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Background

Biofuel and chemical production in cyanobacterial hosts has recently expanded due to the search for
renewable alternatives for conventional products of the petroleum industry. Synechococcus sp. PCC 7002 is
an ideal cyanobacterial chassis for these proposed industrial applications. It has a rapid doubling time (2.6 —
4 h);!can tolerate up to 1.5 M NaCl — 2.5 x seawater, allowing for cultivation with non-freshwater sources
and the ability to adapt to changing salinities due to evaporation;? has high light tolerance (survives up to 2
X peak sunlight, 4.5 mE m? s1),3 and can grow under a wide range of temperatures which may be
experienced in photobioreactor systems (22-40°C).?

A recent study generated promoter mutant libraries for controlled expression in Synechococcus sp. PCC
7002.4 However, this study utilized ideal laboratory conditions (38°C and 60 pumol photons m=2 s1) with
continuous light, while most real-world applications will rely on natural sunlight and environmental
temperatures. Additionally, very little information is available regarding natural expression levels and
regulatory mechanisms in Synechococcus sp. PCC 7002. In order to advance Synechococcus sp. PCC 7002 as
a cyanobacterial chassis, we must have an in-depth understanding of native promoter regulation to allow
for genetic manipulations that have minimal impact on the natural metabolism of this host and also utilize
the natural regulatory mechanisms to optimize pathways for temporal and light regulation that
accompanies the diurnal cycle.

Objectives

* |dentify and characterize native promoters in Synechococcus sp. PCC 7002 with various expression
levels (strong, moderate, low, and weak) and regulatory patterns (constitutive, linear phase, and
stationary phase expression).

e Determine the effect of continuous vs diurnal light conditions on expression from these native
promoters.

* |dentify sequence motifs corresponding to promoter expression level and regulation in Synechococcus
sp. PCC 7002.
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Technical Approach and Design -
Native Promoter Selection .

Table 1. Select promoters with varying expression levels (10~ — 102) and regulation
(constitutive, linear phase, and stationary phase) along with their respective gene
products.
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Figure 2. Normalized fluorescence (fluorescence of promoter mutant / fluorescence of 7002) for
485 nm excitation and 528 nm emission across the growth profile of Synechococcus sp. PCC 7002,
as measured by OD,,, under continuous light and 12/12 diurnal light conditions (60 umol photons

m-2 s-1). Data are averages of at least 3 biological replicates for two transformants with error bars

representing the

Promoter Motifs
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Figures 3 and 4. Promoter motifs predicted by using Melina Il with
CONSENSUS, MEME, Gibbs, and MDScan motif finders. (3) All promoters. (4)
Moderate expression promoters.(A) Consensus motifs; (B) Motif sequences;
(C) Motif location in 500 bp upstream sequence.

30 promoter regions (Figure 3), yet there is no

observable trend in the expression of Ypet from these promoters.

e Promoter motif AAAAACCA is consistent among promoters showing moderate expression levels (2- to 3-

fold higher Ypet fluorescence compared to wild ty

Conclusions
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e Poor correlation between RNA-seq results an

pe at the same optical density).

d Ypet promoter expression, which may be due to strain

genetic drift, different environmental conditions, or regulatory regions outside of the 500 bp upstream

sequence.

e Verification of moderate and low constitutive promoters and high stationary phase promoters.

e Only a few promoters (A2531 and A0670) showed different expression under diurnal light conditions.

e Two conserved promoter motifs were identified, but their regulatory roles remain to be determined.
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