwards, Marta D’Elia, Jonathan Hu, and

Siva Rajamanickam
Sandia National Laboratories

SIAM Conference on Computational Science and
Engineering

March 13-18, 2015

SAND 2015-xxxxC

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2015-2029C

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov

Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin,

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines

Computer Architectures Are Changing
Dramatically

• Historically (super)computers have gotten
faster by

– Decreasing transistor size
– Increasing clock frequency
– Adding more compute nodes that

communicate through an interconnect

• Power requirements make this approach
untenable for future performance increases

• Instead performance increases are now
achieved through increases in node-level
fine-grained parallelism

– Many, many threads executing
simultaneously

– Memory access, arithmetic on wide vectors
– Complex memory hierarchies that require

threads to share data

Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software”, Dr. Dobb’s Journal

Emerging Architectures Motivate New
Approaches to Predictive Simulation

• UQ approaches traditionally implemented as an outer loop:

– Easily exploit coarse-grained sampling parallelism by executing samples in parallel on collections of compute
nodes

– Aggregate performance limited by deterministic simulation

• Increasing UQ performance will require
– Evaluating more samples in parallel
– Speeding-up each sample evaluation

• Many important scientific simulations will struggle with upcoming architectures
– Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
– Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
– Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

• Investigate improving performance and scalability through embedded UQ approaches that propagate UQ
information at lowest levels of simulation

– Improve memory access patterns and cache reuse
– Expose new dimensions of structured fine-grained parallelism
– Reduce aggregate communication

http://dakota.sandia.gov

http://trilinos.sandia.gov

Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

• (Global) Polynomial Chaos approximation:

– Multivariate orthogonal polynomials
– Typically constructed as tensor products with total order at most N
– Can be adapted (anisotropic, local support)

• Non-intrusive polynomial chaos (NIPC, NISP):

– Sparse-grid quadrature methods for scalability to moderate stochastic dimensions

Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

– Spatial DOFs for each sample stored consecutively
– Implemented by ensemble loop around PDE matrix/RHS assembly, solve

Simultaneous ensemble propagation

• Commute Kronecker products:

– m sample values for each DOF stored consecutively
– Implemented by placing ensemble loop at “scalar” level of PDE assembly, solve
– Still have loop over ensembles around PDE assembly, solve

• Suitable for coarse-grained parallelism

Implementing simultaneous ensemble
propagation

• Each sample-dependent scalar replaced by length-m array
– Automatically reuse non-sample dependent data (e.g., mesh in matrix/RHS assembly,

matrix-graph in solvers, …)
– Sparse access latency amortized across ensemble (e.g., sparse mat-vecs)
– Communication latency amortized across ensemble (sparse mat-vecs, dot-products, …)
– Math on ensemble naturally maps to vector arithmetic (consistent vectorization)

• Could implemented this by rewriting simulation code
– Expand size of matrix/vector data structures by m
– Replace each scalar operation by a length-m loop

• Or automatically (in C++) by introducing an ensemble scalar type
– C++ class containing an array with length fixed at compile-time
– Overload all math operations by mapping operation across array

– Replace floating-point type with ensemble type in
• Matrix/vector data structures
• Matrix/RHS assembly routines
• Solvers

Stokhos: Trilinos Tools for Embedded
UQ Methods

• Provides ensemble scalar type
– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic programming
– Template C++ code on scalar type

– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism

across ensemble

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type

– Krylov solvers (Belos)

– Algebraic multigrid preconditioners (MueLu)

– Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers
(Ifpack2)

– Sparse-direct solvers (Amesos2)

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL truncation of exponential random field model for diffusion coefficient
– Trilinos-couplings package

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE matrix/RHS assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and
solve

– Samples generated via Smolyak sparse grid quadrature for NISP method

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Potential Speed-up for Sparse Solvers

• Sparse matrix-vector
products
– Amortize MPI latency in halo

exchange
– Reuse matrix graph
– Replace sparse with

contiguous loads
– Vector arithmetic

• Dot-products
– Amortize MPI latency

• Preconditioners
– Sparse mat-vecs
– Sparse

factorizations/triangular-
solves

– Smaller, more unstructured
matrices

• Ingredients to sparse linear
system solvers (CG,
GMRES, …)
– Sparse matrix-vector

products

– Dot-products
– Preconditioners

• Relaxation-based
(Jacobi, Gauss-Seidel, …)

• Incomplete factorizations
(ILU, IC, …)

• Polynomial (Chebyshev,
…)

• Multilevel
(Algebraic/Geometric
multigrid)

Ensemble Sparse Matrix-Vector Product
Speed-Up

0

0.5

1

1.5

2

2.5

8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Matrix-Vector Product
(64x64x64 Spa al Mesh)

Sandy Bridge
CPU

Blue Gene Q
CPU

AMD Interlagos
CPU

Nvidia K20x
GPU

Xeon Phi
Accelerator

0

0.5

1

1.5

2

2.5

8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Matrix-Vector Product
(64x64x64 Spa al Mesh)

Sandy Bridge
CPU

Blue Gene Q
CPU

AMD Interlagos
CPU

Nvidia K20x
GPU

Xeon Phi
Accelerator

• Speed-up results from
– Reuse of matrix

graph (20%)
– Replacement of

sparse gather with
contiguous load

– Perfect vectorization
of multiply-add

Interprocessor Halo Exchange

0

5

10

15

20

25

8 16 24 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Blue Gene Q
(1 MPI Rank/Node, 64 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

0

5

10

15

20

25

8 16 24 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Blue Gene Q
(1 MPI Rank/Node, 64 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

0

2

4

6

8

10

8 16 24 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Cray XK7 CPU
(2 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

0

2

4

6

8

10

8 16 24 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Cray XK7 CPU
(2 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

0

5

10

15

20

16 32 48 64

Sp
ee

d
-U

p

Ensemble Size

Halo Exchange -- Cray XK7 GPU
(1 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

0

5

10

15

20

16 32 48 64

Sp
ee

d
-U

p

Ensemble Size

Halo Exchange -- Cray XK7 GPU
(1 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

• Speed-up results from reduced
aggregate communication latency

– Fewer, larger MPI messages
– Communication volume is the same

AMG Preconditioned CG Solve

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 4 16 64 256 1024

Sp
e

e
d

-U
p

Compute Nodes

Embedded Ensemble CG-AMG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Sampling

64x64x64 Mesh/Node, Ensemble Size = 32

Titan CPU

Sandy Bridge
CPU

Blue Gene Q
CPU

Nvidia K80
GPU1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 4 16 64 256 1024

Sp
e

e
d

-U
p

Compute Nodes

Embedded Ensemble CG-AMG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Sampling

64x64x64 Mesh/Node, Ensemble Size = 32

Titan CPU

Sandy Bridge
CPU

Blue Gene Q
CPU

Nvidia K80
GPU

• Smoothed-aggregation
algebraic multigrid
preconditioning (MueLu)

– Chebyshev smoothers
– Sparse-direct coarse-

grid solver
(Amesos2/Basker)

– Multi-jagged parallel
repartioning (Zoltan2)

• Assumes number of CG
iterations same for all
samples

– True for problems with
tame diffusion
coefficient on regular
meshes

– See poster by M. D’Elia,
PP201

• Embedded sampling approach does not

– Substantially change floating-point operation to
memory access ratios

– Reduce communication volume

• To achieve this, we need some form of
compression of stochastic information

– Trade reduced stochastic DOFs for increased
FLOPs

• Stochastic Galerkin method (Ghanem and many, many others…):

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Many fewer stochastic degrees-of-freedom for comparable level of accuracy:
Stochastic sparsity Spatial sparsity

Embedded Stochastic Galerkin UQ Methods

N = 3 N = 5

M P+1 Q+1 M P+1 Q+1

1 4 5 1 6 7

3 20 39 3 56 153

5 56 151 5 252 933

7 120 407 7 792 3697

9 220 871 9 2002 11581

Commuted SG Structure for Emerging
Architectures

• DOF layout can be reorganized in similar manner to embedded sampling:
– Store PC coefficients for each spatial DOF consecutively

• Implemented in same manner as embedded sample propagation
– Scalars replace by PC coefficient arrays
– Similar C++ operator overloading approach:

– Approach implemented within Stokhos package

Stochastic sparsity Spatial sparsity Stochastic sparsitySpatial sparsity

Commuted SG Matrix-Vector Multiply

• Two level algorithm

– Outer: sparse (CRS) matrix-vector multiply algorithm

– Inner: sparse stochastic Galerkin product

stochastic
basis

stochastic
basis

FEM
basis

FEM
basis

FEM
basis

stochastic
basis

triple
product

stochastic
bases sum

FEM bases
sum

Sparse Matrix-Vector Product*

*Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013.

0

2

4

6

8

10

12

0 200 400 600
G

FL
O

P
/s

Stochas c Discre za on Size P

Blue Gene Q CPU
(n=32k, 64 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

2

4

6

8

10

12

0 200 400 600
G

FL
O

P
/s

Stochas c Discre za on Size P

Blue Gene Q CPU
(n=32k, 64 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

25

50

75

100

125

150

175

200

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Nvidia Kepler K80 GPU
(n=32k)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

25

50

75

100

125

150

175

200

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Nvidia Kepler K80 GPU
(n=32k)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

10

20

30

40

50

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

10

20

30

40

50

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

5

10

15

20

25

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=262k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

5

10

15

20

25

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=262k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

2

4

6

8

10

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

AMD Interlagos CPU
(n=32k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

0

2

4

6

8

10

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

AMD Interlagos CPU
(n=32k, 8 threads)

Commuted
(N=3)

Commuted
(N=5)

Scalar Mat-
Vec

• Increased throughput
arises from substantial
reuse within PCE multiply

Stochastic Galerkin Preconditioning

• Preconditioning stochastic Galerkin system is a significant challenge

• Common approach is mean-based preconditioning:

• Applying mean preconditioner in commuted layout is very efficient:

– Matrix-times-multivector with row-wise layout
– Vectorize over multivector columns
– Reuse of matrix/graph entries

• Applying preconditioner is often dominant cost

Mean Matrix-Vector Multiply

0

10

20

30

40

50

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=262k, 8 threads)

Commuted

Scalar Mat-
Vec

0

10

20

30

40

50

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=262k, 8 threads)

Commuted

Scalar Mat-
Vec

0
1
2
3
4
5
6
7
8

0 200 400 600

G
FL

O
P

/s
Stochas c Discre za on Size P

Blue Gene Q CPU
(n=32k, 64 threads)

Commuted

Scalar Mat-
Vec

0
1
2
3
4
5
6
7
8

0 200 400 600

G
FL

O
P

/s
Stochas c Discre za on Size P

Blue Gene Q CPU
(n=32k, 64 threads)

Commuted

Scalar Mat-
Vec

0
10
20
30
40
50
60
70
80

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Nvidia Kepler K80 GPU
(n=32k)

Commuted

Scalar Mat-
Vec

0
10
20
30
40
50
60
70
80

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Nvidia Kepler K80 GPU
(n=32k)

Commuted

Scalar Mat-
Vec

0

10

20

30

40

50

60

70

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted

Scalar Mat-
Vec

0

10

20

30

40

50

60

70

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted

Scalar Mat-
Vec

0

2

4

6

8

10

12

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

AMD Interlagos CPU
(n=32k, 8 threads)

Commuted

Scalar Mat-
Vec

0

2

4

6

8

10

12

0 200 400 600

G
FL

O
P

/s

Stochas c Discre za on Size P

AMD Interlagos CPU
(n=32k, 8 threads)

Commuted

Scalar Mat-
Vec

SG Method Performs Well Over Moderate Range
of Stochastic Problem Size

1.2

1.3

1.4

1.5

3 5 7 9 11 13 15

Sp
ee

d
-U

p

Stochas c Dimension

Stochas c Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos
Sampling (n=32k, N=3, Sandy Bridge CPU)

1.2

1.3

1.4

1.5

3 5 7 9 11 13 15

Sp
ee

d
-U

p

Stochas c Dimension

Stochas c Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos
Sampling (n=32k, N=3, Sandy Bridge CPU)

0.0

0.5

1.0

1.5

2.0

2 3 4 5

Sp
ee

d
-U

p

Polynomial Order

Stochas c Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos
Sampling (n=32k, M=5, Sandy Bridge CPU)

0.0

0.5

1.0

1.5

2.0

2 3 4 5

Sp
ee

d
-U

p

Polynomial Order

Stochas c Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos
Sampling (n=32k, M=5, Sandy Bridge CPU)

0.0

0.4

0.8

1.2

1.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sp
e

ed
-U

p

Random Field Coefficient of Varia on

Stochas c Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos

Sampling (n=32k, M=5, N=3, Sandy Bridge CPU)

0.0

0.4

0.8

1.2

1.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sp
e

ed
-U

p

Random Field Coefficient of Varia on

Stochas c Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos

Sampling (n=32k, M=5, N=3, Sandy Bridge CPU)

• Speed-up in time-to-solution of SG method
compared to non-intrusive sampling

– Smolyak sparse-grids for building PC basis
– Gaussian abscissas
– Comparable accuracy between SG solution

and NISP solution

• Increased floating-point throughput (mat-
vec, prec-vec) + reduced prec applies (P/Q)
offset by increased FLOPs in mat-vec

AMG Preconditioned CG Solve

1.0

3.0

5.0

7.0

9.0

11.0

1 4 16 64 256 1024

Sp
ee

d
-U

p

Compute Nodes

Stochas c Galerkin CG-AMG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Sampling

64x64x64 Mesh/Node, M = 5, N = 3

Titan CPU

Sandy Bridge
CPU

Blue Gene Q
CPU

Nvidia K80 GPU

1.0

3.0

5.0

7.0

9.0

11.0

1 4 16 64 256 1024

Sp
ee

d
-U

p

Compute Nodes

Stochas c Galerkin CG-AMG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Sampling

64x64x64 Mesh/Node, M = 5, N = 3

Titan CPU

Sandy Bridge
CPU

Blue Gene Q
CPU

Nvidia K80 GPU

• Speed-up arises
from:
– Increased floating-

point throughput
– Reduced

preconditioner
applies

– Reduced
aggregate
communication
volume

Concluding Remarks

• Reordering UQ algorithms to propagate some UQ information at
lowest levels can lead to substantial improvements in performance

– Alleviate burden of deterministic simulation code from exploiting all fine-
grained parallelism

– Increases opportunities for fine-grained parallelism
– Improves memory access patterns
– Reduces aggregate memory bandwidth and communication

• Applying technique through C++ templates greatly facilitates
implementation

– Alleviate code developers from having to worry about UQ

• Significant challenges remain:
– Effective grouping of samples in ensembles for non-smooth, less-smooth

problems (See M. D’Elia poster, PP201 for first steps in this direction)
– Dealing with code divergence (e.g., conditionals)
– Partitioning/adapting PC basis to reduce memory burden

Extra Slides

Templated Components Orthogonalize Physics
and Embedded Algorithm R&D

Application
component/library

Embedded Analysis
component/library PCE

Adjoint
Hessian

Field Manager

Gather (Seed)

FE Interpolation
Compute Derivs

Get Coordinates

Scatter (Extract)

Source Terms

Tangent
Jacobian

Residual

Generic Template Type
used for Compute Phase <EvalT>

PDE Terms

Template Specializations for
Seed and Extract phases:

Legend:

Properties

Global Data Structures

Local Data Structures

Application Interface

computeResidual()

computeJacobian()

computeTangent()

computeHessian()

computeAdjoint()

computePCE()

computeResponse()

…

Nonlinear solver

Optimization

UQ

Error estimation

Stability Analysis

…

Discretization

Cell Topology

Mesh

MDArray

DOF Manager

DOF Manager

Application
component/library

Embedded Analysis
component/library PCE

Adjoint
Hessian

Field Manager

Gather (Seed)

FE Interpolation
Compute Derivs

Get Coordinates

Scatter (Extract)

Source Terms

Tangent
Jacobian

Residual

Generic Template Type
used for Compute Phase <EvalT>

PDE Terms

Template Specializations for
Seed and Extract phases:

Legend:

Properties

Global Data Structures

Local Data Structures

Application Interface

computeResidual()

computeJacobian()

computeTangent()

computeHessian()

computeAdjoint()

computePCE()

computeResponse()

…

Nonlinear solver

Optimization

UQ

Error estimation

Stability Analysis

…

Discretization

Cell Topology

Mesh

MDArray

DOF Manager

DOF Manager

3-D Linear & Nonlinear Elasticity
Model Problems1

• Linear finite elements, 32x32x32 mesh
– Nonlinear: neo-Hookean strain energy potential

• Uncertain Young’s modulus random field
– Truncated KL expansion (exponential covariance)

• Albany/LCM code (Salinger, Ostien, et al)
– Trilinos discretization and solver tools
– Automatic differentiation
– Embedded UQ
– MPI parallelism

Displacement (Mean) Displacement (Std. Dev.)

http://trilinos.sandia.gov

1Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013.

http://trilinos.sandia.gov

Solve Performance

• Comparison to non-intrusive polynomial chaos/spectral projection (NISP)
– Isotropic sparse-grid quadrature, Gauss-Legendre abscissas, linear growth rules
– GMRES, algebraic multigrid preconditioning

Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core: multidimensional arrays, parallel execution, atomic operations
– Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, …)
– LinAlg: Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2,

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov

• Kokkos views of UQ scalar type internally stored as views of 1-higher rank
– UQ dimension is always contiguous, regardless of layout

• Facilitates
– Fine-grained parallelism over UQ dimension
– Efficient allocation and initialization
– Specialization of kernels
– Transfering data between host and device and MPI communication

• Requires specialized kernel launch for CUDA to map warp to UQ dimension to
achieve performance

Kokkos Integration

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”, 10);

PDE Matrix/RHS Assembly

0

1

2

3

4

5

6

8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Matrix/RHS Assembly
(64x64x64 Spa al Mesh)

Sandy Bridge
CPU

Blue Gene Q
CPU

AMD Interlagos
CPU

Nvidia K20X
GPU

Xeon Phi
Accelerator

0

1

2

3

4

5

6

8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Matrix/RHS Assembly
(64x64x64 Spa al Mesh)

Sandy Bridge
CPU

Blue Gene Q
CPU

AMD Interlagos
CPU

Nvidia K20X
GPU

Xeon Phi
Accelerator

Embedded Ensemble Scalar Type for PDE
“Assembly”

• Evaluation of discrete SG residual/Jacobian entries is
a significant challenge for nonlinear problems

• For general nonlinear problems, found a
“pseudospectral” approach most-effective:

– Sparse-grid quadrature on residual/Jacobian (“non-
intrusive”)

– Requires only two additional assembly kernels: PCE
evaluation and quadrature

– Use ensemble scalar type for evaluating
residual/Jacobian at multiple quadrature points
simultaneously

33

Stochastic Galerkin Assembly

0.0

5.0

10.0

15.0

20.0

25.0

3 5 7 9 11 13 15

Sl
o

w
-D

o
w

n

Stochas c Dimension

Stochas c Galerkin Pseudospectral
Assembly Slow-Down Over Non-intrusive

Polynomial Chaos Sampling
(n=32k, N=3, Sandy Bridge CPU)

0.0

5.0

10.0

15.0

20.0

25.0

3 5 7 9 11 13 15

Sl
o

w
-D

o
w

n

Stochas c Dimension

Stochas c Galerkin Pseudospectral
Assembly Slow-Down Over Non-intrusive

Polynomial Chaos Sampling
(n=32k, N=3, Sandy Bridge CPU)

