




SAND2015-2022C

# PU-239 ORGAN SPECIFIC DOSIMETRIC MODEL APPLIED TO NON-HUMAN BIOTA

An abstract graphic in the bottom left corner consisting of a large, light green circle with organic, flowing white shapes inside, resembling stylized leaves or cells.

M. Kaspar<sup>1</sup>  
M. Johansen<sup>2</sup>  
A. Brandl<sup>1</sup>

<sup>1</sup>Environmental and Radiological Health Sciences Colorado State University, Fort Collins, CO

<sup>2</sup> Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia

## Introduction/Abstract

- Three items of interest
  - Effectiveness of Aquatic Model in ERICA-Tool at Internal Dosimetry
    - ERICA Tool vs MCNPX
  - Compared 4 organ scaling factors
    - Ellipsoidal and spherical
  - Calculated organ dose due to Pu-239 to a small sample of Rabbits from the Maralinga nuclear test site

## Outline:

- Introduction & Background
  - Motivations for Investigation
  - Site History
  - Site Characteristics
  - Exposure Pathways
  - Rabbit Biology & Physiology
  - Raw Environmental Samples
  - Computer Modeling Principles
  - Methodology & Dosimetric Approaches
- Results & Discussion
- Conclusion

# Motivations for Investigation

- Increased awareness has stressed the need for increased environmental protection (ICRP's)
  - Environmental protection is not clearly defined...
  - Long-lived contaminants (Pu-239) may persist in the environment for thousands of years
- Opportunity to study the long-term effects of chronic low-dose exposures
  - Radiation damage studied extensively at the cellular level
  - Organs/tissues are more complex
  - Organ structure plays a vital role in radiation response
  - Different tissues have different responses.
- Natural populations are chronically exposed
  - Bioaccumulation in specific organs.
  - May effect the overall health of the population.
- Environmental Risk from Ionizing Contaminates Assessment Tool
  - ERICA Tool may have limited use in organ dosimetry
  - Already scientifically accepted software
  - Assumptions are based on organ data
  - Database is continuously updated.

# Site History and Characteristics

- United Kingdom
  - Above ground testing (50's – 60's) at Maralinga
  - All involved radioactive materials (Pu-239)
- “Major Trials”
  - 7 of 9 nuclear detonations occurred at Maralinga
  - Ranging from 1 to 27 kilotons of TNT equivalent
- “Minor Trials”
  - Development trials designed to test the integrity of nuclear devices
  - All involved nuclear materials
  - Taranaki is considered to have the highest allotment of plutonium contamination (22 kg of Pu-239)

# Site History and Characteristics

- British Cleanup Efforts
  - Three remediation campaigns ('63 – '67)
  - 470 GBq of Am-241 with 7.2x that of Pu-239 over 130 km<sup>2</sup> remained
- Australian Management & Cleanup
  - In 1986, the Technical Assessment Group (TAG)
    - Found previous remedial efforts were poor...
    - Final cleanup began in 1996 and ended in 2000
    - Site is now considered safe with the exception of 130 km<sup>2</sup>
  - Maralinga Tjarutia received control of their land (2009)

# Site Characteristics

- Great Victoria Desert
  - 1,200 mi<sup>2</sup>
- Soil Characteristics
  - Aeolian Sand
  - Calcretised Dolomite
  - Mycrophytic crust
- Climate
  - Windy: 10 – 80 mph
  - Temp: 100+ F



# Exposure Pathways

- Inhalation
  - Major concern for children - MARTAC (2002)
  - Obligate nose breathers
  - Radiation pneumonitis – premature death
- Ingestion
  - Major concern for children - ARPANSA (2011)
  - Deposition on plants – impact of grazing animals
  - Low absorption but... large quantities
- Wounds/Dermis
  - Skin is an effective barrier
  - Direct access to blood supply, which can circulate throughout the body
  - In humans most can be removed at a clinic, not so for animals
- USDHHS –exposure time
  - Intermediate ( $15 \text{ d} < t < 365 \text{ d}$ )
  - Chronic ( $t > 365 \text{ d}$ )

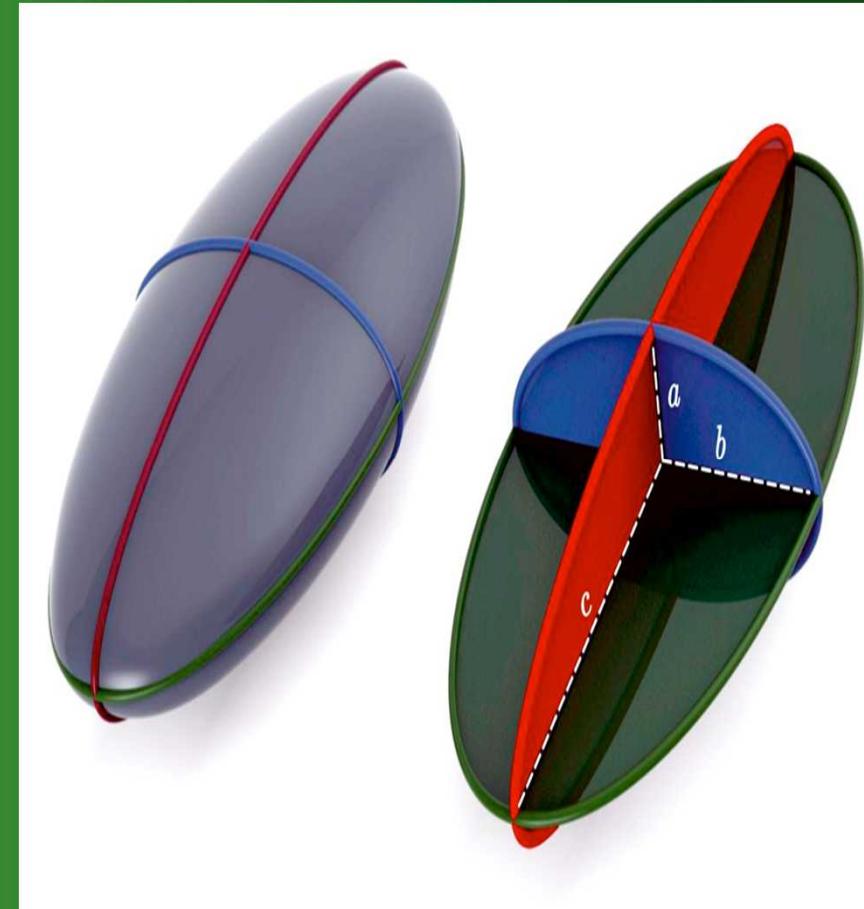
# Rabbit Biology-Physiology

- Vary greatly in size (1-7 kg) and is environment dependent
- Rabbit is unique in that, the intestine is 10x its body length and is the largest of any animal relative to size
- Non-ruminant animals, similar to horses and cows
  - Most food passes through quickly without being digested.
  - Routinely eat their own feces
  - Rely on the microflora in the cecum for nutrient intake
- Require between 50-120 mL/kg body mass of water per day.

# Rabbit Biology-Physiology: Australia Specific

- Thought to have originated from Spain, leaving them ill-suited for life in arid Australia
  - Young are severely stunted as result
  - Larger kidneys, and smaller livers as a result of high salt, heat, and lack of water
- In food and water shortages, rabbits will lose 22-50% of body mass
  - Young often do not live through such events
- Actively seek plants like chenopods, that are high in protein and water but low in salt

# Raw Environmental Samples


- Sample Collection
  - Six live rabbit samples collected in 2011 from the Taranaki plume
  - Two samples were collected 10 km to the SE
  - Followed ANSTO's animal handling protocols
- Pu-239 Analysis
  - Australian National Tandem Research Accelerator (ANTERES), an atomic mass spectrometer
  - Improved atomic measurements for long-lived actinide elements over traditional alpha-spectrometry, by 3 orders of magnitude
  - Subsamples were removed and concentrated by David Childs

# Computer Modeling Principles

- ERICA-Tool
  - Environmental Risk from Ionising Contaminants: Assessment & Management
  - Software to assist with the management of radionuclide contaminants by assessing concerns with biota and whole ecosystems
  - Doses are given in units of  $\mu\text{Gy/h}$
  - Essentially a lookup table
  - Aquatic model, used and developed by Ulanovsky and Prohl but used since the 1970's
    - Surrounding medium and organism are identical (approximately)
    - Infinite surrounding medium
    - Organisms treated as simple shapes, similar to ICRP 108

# Computer Modeling Principles

- MCNPX
  - Monte Carlo N-Particle
  - Statistics based physics software program
  - Wide variety of applications including internal dosimetry
  - Requires user supplied problem data
    - geometry, materials, starting particles and particle interactions
  - Based on cross-sectional data supplied with the software



# Methodology & Dosimetric Approaches

- Absorbed dose, or amount of energy absorbed per unit mass, is generally considered appropriate
- Animal dosimetry is expressed as a dose rate
- Concerned about the population not the individual
- Organs treated as simple spheres and ellipsoids and normalized to ICRP literature
  - Multiple geometries for the same organ

# Methodology & Dosimetric Approaches

- Organ Mass Determination
  - Used Jelenko et al (1971) organ information
  - Calculated using ICRP 108's reference duck, similar to Taranenko et al (2004) and other European biological assessment programs

# ICRP 108 Duck/Rabbit Organ Mass

| Organ/Tissue    | Organ Weight (%) | Organ Weight (g) |
|-----------------|------------------|------------------|
| Blood           | 6.25%            | 78.75            |
| Heart           | 0.24%            | 3.024            |
| Large Intestine | 2.81%            | 35.406           |
| Small intestine | 2.98%            | 37.548           |
| Kidney [one]    | 0.41%            | 5.103            |
| Liver           | 4.51%            | 56.826           |
| Lung [one]      | 0.32%            | 4.032            |
| Muscle          | 55.86%           | 703.836          |
| Skeleton        | 6.13%            | 77.238           |
| Skin            | 12.97%           | 163.422          |
| Spleen          | 0.08%            | 1.008            |
| Stomach         | 0.84%            | 10.584           |
| Total           | 93.40%           | 1176.777         |

# Methodology & Dosimetric Approaches

- Organ Dimension Scaling
  - Multiple organ geometries were used for the same organ
  - All organ length dimensions were scaled using simple ratio's
    - Body length
    - Organ mass
    - Average rabbit intestine data
    - Literature for children height
  - All remaining dimensions were assumed equal
  - Spherical

# Methodology & Dosimetric Approaches

Mass = Density  $\times$  Volume

$$\text{Volume} = \frac{\pi}{6}abc$$

Where a is the diameter calculated below and b = c.

Normalized to ICRP 89 Reference man length/height and ICRP 108 Duck/Rabbit Length

$$\text{Organ Length}_{\text{Rabbit}} = \left( \frac{\text{Organ Length}_{\text{Reference Man}}}{\text{Body Length}_{\text{Reference Man}}} \right) \times \text{Body Length}_{\text{ICRP Rabbit}}$$

$$\text{Organ Length}_{\text{Rabbit}} = \left( \frac{110 \text{ cm}}{176 \text{ cm}} \right) \times 30 \text{ cm}$$

$$\text{Organ Length}_{\text{Rabbit}} = 18.750 \text{ cm}$$

# Methodology & Dosimetric Approaches

- Normalized to children's literature from Konus et al (1998)

## Liver

$$\text{Organ Length (mm)} = \left( \frac{0.48 \text{ mm}}{\text{cm}} \right) \times (\text{Body Length}_{\text{ICRP Rabbit}}) + 42 \text{ mm}$$

$$\text{Organ Length (mm)} = \left( \frac{0.48 \text{ mm}}{\text{cm}} \right) \times 30 \text{ cm} + 42 \text{ mm}$$

$$\text{Organ Length} = 56.4 \text{ mm} = 5.64 \text{ cm}$$

# Normalized to Body Length (cm)

| Organ/Tissue     | Length | Width | Hight |
|------------------|--------|-------|-------|
| Heart*           | -      | -     | -     |
| Large Intestine* | 18.8   | 1.9   | 1.9   |
| Small intestine  | 47.7   | 1.2   | 1.2   |
| Kidney* [one]    | 1.9    | 2.3   | 2.3   |
| Liver*           | 3.5    | 5.6   | 5.6   |
| Lung* [one]      | 3.1    | 1.6   | 1.6   |
| Muscle           | -      | -     | -     |
| Skeleton         | 854.6  | 0.4   | 0.4   |
| Skin             | -      | -     | -     |
| Spleen*          | 2.0    | 1.0   | 1.0   |
| Stomach*         | 6.3    | 1.8   | 1.8   |

# Methodology & Dosimetric Approaches

- Activity Concentration Calculation
  - Data converted from mBq/kg ash to Bq/kg fresh mass for each organ
  - Rabbit-1 had the most complete data
    - Applied to ICRP108 Duck/Rabbit
    - Average whole rabbit concentration was calculated using an organ mass weighted average.
      - Used for “infinite universe” in ERICA and MCNPX

# Organ Weighted Activity Concentration

## Blood's Contribution

Weighted Activity Concentration = Acitivity Concentration  $\times$  Percent Organ Mass

$$\text{Weighted Activity Concentration} = 4.4 \frac{\text{mBq}}{\text{kg}} \times 6.25 \%$$

Weighted Activity Concentration =  $0.277 \frac{\text{mBq}}{\text{kg}}$

### Error in Blood's Contribution

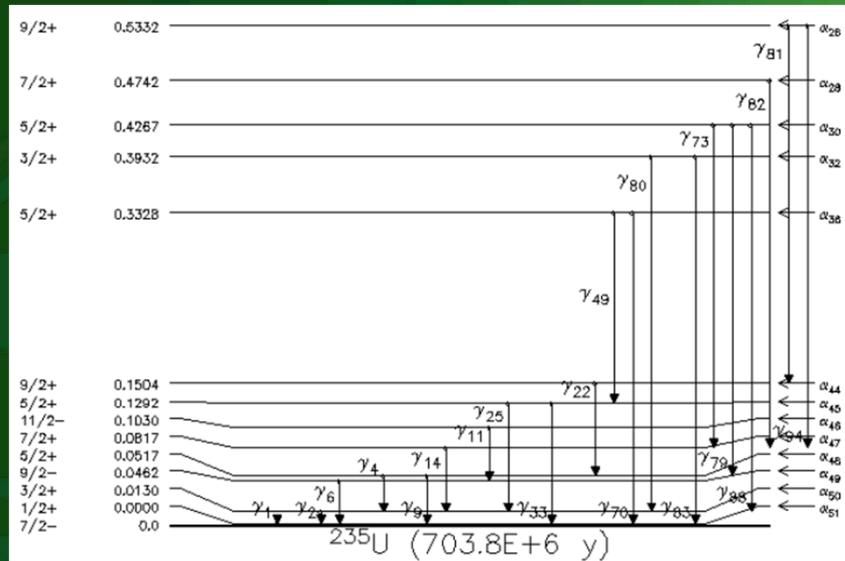
$$\sigma_{\text{Organ Activity}} = 0.277 \frac{\text{mBq}}{\text{kg}} \times \sqrt{\left( \frac{2.6 \frac{\text{mBq}}{\text{kg}}}{4.4 \frac{\text{mBq}}{\text{kg}}} \right)^2 + \left( \frac{1.00 \%}{6.25 \%} \right)^2} \text{Percent Organ}$$

$$\sigma_{\text{Organ Activity}} = 0.166 \frac{\text{mBq}}{\text{kg}}$$

# Organ Weighted Activity Concentration

| Organ/tissue    | Activity Concentration(mBq/kg) | SE    |
|-----------------|--------------------------------|-------|
| Blood           | 0.28                           | 0.17  |
| Heart           | 0.004                          | 0.016 |
| Large Intestine | 17.36                          | 2.10  |
| Small intestine | 18.41                          | 2.04  |
| Kidney (one)    | 0.03                           | 0.01  |
| Liver           | 3.17                           | 0.57  |
| Lung (one)      | 0.87                           | 0.06  |
| Muscle          | 0.85                           | 0.39  |
| Skeleton        | 3.13                           | 1.28  |
| Spleen          | 0.06                           | 0.01  |
| Stomach         | 5.19                           | 1.29  |
| Universe        | 50.23                          | 3.52  |

# Methodology & Dosimetric Approaches


- ERICA Tool
  - Entered as having a normal distribution
  - All organ geometries were compared with like organs
  - Default radiation factors were used
    - Alpha's (10), Beta's (1), and Gamma's (1)
  - Output compared to MCNPX data

# Methodology & Dosimetric Approaches

- MCNPX
  - Two models were created
    - Infinite and is relative to the emitted radiation
    - ICRP 108 Duck/Rabbit (more realistic)
    - Checked by using two source distributions (cylindrical and spherical)
  - ICRU 4-element tissue composition for organ and universe
  - Emitted radiations (next page) were obtained using ICRP 107's DECDATA disk
  - Default particle transport
    - Including energy cutoff's of 1 kev for photons and beta's
  - \*F8 energy deposition
  - Relative error < 1% (internal) and < 5% (external)
  - Same radiation weighting factors as ERICA
  - Organs whose geometry fit in the rabbit were compared to infinite universe model
  - Compared to ERICA

# Emitted Radiations...

## ICRP 38



## ICRP 107 DECDATA

| Particle        | Energy (MeV) | Yield/nt  | Tissue Range (cm) |
|-----------------|--------------|-----------|-------------------|
| Alpha-ray       | 5.148E+00    | 1.000E+00 | 5.000E-03         |
| Gamma-ray       | 6.558E-02    | 9.758E-04 | 5.490E+00         |
| X-ray*          | 3.335E-04    | 3.042E+00 | 2.611E-04         |
| IC electron     | 1.915E-02    | 3.045E-01 | 2.000E-03         |
| Auger electron* | 6.276E-04    | 2.590E+00 | 1.550E-05         |

# Methodology & Dosimetric Approaches

- Rabbit Sample Set Dosimetry
  - All 8 rabbits had varying degrees of Pu-239
  - All had blood, muscle and bone measurements
  - Organ absorbed dose rates were averaged and scaled to each rabbit

# Pu-239 Activity Concentrations (mBq/kg)

| Rabbit    | Blood |      | Muscle |      | Bone |     |
|-----------|-------|------|--------|------|------|-----|
|           | Mean  | S-x  | Mean   | S-x  | Mean | S-x |
| Rabbit-1* | 4.4   | 2.6  | 1.5    | 0.7  | 48   | 20  |
| Rabbit-2  | 252   | 97   | 3.9    | 0.9  | 49   | 14  |
| Rabbit-3  | 3.2   | 8.0  | 4.1    | 1.0  | 62   | 10  |
| Rabbit-4  | 4.9   | 5.9  | -      | -    | -    | -   |
| Rabbit-5  | 6.5   | 1.6  | 4.8    | 1.1  | 961  | 112 |
| Rabbit-6  | 1.8   | 2.1  | 92     | 6    | 42   | 10  |
| Rabbit-7  | -60   | -74  | -0.7   | -1.0 | 32   | 20  |
| Rabbit-8  | -1.3  | -0.9 | -0.2   | -0.2 | -    | -   |

# Results

- Absorbed Dose Rate ICRP Duck/Rabbit
  - Calculated using ERICA Tool and MCNPX
  - Multiple geometries for the same organ
  - Elliptical geometries were scaled using three parameters
    - Organ Length
    - Organ Mass
    - Literature for children and the average rabbit
  - Sphere

# Results

- Comparison between ERICA and MCNPX
  - Absorbed dose rate, % Difference, t-test
    - % Differences  $\leq 4\%$
    - t-score  $< 0.5$
  - Values are essentially identical

Table 12 ERICA Tool and MCNPX absorbed dose rates ( $\mu\text{Gy/h}$ )

| Organ           | Statistic | N2BL    |          |         | N2OM    |          |         | N2LI    |          |         | Round   |          |         |
|-----------------|-----------|---------|----------|---------|---------|----------|---------|---------|----------|---------|---------|----------|---------|
|                 |           | ERICA   | Infinite | Rabbit  |
| Heart           | Mean      |         |          |         |         |          |         |         |          |         | 4.4E-07 | 1.1E-07  | 1.1E-07 |
|                 | S-x       |         |          |         |         |          |         |         |          |         | 3.1E-07 | 6.5E-07  | 1.6E-06 |
| Large Intestine | Mean      | 5.1E-04 | 5.2E-04  | 5.2E-04 | 5.0E-04 | 5.2E-04  | 5.2E-04 | 5.1E-04 | 5.2E-04  | -       | 5.0E-04 | 5.2E-04  | 5.2E-04 |
|                 | S-x       | 6.2E-05 | 8.1E-05  | 8.1E-05 | 6.4E-05 | 8.1E-05  | 8.1E-05 | 6.3E-05 | 8.1E-05  | -       | 6.0E-05 | 8.1E-05  | 8.1E-05 |
| Small Intestine | Mean      | 5.4E-04 | 5.5E-04  | -       | 5.4E-04 | 5.5E-04  | 5.5E-04 | 5.4E-04 | 5.5E-04  | -       | 5.4E-04 | 5.5E-04  | 5.5E-04 |
|                 | S-x       | 5.9E-05 | 7.7E-05  |         | 5.9E-05 | 7.7E-05  | 7.7E-05 | 5.8E-05 | 7.7E-05  | -       | 6.0E-05 | 7.7E-05  | 7.7E-05 |
| Kidney (one)    | Mean      | 8.8E-07 | 8.5E-07  | 8.5E-07 | 8.8E-07 | 8.5E-07  | 8.5E-07 | 8.8E-07 | 8.5E-07  | 8.5E-07 | 8.9E-07 | 8.5E-07  | 8.5E-07 |
|                 | S-x       | 3.2E-07 | 3.2E-07  | 1.4E-06 | 3.2E-07 | 3.2E-07  | 2.2E-06 | 3.2E-07 | 3.2E-07  | 1.3E-06 | 3.2E-07 | 3.2E-07  | 1.4E-06 |
| Liver           | Mean      | 9.5E-05 | 9.4E-05  | 9.4E-05 | 9.5E-05 | 9.4E-05  | -       | 9.5E-05 | 9.4E-05  | 9.4E-05 | 9.5E-05 | 9.4E-05  | 9.4E-05 |
|                 | S-x       | 1.7E-05 | 2.1E-05  | 2.1E-05 | 1.7E-05 | 2.1E-05  |         | 1.7E-05 | 2.1E-05  | 2.1E-05 | 1.7E-05 | 2.1E-05  | 2.1E-05 |
| Lung (one)      | Mean      | 2.6E-05 | 2.6E-05  | 2.6E-05 | 2.6E-05 | 2.6E-05  | -       |         |          |         | 2.6E-05 | 2.6E-05  | 2.6E-05 |
|                 | S-x       | 1.7E-06 | 2.1E-06  | 2.5E-06 | 1.6E-06 | 2.1E-06  |         |         |          |         | 1.6E-06 | 2.1E-06  | 2.5E-06 |
| Muscle          | Mean      |         |          |         |         |          |         |         |          |         | 2.6E-05 | 2.5E-05  | -       |
|                 | S-x       |         |          |         |         |          |         |         |          |         | 1.1E-05 | 1.1E-05  | 1.1E-05 |
| Skeleton        | Mean      | 9.3E-05 | 9.3E-05  | -       | 9.4E-05 | 9.3E-05  | -       |         |          |         | 9.4E-05 | 9.3E-05  | 9.3E-05 |
|                 | S-x       | 3.8E-05 | 3.8E-05  |         | 3.7E-05 | 3.8E-05  |         |         |          |         | 3.7E-05 | 3.8E-05  | 3.8E-05 |
| Skin            | Mean      |         |          |         |         |          |         |         |          |         | 7.1E-03 | 7.1E-03  | 7.1E-03 |
|                 | S-x       |         |          |         |         |          |         |         |          |         | 7.5E-04 | 8.9E-04  | 8.9E-04 |
| Spleen          | Mean      | 1.7E-06 | 1.7E-06  | 1.7E-06 |
|                 | S-x       | 2.9E-07 | 3.6E-07  | 1.9E-06 | 2.9E-07 | 3.6E-07  | 7.3E-06 | 2.9E-07 | 3.6E-07  | 2.1E-06 | 2.9E-07 | 3.6E-07  | 1.7E-06 |
| Stomach         | Mean      | 1.5E-04 | 1.5E-04  | 1.5E-04 | 1.6E-04 | 1.5E-04  | 1.5E-04 |         |          |         | 1.6E-04 | 1.5E-04  | 1.5E-04 |
|                 | S-x       | 3.9E-05 | 5.3E-05  | 5.3E-05 | 3.8E-05 | 5.3E-05  | 5.3E-05 |         |          |         | 3.8E-05 | 5.3E-05  | 5.3E-05 |

# Comparison: ERICA vs MCNPX

| Organ     | Statistic*      | N2BL<br>Infinite | N2BL<br>Rabbit | N2OM<br>Infinite | N2OM<br>Rabbit | N2LI<br>Infinite | N2LI<br>Rabbit | Round<br>Infinite | Round<br>Rabbit |
|-----------|-----------------|------------------|----------------|------------------|----------------|------------------|----------------|-------------------|-----------------|
| Heart     | %<br>Difference |                  |                |                  |                |                  |                | 75.34             | 75.22           |
|           | t-Test          |                  |                |                  |                |                  |                | 0.46              | 0.00            |
| Large     | %<br>Difference | 2.10             | 2.10           | 2.33             | 2.31           | 1.93             | -              | 2.30              | 2.30            |
| Intestine | t-Test          | 0.10             | 0.00           | 0.11             | 0.00           | 0.10             |                | 0.11              | 0.00            |
| Small     | %<br>Difference | 2.21             | -              | 2.02             | 2.01           | 2.04             | -              | 2.21              | 2.20            |
| Intestine | t-Test          | 0.12             |                | 0.11             | 0.00           | 0.11             |                | 0.12              | 0.00            |
| Kidney    | %<br>Difference | 3.59             | 3.62           | 3.69             | 3.84           |                  |                | 4.03              | 4.06            |
| (one)     | t-Test          | 0.07             | 0.00           | 0.07             | 0.00           |                  |                | 0.08              | 0.00            |

# Comparison: ERICA vs MCNPX

| Organ    | Statistic*      | N2BL<br>Infinite | N2BL<br>Rabbit | N2OM<br>Infinite | N2OM<br>Rabbit | N2LI<br>Infinite | N2LI<br>Rabbit | Round<br>Infinite | Round<br>Rabbit |
|----------|-----------------|------------------|----------------|------------------|----------------|------------------|----------------|-------------------|-----------------|
| Liver    | %<br>Difference | 1.18             | 1.18           | 1.07             | -              | 1.28             | 1.29           | 1.39              | 1.39            |
|          | t-Test          | 0.04             | 0.00           | 0.04             |                | 0.05             | 0.00           | 0.05              | 0.00            |
| Lung     | %<br>Difference | 0.23             | 0.24           | 0.56             | -              |                  |                | 0.61              | 0.62            |
| (one)    | t-Test          | 0.02             | 0.00           | 0.05             |                |                  |                | 0.06              | 0.00            |
| Muscle   | %<br>Difference |                  |                |                  |                |                  |                | 2.53              | -               |
|          | t-Test          |                  |                |                  |                |                  |                | 0.04              |                 |
| Skeleton | %<br>Difference | 0.33             | -              | 1.19             | -              |                  |                | 1.19              | 1.20            |
|          | t-Test          | 0.01             |                | 0.02             |                |                  |                | 0.02              | 0.00            |

# Comparison: ERICA vs MCNPX

| Organ   | Statistic*      | N2BL<br>Infinite | N2BL<br>Rabbit | N2OM<br>Infinite | N2OM<br>Rabbit | N2LI<br>Infinite | N2LI<br>Rabbit | Round<br>Infinite | Round<br>Rabbit |
|---------|-----------------|------------------|----------------|------------------|----------------|------------------|----------------|-------------------|-----------------|
| Skin    | %<br>Difference |                  |                |                  |                |                  |                | 0.26              | 0.27            |
|         | t-Test          |                  |                |                  |                |                  |                | 0.02              | 0.00            |
| Spleen  | %<br>Difference | 0.66             | 0.63           | 1.19             | 1.15           | 0.65             | 0.63           | 1.24              | 1.22            |
|         | t-Test          | 0.02             | 0.00           | 0.04             | 0.00           | 0.02             | 0.00           | 0.05              | 0.00            |
| Stomach | %<br>Difference | 0.09             | 0.08           | 1.19             | 1.20           |                  |                | 1.19              | 1.20            |
|         | t-Test          | 0.00             | 0.00           | 0.03             | 0.00           |                  |                | 0.03              | 0.00            |

# Results

- Comparison between Scaling Parameters
  - Body Length
  - Organ Mass
  - Literature
  - Sphere
- Statistics were similarly close to zero
  - Potentially indicate geometry is negligible
  - Consider the case of the small intestine
    - Longitudinal Diameter = 855 cm
    - Diameter = 0.4 cm
    - Practically identical to spherical results

# Comparison: Scaling Parameters

| Organ     | Statistic*   | N2BL | N2OM | N2LI | Round |
|-----------|--------------|------|------|------|-------|
| Heart     | % Difference |      |      |      | -     |
|           | t-Test       |      |      |      |       |
|           |              |      |      |      |       |
| Large     | % Difference | 0.08 | 0.04 | 0.12 | 0.04  |
| Intestine | t-Test       | 0.01 | 0.00 | 0.01 | 0.00  |
|           |              |      |      |      |       |
| Small     | % Difference | 0.27 | 0.20 | 0.16 | 0.12  |
| Intestine | t-Test       | 0.03 | 0.02 | 0.02 | 0.01  |
|           |              |      |      |      |       |
| Kidney    | % Difference | 0.12 | 0.01 | -    | 0.11  |
| (one)     | t-Test       | 0.00 | 0.00 |      | 0.00  |

# Comparison: Scaling Parameters

| Organ    | Statistic*   | N2BL | N2OM | N2LI | Round |
|----------|--------------|------|------|------|-------|
| Liver    | % Difference | 0.06 | 0.07 | 0.02 | 0.04  |
|          | t-Test       | 0.00 | 0.00 | 0.00 | 0.00  |
| Lung     | % Difference | 0.15 | 0.14 | -    | 0.04  |
| (one)    | t-Test       | 0.03 | 0.02 |      | 0.01  |
| Muscle   | % Difference |      |      |      | -     |
|          | t-Test       |      |      |      |       |
| Skeleton | % Difference | 0.45 | 0.30 | -    | 0.10  |
|          | t-Test       | 0.01 | 0.01 |      | 0.00  |

# Comparison: Scaling Parameters

| Organ   | Statistic*   | N2BL | N2OM | N2LI | Round |
|---------|--------------|------|------|------|-------|
| Skin    | % Difference |      |      |      | -     |
|         | t-Test       |      |      |      |       |
|         |              |      |      |      |       |
| Spleen  | % Difference | 0.19 | 0.20 | 0.18 | 0.16  |
|         | t-Test       | 0.01 | 0.01 | 0.01 | 0.01  |
|         |              |      |      |      |       |
| Stomach | % Difference | 0.43 | 0.21 | -    | 0.21  |
|         | t-Test       | 0.02 | 0.01 |      | 0.01  |
|         |              |      |      |      |       |

# Results

- Absorbed Dose Rate – Maralinga Rabbits
  - 25 % quartile = average for reference rabbit
  - Scaled mean was 17% higher than reference
    - Rabbit-1 had the lowest blood, muscle and bone Pu-239 concentrations
  - Absorbed dose rates < 40  $\mu\text{Gy}/\text{hr}$ 
    - DoE and IAEA guidance based on reproduction rates

# Maralinga Rabbit Dose Rates ( $\mu\text{Gy}/\text{hr}$ )

| Organ     | ICRP Rabbit Mean | Min   | 25% Quartile | Mean  | 75% Quartile | Max   |
|-----------|------------------|-------|--------------|-------|--------------|-------|
| Heart     | 4E-07            | 2E-07 | 4E-07        | 4E-07 | 1E-06        | 2E-05 |
| Large     | 5E-04            | 2E-04 | 5E-04        | 6E-04 | 1E-03        | 3E-02 |
| Intestine |                  |       |              |       |              |       |
| Small     | 5E-04            | 2E-04 | 5E-04        | 6E-04 | 2E-03        | 3E-02 |
| Intestine |                  |       |              |       |              |       |
| Kidney    | 9E-07            | 4E-07 | 9E-07        | 1E-06 | 2E-06        | 5E-05 |
| (one)     |                  |       |              |       |              |       |

# Maralinga Rabbit Dose Rates ( $\mu\text{Gy}/\text{hr}$ )

| Organ    | ICRP Rabbit Mean | Min   | 25% Quartile | Mean  | 75% Quartile | Max   |
|----------|------------------|-------|--------------|-------|--------------|-------|
|          |                  |       |              |       |              |       |
| Liver    | 9E-05            | 4E-05 | 9E-05        | 1E-04 | 3E-04        | 6E-03 |
|          |                  |       |              |       |              |       |
|          |                  |       |              |       |              |       |
| Lung     | 3E-05            | 1E-05 | 3E-05        | 3E-05 | 7E-05        | 2E-03 |
| (one)    |                  |       |              |       |              |       |
|          |                  |       |              |       |              |       |
| Muscle   | 3E-05            | 1E-05 | 3E-05        | 3E-05 | 7E-05        | 2E-03 |
|          |                  |       |              |       |              |       |
|          |                  |       |              |       |              |       |
| Skeleton | 9E-05            | 4E-05 | 9E-05        | 1E-04 | 3E-04        | 6E-03 |
|          |                  |       |              |       |              |       |

# Maralinga Rabbit Dose Rates ( $\mu\text{Gy}/\text{hr}$ )

| Organ   | ICRP Rabbit<br>Mean | Min   | 25%<br>Quartile | Mean  | 75%<br>Quartile | Max   |
|---------|---------------------|-------|-----------------|-------|-----------------|-------|
|         |                     |       |                 |       |                 |       |
| Skin    | 7E-03               | 3E-03 | 7E-03           | 9E-03 | 2E-02           | 4E-01 |
|         |                     |       |                 |       |                 |       |
|         |                     |       |                 |       |                 |       |
| Spleen  | 2E-06               | 7E-07 | 2E-06           | 2E-06 | 5E-06           | 1E-04 |
|         |                     |       |                 |       |                 |       |
|         |                     |       |                 |       |                 |       |
| Stomach | 2E-04               | 6E-05 | 2E-04           | 2E-04 | 4E-04           | 9E-03 |
|         |                     |       |                 |       |                 |       |

# Conclusion

- Absorbed dose rates were calculated using ERICA and MCNPX
- All organs were treated either as elliptical or spherical
- Everything was composed of ICRU 4-element tissue
- Lack of any statistical difference between computational models
  - ERICA is a viable means of determining internal dosimetry
- Maralinga rabbits absorbed dose rates were 17% higher than from ICRP Rabbit
- All absorbed dose rates were below 40  $\mu\text{Gy}/\text{hr}$

Special Thanks!

Alex Brandl

Mathew Johansen

Tom Johnson

&

John Pinder



# Questions?

# Extra Slides...

# Results

- Absorbed Dose Rate – Bone and Muscle
  - % Differences: 42-100 %
    - Scaled values were between 1-2 orders of magnitude and would underestimate absorbed dose
  - Muscle had the lowest % Differences and t-scores
    - Possible due to less variability in muscle tissue
    - Wide range for blood and bone

Table 17 Organ specific absorbed dose rates ( $\mu\text{Gy/h}$ ) for Maralinga rabbits

| Name     | Statistic | Specific* | Scaled from ICRP Skeleton |         |         | ERICA   | Scaled from ICRP Muscle |         |         |
|----------|-----------|-----------|---------------------------|---------|---------|---------|-------------------------|---------|---------|
|          |           |           | Blood                     | Muscle  | Bone    |         | Blood                   | Muscle  | Bone    |
| Rabbit-1 | Mean      | 1.4E-03   | 9.3E-05                   | 9.3E-05 | 9.3E-05 | 4.6E-05 | 2.6E-05                 | 2.6E-05 | 2.6E-05 |
|          | S-x       | 5.9E-04   | 7.9E-05                   | 6.3E-05 | 5.8E-05 | 1.9E-05 | 2.3E-05                 | 1.9E-05 | 1.7E-05 |
| Rabbit-2 | Mean      | 1.5E-03   | 5.3E-03                   | 2.4E-04 | 9.6E-05 | 1.2E-04 | 1.5E-03                 | 6.7E-05 | 2.6E-05 |
|          | S-x       | 4.4E-04   | 3.9E-03                   | 1.3E-04 | 5.1E-05 | 2.7E-05 | 1.1E-03                 | 4.0E-05 | 1.6E-05 |
| Rabbit-3 | Mean      | 1.8E-03   | 6.8E-05                   | 2.5E-04 | 1.2E-04 | 1.2E-04 | 1.9E-05                 | 7.0E-05 | 3.3E-05 |
|          | S-x       | 2.9E-04   | 1.7E-04                   | 1.4E-04 | 5.7E-05 | 3.0E-05 | 4.8E-05                 | 4.3E-05 | 1.8E-05 |
| Rabbit-5 | Mean      | 2.9E-02   | 1.4E-04                   | 3.0E-04 | 1.9E-03 | 1.4E-04 | 3.8E-05                 | 8.2E-05 | 5.1E-04 |
|          | S-x       | 3.3E-03   | 9.1E-05                   | 1.6E-04 | 8.7E-04 | 3.2E-05 | 2.7E-05                 | 5.0E-05 | 2.8E-04 |
| Rabbit-6 | Mean      | 1.3E-03   | 3.8E-05                   | 5.7E-03 | 8.2E-05 | 2.7E-03 | 1.0E-05                 | 1.6E-03 | 2.3E-05 |
|          | S-x       | 3.0E-04   | 5.0E-05                   | 2.8E-03 | 4.2E-05 | 1.7E-04 | 1.4E-05                 | 8.8E-04 | 1.3E-05 |

\*Absorbed dose rate was calculated for the specific rabbit of interest based on body mass and Pu-239 concentration