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SUBTASK 1.10 – CO2 STORAGE AND ENHANCED BAKKEN RECOVERY 
RESEARCH PROGRAM 

 
 
ABSTRACT 
 
 Small improvements in productivity could increase technically recoverable oil in the 
Bakken Petroleum System by billions of barrels. The use of CO2 for enhanced oil recovery 
(EOR) in tight oil reservoirs is a relatively new concept. The large-scale injection of CO2 into the 
Bakken would also result in the geological storage of significant amounts of CO2. The Energy & 
Environmental Research Center (EERC) has conducted laboratory and modeling activities to 
examine the potential for CO2 storage and EOR in the Bakken. Specific activities included the 
characterization and subsequent modeling of North Dakota study areas as well as dynamic 
predictive simulations of possible CO2 injection schemes to predict the potential CO2 storage and 
EOR in those areas. Laboratory studies to evaluate the ability of CO2 to remove hydrocarbons 
from Bakken rocks and determine minimum miscibility pressures for Bakken oil samples were 
conducted. Data from a CO2 injection test conducted in the Elm Coulee area of Montana in 2009 
were evaluated with an eye toward the possible application of knowledge gained to future 
injection tests in other areas. A first-order estimation of potential CO2 storage capacity in the 
Bakken Formation in North Dakota was also conducted. Key findings of the program are as 
follows. 
 
 The results of the research activities suggest that CO2 may be effective in enhancing the 
productivity of oil from the Bakken and that the Bakken may hold the ability to geologically 
store between 120 Mt and 3.2 Gt of CO2. However, there are no clear-cut answers regarding the 
most effective approach for using CO2 to improve oil productivity or the storage capacity of the 
Bakken. The results underscore the notion that an unconventional resource will likely require 
unconventional methods of both assessment and implementation when it comes to the injection 
of CO2. In particular, a better understanding of the fundamental mechanisms controlling the 
interactions between CO2, oil, and other reservoir fluids in these unique formations is necessary 
to develop accurate assessments of potential CO2 storage and EOR in the Bakken. In addition, 
existing modeling and simulation software packages do not adequately address or incorporate the 
unique properties of these tight, unconventional reservoirs in terms of their impact on CO2 
behavior. These knowledge gaps can be filled by conducting scaled-up laboratory activities 
integrated with improved modeling and simulation techniques, the results of which will provide a 
robust foundation for pilot-scale field injection tests. Finally, field-based data on injection, fluid 
production, and long-term monitoring from pilot-scale CO2 injection tests in the Bakken are 
necessary to verify and validate the findings of the laboratory- and modeling-based research 
efforts.  
 
 This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint 
Program on Research and Development for Fossil Energy-Related Resources Cooperative 
Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the North Dakota 
Industrial Commission, Marathon Oil Corporation, Continental Resources Inc., and TAQA 
North, Ltd. 
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SUBTASK 1.10 – CO2 STORAGE AND ENHANCED BAKKEN RECOVERY 
RESEARCH PROGRAM 

 
 
EXECUTIVE SUMMARY 
 
 Total oil in place estimates for the Bakken Petroleum System range from 160 billion 
barrels (Bbbl) to over 900 Bbbl. Most estimates for primary recovery range from 3% to 6%, 
depending on reservoir characteristics. Therefore, small improvements in productivity could 
increase technically recoverable oil in the Bakken by billions of barrels. While the use of CO2 in 
conventional reservoirs is a widely applied practice, its use for enhanced oil recovery (EOR) in 
tight oil reservoirs is a relatively new concept. If successful, the large-scale injection of CO2 into 
the Bakken will not only increase oil productivity but will also result in the geological storage of 
significant amounts of CO2. The Energy & Environmental Research Center (EERC) has 
conducted laboratory and modeling activities to examine the potential for CO2 storage and EOR 
in the Bakken. Specific activities included 1) the characterization of rock samples from four 
different areas of the Bakken in North Dakota; 2) the creation of static geologic models for two 
of those areas, the Bailey and Grenora areas, and subsequent dynamic simulation modeling of 
possible CO2 injection schemes to predict the potential CO2 storage and EOR in those areas;  
3) laboratory studies to evaluate the ability of CO2 to remove hydrocarbons from Bakken shales 
and Middle Member lithofacies; 4) laboratory determination of minimum miscibility pressures 
for Bakken oil samples using an innovative technique; 5) evaluation of data from a CO2 injection 
test conducted in the Elm Coulee area of Montana in 2009 and the possible application of 
knowledge gained to future injection tests in other areas; and 6) a first-order estimation of 
potential CO2 storage capacity in the Bakken Formation in North Dakota. Key findings of the 
program include the following: 
 

 Initial estimates of CO2 storage resource using the methodology for estimating geologic 
storage potential in oil and gas reservoirs, as outlined in the U.S. Department of Energy 
(DOE) Carbon Sequestration Atlas of the United States, suggest that the Bakken in 
North Dakota may have a CO2 storage resource ranging from 121 Mt to 3.2 Gt. This 
broad range indicates that more data are required to develop more accurate assessments 
of CO2 storage potential in tight oil-bearing formations such as the Bakken.  

 
 Results of dynamic simulation modeling of the Bailey area in Dunn County suggest that 

the injection of CO2 could increase oil production by as much as 50%. They also 
indicate that a scheme that pairs two injection wells with a single production well was 
the most effective approach for EOR of the schemes modeled. 

 
 Laboratory experimental studies indicate that CO2 can remove over 90% of 

hydrocarbons from Bakken reservoir rocks and up to 60% from the shales in a time 
frame that ranges from hours to days in small-scale elution experiments. Diffusion 
appears to be the primary mechanism driving the observed hydrocarbon removal.  

 
 In the Bakken, CO2 flow will be dominated by fracture flow, and not significantly 

through the rock matrix. Fracture-dominated CO2 flow could essentially eliminate the 



 

ix 

displacement mechanisms responsible for increased recovery in conventional reservoirs. 
As such, other mechanisms, such as diffusion, must be optimized in tight reservoirs. 

 
 The Elm Coulee injection test appeared to result in a delayed improvement in oil 

production. The improved oil production was not seen until 6 months after the test, but 
it lasted for a few months. 

 
 Simulation results indicated that diffusion may play a significant role in moving oil 

from the reservoir matrix into the fracture network.  
 

 The concept that diffusion plays a significant role in CO2 movement in the Bakken, as 
indicated in the laboratory and modeling results, is also supported by the delayed 
improvement in oil production after the Burning Tree CO2 injection test. This suggests 
that the role of diffusion in the behavior of CO2 in the Bakken should be a subject for 
further research. 

 
 The results of the research activities suggest that CO2 may be effective in enhancing the 
productivity of oil from the Bakken and that the Bakken may hold the ability to geologically 
store significant amounts of CO2. However, there are no clear-cut answers regarding the most 
effective approach for using CO2 to improve oil productivity or the storage capacity of the 
Bakken. The results underscore the notion that an unconventional resource will likely require 
unconventional methods of both assessment and implementation when it comes to the injection 
of CO2. With that in mind, it is clear that additional knowledge is necessary to make informed 
decisions regarding the design and implementation of potential injection and production 
schemes. In particular, a better understanding of the fundamental mechanisms controlling the 
interactions between CO2, oil, and other reservoir fluids in these unique formations is necessary 
to develop accurate assessments of potential CO2 storage. Another issue that must be addressed 
is that existing modeling and simulation software packages do not adequately address or 
incorporate the unique properties (e.g., microfractures, high organic carbon content, combined 
diffusion, adsorption, and darcy flow or the physical interactions between the injected CO2 and 
formation fluids) of these tight, unconventional reservoirs in terms of their impact on CO2 
behavior. These knowledge gaps can be filled by conducting scaled-up laboratory activities 
integrated with improved modeling and simulation techniques, the results of which will provide a 
robust foundation for pilot-scale field injection tests. Finally, field-based data on injection, fluid 
production, and long-term monitoring from pilot-scale CO2 injection tests in the Bakken are 
necessary to verify and validate the findings of the laboratory- and modeling-based research 
efforts. 
 
 This subtask was funded through the EERC–DOE Joint Program on Research and 
Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-
08NT43291. Nonfederal funding was provided by the North Dakota Industrial Commission, 
Marathon Oil Corporation, Continental Resources Inc., and TAQA North, Ltd. 



 

1 

SUBTASK 1.10 – CO2 STORAGE AND ENHANCED BAKKEN RECOVERY 
RESEARCH PROGRAM 

 
 
INTRODUCTION AND BACKGROUND 
 
 Total oil in place reserve estimates for the Bakken Formation range from a minimum of  
100 billion barrels (Bbbl) to 900 Bbbl (Nordeng and Helms, 2010; Continental Resources Inc., 
2012). Most estimates for primary recovery range from approximately 3% to 6% (LeFever and 
Helms, 2008). With such low primary recovery factors associated with this massive resource, 
even small improvements in productivity will add billions of barrels to the recoverable resource. 
Also, by employing CO2, the Bakken could prove to be a tremendous CO2 storage resource. The 
Energy & Environmental Research Center (EERC) has conducted laboratory and modeling-
based activities to evaluate strategies for improving the ultimate recovery of oil from the Bakken 
Petroleum System and determining the potential for carbon dioxide (CO2) storage. CO2 has been 
used for enhanced oil recovery (EOR) operations in conventional reservoirs for several decades. 
The project presented and discussed in this report examines the potential to use CO2 for EOR in 
the Bakken Petroleum System. If implemented, large-scale injection of CO2 into the Bakken for 
EOR will also lead to significant storage of CO2 in the formation. With that in mind, the project 
also examined the data generated by the laboratory and modeling efforts in the context of 
potential CO2 storage in a tight oil formation. The project was supported by financial 
contributions from Marathon Oil Corporation; Continental Resources Inc.; TAQA North, Ltd.; 
the North Dakota Industrial Commission (NDIC) Oil and Gas Research Council (OGRC); and 
the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). 
Additional in-kind support in the form of unpublished, confidential reservoir characterization and 
operational data was also provided by Marathon Oil Corporation and Continental Resources Inc. 
Core samples used for the laboratory characterization and experimental activities were provided 
by Marathon Oil Corporation and the North Dakota Geological Survey (NDGS). 
 

Goals and Objectives 
 
 While the use of CO2 in conventional reservoirs is a widely applied and well-understood 
practice (Jarrell and others, 2002), its use for EOR in tight oil reservoirs is a relatively new 
concept. In conventional reservoirs, vertical heterogeneity and relative permeability 
characteristics can have a significant effect on the effectiveness of an EOR scheme, and fracture 
networks are considered to be detrimental to EOR operations (Jarrell and others, 2002). In tight 
oil reservoirs such as the Bakken, which rely on a sustained fracture network for the bulk of their 
productivity, the conventional notions of positive and negative attributes may or may not apply. 
These same principles can also be applied to the concept of storing CO2 in tight oil formations. 
The results of the project provide insight regarding the relationships of the Bakken system and 
injected CO2 under reservoir conditions.  
 
 The ultimate goal of the project was to generate previously unavailable data and technical 
insight that will enable operators and other stakeholders to make informed decisions regarding 
the use of CO2-based technologies for Bakken EOR and CO2 storage. The objective of the 
project is to use new and existing reservoir characterization and laboratory analytical data (e.g., 
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Bakken are dominated by shales rich in organic carbon that act as the source rock for oil 
reservoirs in the Middle Bakken and Pronghorn Members. The lithology of the Middle Bakken 
varies widely from clastics (including shales, silts, and sandstones) to carbonates, with five 
distinct lithofacies typically being identified in the North Dakota portion of the Williston Basin 
(Nordeng and others, 2010), although in some areas, there may be more than five and in other 
areas fewer. In general, all of these rocks are characterized by low porosity and permeability 
(Pittman and others, 2001). The geomechanical properties of the various Bakken members and 
lithofacies are a key component of their ability to serve as productive oil reservoirs, as those 
properties will dictate the size, frequency, pattern, and orientation of fracture networks (natural 
and artificial) at both the micro- and macroscale.  
 

Challenges with Respect to CO2 Storage  
 
 The obvious primary challenge of using the Bakken Formation, or any tight oil formation, 
as a target for large-scale storage of CO2 is the characteristic low porosity and low permeability 
of the formation. The tight nature of the Bakken Formation will present challenges to both CO2 
injectivity and storage capacity. Furthermore, the presence of complex, heterogeneous lithologies 
(including organic-rich, oil-saturated shales) will complicate the ability to understand and predict 
the effectiveness of various mechanisms (e.g., diffusion, sorption, dissolution, etc.) that will be 
acting on CO2 mobility and storage.   
 
 Prior to this project, there were no published studies that focused on the potential for CO2 
storage in tight oil formations. However, some work has been published on the potential storage 
capacity of tight, natural gas-rich shale formations, including studies on gas shales in Kentucky 
(Nutall and others, 2005), Texas (Uzoh and others, 2010), and the Appalachian region (Godec 
and others, 2011). The authors of those studies assumed that the CO2 storage, and subsequent 
methane recovery, in organic-rich gas shales will be controlled by similar adsorption and 
desorption mechanisms as CO2 storage and methane recovery in coal seams. In those cases, the 
sorptive capacity of the organic content in the shales plays a prominent role in estimating their 
potential CO2 storage capacity. Unfortunately, those approaches may have limited applicability 
to the Bakken for two reasons. First, much of the formation is actually comprised of a 
combination of organic-rich shales, tight carbonates, and clastics; second, the Bakken is 
saturated with oil and brine as opposed to gas. The diversity of lithology and presence of oil and 
brine may substantially limit the effects of sorptive mechanisms on CO2 storage as compared to 
the gas shale formations that have been examined in the current literature. To accurately assess 
the potential for tight oil formations to store CO2, it is necessary to develop a better 
understanding of the fundamental mechanisms and unique formation properties (e.g., tight 
matrix, microfractures, high organic carbon content, etc.) controlling the interactions between 
CO2 and the rocks and fluids of those tight oil formations.  
 

Challenges with Respect to Recovery Factors 
 
 Recent total oil in place estimates for the Bakken Petroleum System range from 100 Bbbl 
to over 900 Bbbl. Most estimates for primary recovery range from 3% to 6%, depending on 
reservoir characteristics. When considering these low primary recovery factors in the context of 
such a large resource, it is clear that just small improvements in productivity could increase 
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technically recoverable oil in the Bakken by billions of barrels. The challenges of EOR within 
the Bakken have to do with the mobility of traditional fluids (i.e., reservoir fluids and injected 
water vs. CO2, polymers, or surfactants) through natural or induced fractures relative to very low 
matrix permeability and the aversion of exposing swelling clays to water, which can reduce 
permeability and damage the formation. Further, the oil-wet nature of much of the Bakken 
system will dramatically minimize the effectiveness and utility of waterflooding. With these 
issues in mind, the use of CO2 as a fluid for EOR in the Bakken may be effective.  
 
 The use of CO2 for EOR in conventional reservoirs began in West Texas in the 1970s and 
has since been applied at locations around the world (Jarrell and others, 2002). However, its use 
for EOR in tight oil reservoirs is a relatively new concept. In conventional reservoirs, vertical 
heterogeneity, wettability, gravity, and relative permeability characteristics can have a significant 
effect on the effectiveness of an EOR scheme, and fracture networks could be detrimental to 
EOR operations (Jarrell and others, 2002). However, tight oil reservoirs, such as the Bakken, rely 
on natural and hydraulically induced fracture networks for their productivity. Because of the tight 
matrix, dominance of fractures, and oil-wet nature of the Bakken, the conventional notion of 
positive and negative attributes of a candidate injection reservoir may or may not apply. With 
respect to CO2, fracture networks will be the primary means of its movement throughout the 
reservoir, and their characteristics will control the contact time that CO2 has with the oil in the 
reservoir.  
 
 
PROGRAM APPROACH 
 
 The EERC has conducted a research program to determine the viability of using CO2 for 
EOR and carbon storage in the Bakken Formation. The key elements of the program include the 
development and integration of new and existing reservoir characterization and laboratory 
analytical data (e.g., core analyses, well logs, oil analyses, etc.) and static and dynamic modeling. 
The technical aspects of the project are divided according to six primary areas of activity, 
specifically 1) detailed geological characterization of selected Bakken reservoirs, with an 
emphasis on understanding the nature of naturally occurring fracture networks;  
2) characterization of Bakken oils from the selected reservoirs; 3) laboratory investigations of the 
ability of CO2 to diffuse into and remove hydrocarbons from Bakken rocks; 4) static model 
development and dynamic simulation of potential CO2 injection scenarios; 5) evaluation of data 
from a pilot-scale CO2 injection test in a Bakken well in Montana in 2009; and 6) a first-order, 
reconnaissance-level estimation of potential CO2 storage capacity in the Bakken. This report will 
provide an overview of the project approach, results, and anticipated next steps.  
 
 In 2012, the EERC initiated a suite of experimental and modeling activities as well as a 
review of relevant historical data and literature to examine the potential for CO2 EOR in the 
Bakken. Four study areas in North Dakota and one in Montana (Figure 3) were selected for 
various levels of examination (depending on the availability of data and/or samples). In North 
Dakota, those areas include the Bailey and Murphy Creek oil fields of Dunn County, the Rival 
oil field of Burke County, and the Grenora oil field of Williams County. The reservoir 
characterization and laboratory-based activities were conducted using data and samples from the 
North Dakota study areas, and subsequent modeling activities were focused on those fields as 
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necessary to develop accurate predictions of how and where fluids will flow within that 
reservoir.  
 
 When considering the use of CO2 injection as a means of EOR and CO2 storage in the 
Bakken, understanding the nature of fractures is crucial because they can have both positive and 
negative effects on a CO2-based EOR scheme. A fracture network in the reservoir that has a high 
frequency of fractures (i.e., closely spaced) and that does not extend far beyond the wellbore 
(i.e., short to moderate length) may maximize the surface area of rock that comes into contact 
with CO2, thus serving as a means of exposing more oil-saturated rock to the beneficial effects of 
CO2. It may be easier to maintain pressure in such a system, thus optimizing the effects of 
miscible CO2 on the target reservoir and improving oil production. However, a fracture network 
that is characterized by long, wide fractures will most likely act as a thief zone for the injected 
CO2, serving as conduits that allow CO2 to quickly migrate away from the well’s productive area 
of influence. Such a fracture network would also make it difficult to maintain the higher 
pressures that are necessary for an optimal CO2 EOR operation. Conducting quantitative and 
semiquantitative fracture analysis on samples from the different facies within a Bakken reservoir 
will provide insight that will support our understanding of the nature of the fracture network in 
that reservoir, which, in turn, can be used to predict the effects of those fractures on CO2 
movement and EOR.  
 
 The Bakken Formation is made up of a series of complex lithofacies with variable 
distribution and properties. Understanding the presence and nature of fractures within and across 
the various lithofacies is critical to developing an accurate model of a Bakken reservoir and 
predicting the effectiveness of CO2 injection for storage and EOR. Fracture analyses were 
conducted on core from each of the four North Dakota study areas to assist in understanding the 
natural fracture networks of the Bakken Formation. These analyses used a suite of fracture-
logging techniques that includes a combination of EERC-developed techniques as well as 
additional techniques described in the literature. 
 
 During fracture logging, several parameters were measured. Those measurements served as 
a basis for the creation of fracture intensity logs. The fracture intensity logs were then used in the 
reservoir-modeling efforts of this project. The fracture-logging data include quantitative and 
qualitative data. The quantitative data include fracture length, fracture aperture (width), and 
fracture orientation (with respect to a 180° scale). These direct measurements are utilized to 
derive the qualitative data, which include whether a fracture is open or closed, and designate a 
generic orientation (three categories including horizontal, shallow dipping, and steeply dipping) 
for each fracture. Fracture analysis data from core samples representing the North Dakota study 
areas are provided in Appendix A. 
 
 Determining whether a fracture is naturally occurring or induced as part of the core 
collection and handling process is the single most important task when conducting a fracture 
analysis. Mineralization within a fracture is the most common indicator of a fracture being 
natural. Figure 7 shows an example of a calcite-filled fracture in a core sample from one of the 
Rival area wells. Fractures that are mineralized also assist in determining the in situ aperture. 
Stylolites, steeply dipping fractures, and fractures associated with local folding or faulting are 
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bioturbated siltstone and laminated siltstone, with the laminated zones generally being thinner 
than the bioturbated zones. L5 through L7 appear to become more dolomitized as one moves up 
the core, until finally at the top of the Middle Member of the Bakken, L8 appears as a dolomitic 
siltstone. As with the evaluation of Rival cores, these designations are not necessarily correlative 
to similar Middle Bakken lithofacies designations that are commonly used throughout published 
literature on Bakken stratigraphy. In this report, they are strictly used to orient the reader within 
the context of the relative stratigraphic position within the cores that were evaluated in Grenora 
area. 
 
 Figure 13 shows a cross section of the Bakken from three wells in the Grenora study area. 
Both NDIC-20844 and NDIC-17946 have seven lithofacies that appear to be somewhat 
correlative, with some subtle differences in fabric and mineralogy. Generally speaking, the 
Middle Bakken in the Grenora area appears to be significantly more dolomitic than the Rival 
area. The lithofacies in the Grenora area appear to be generally more variable than was observed 
in the Rival area and the Dunn County areas. This variability and lack of an easily correlatable, 
thick, laminated zone makes the selection of a suitable horizontal drilling target more 
challenging. The cores from the Grenora area are generally more fractured than those from the 
Rival and the Dunn County areas (Figure 14). This may be due to the presence of structure that is 
known to occur in the Grenora area. The presence of dolomite also facilitates the development of 
fractures as dolomite tends to fracture more easily than calcite. The presence of structure and 
dolomite may be linked. The existence of a fracture network caused by structure or tectonic 
activity along the Brockton–Froid fault (which runs near the Grenora Field) may have facilitated 
fluid migration through the Bakken. Such fluid migration may have supported diagenesis, 
creating dolomite rhombs and further enhanced natural fracturing of the formation. 
 

Summary of Key Observations for Murphy Creek and Bailey (Dunn County) Area 
Samples 

 
 While the Murphy Creek and Bailey Fields are separated by approximately 6 miles  
(Figure 15), the characterization activities indicated that the depositional environment and 
associated diagenetic histories were similar. Specifically, the number of lithofacies and their 
general character were such that the observations for those fields have been summarized together 
and are collectively referred to as the Dunn County study area. 

 

 The Bakken in the Dunn County study area includes both the upper and lower shales and 
five distinct lithofacies within the middle member. Figure 16 shows a cross section of the Bakken 
lithofacies in the Dunn County study area. Because the middle member is the target for 
horizontal drilling, it is the focus of the characterization and modeling efforts described in this 
paper. The full suite of characterization data generated from the Rogne 44-34H core 
(representing the Murphy Creek area) and the Burbank BIA 23-8 well (representing the Bailey 
area) is provided in Appendix B. The five middle member lithofacies observed in the study area 
are briefly described as follows.  
 
 The Middle Bakken lithofacies are numbered 1 through 5, with L5 at the top and L1 at the 
bottom. L5 is a massive, dense, mottled, dolomitic siltstone. Helium gas porosimeter 
measurements on core plugs showed L5 porosity ranging from 0.28% to 5.5%.  
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collaboration with the project’s industry partners. The areas that were selected for 
characterization were areas that had been identified as being of high priority by their respective 
operators. At the time the project was proposed in 2011, relatively few successful Bakken wells 
had been drilled in the thermally immature portion of North Dakota. This meant that there were 
fewer thermally immature Bakken fields to choose from and that the selection of the Rival and 
Grenora areas was largely driven by the exploration priorities of one of the partner companies as 
opposed to production history. Conversely, thousands of successful wells had been drilled in the 
thermally mature portion of the basin, and there were many fields to choose from. This translated 
into the selection of fields representing the thermally mature part of the basin that had both 
significant amounts of characterization data and production history. As the results of the 
characterization activities were evaluated and compared, a few significant differences were 
observed. Figure 19 provides a summary overview of the characteristics of the Middle Bakken 
lithofacies observed in the Dunn County, Grenora, and Rival areas. 
 
 The lithofacies in the Grenora area appear to be generally more variable (i.e., more 
variability in attributes between wells in the area) than was observed in the Rival and Dunn 
County areas. The increased variability made correlation of lithofacies within the Grenora area 
more difficult and increased the uncertainty of key reservoir properties (e.g., porosity, 
permeability, etc.) distribution. This variability and lack of an easily correlatable, thick, 
laminated zone make the choosing of a suitable horizontal drilling target, and subsequent CO2 
injection target, in the Grenora area more challenging.  
 
 Generally speaking, the Middle Bakken in the Grenora and Rival areas appears to be 
significantly more dolomitic than the Bailey and Murphy Creek areas. For example, XRD results 
indicate that both the Rival and Grenora Middle Bakken samples had an average of 22.8% 
dolomite, while the Middle Bakken samples from the Bailey and Murphy Creek areas had an 
average of 11.4% and 4.5% dolomite, respectively. The published literature suggests that 
amongst Bakken fields, the Elm Coulee Field in Montana is known for being highly dolomitic 
and that the dolomitization in that field is likely due to depositional environment and/or 
diagenetic factors (Sonnenberg and Pramudito, 2009). The proximity of the Grenora area to the 
Elm Coulee area in Montana (Grenora is approximately 45 miles north of Elm Coulee) suggests 
that the elevated dolomite occurrence in the Grenora area may be related to the same regional 
depositional environment and/or diagenetic trends that affected Elm Coulee. While the Rival area 
is another 90 miles to the east and north of Grenora, the fact that both areas displayed more 
distinctly dolomitic lithofacies may suggest that they had similar depositional environments 
and/or diagenetic histories. 
 
 One of the thoughts behind the comparison of thermally mature to thermally immature 
areas of the Bakken was that the thermally mature areas might have more natural fractures than 
the immature areas. This is because the expulsion of oil that takes place as a result of the 
transformation process of kerogen to oil can result in the overpressurization of the formation, 
thereby inducing the development of fractures. A comparison of the fracture analysis data 
collected for the four study areas showed that all four areas had a significant amount of naturally 
occurring fractures in at least one lithofacies. The presence of structure in all four areas makes it 
difficult to definitively attribute the presence of those fractures to thermal maturity.  
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BUILDING STATIC GEOLOGIC MODELS AND DYNAMICALLY MODELING 
POTENTIAL EOR SCHEMES 
 
 CO2 EOR processes are expected to be very different in tight reservoirs compared to 
conventional reservoirs. During CO2 EOR in conventional reservoirs, CO2 flows through the 
permeable rock, and oil is mobilized by a combination of oil swelling, reduced viscosity, 
hydrocarbon stripping, and CO2 flushing. In the Bakken, CO2 flow will be dominated by fracture 
flow, and not significantly through the rock matrix, so fractures must be a major component of 
any Bakken reservoir model that will be used for dynamic simulations. However, diffusion of 
CO2 from the fracture system into the matrix may have a significant effect on CO2 storage and 
oil recovery; therefore, understanding the nature of the matrix is also vital to predicting the 
effectiveness of CO2-based EOR and storage in the Bakken. As such, the EERC’s approach to 
modeling for this project includes robust multimineral petrophysical analysis (MMPA) to 
account for the distribution of matrix properties and the creation of a discrete fracture network 
(DFN) to account for the role of fractures in the reservoir system.  
 
 MMPA can use well log data and core data to provide an estimate of residual and 
producible hydrocarbons, effective porosity, and lithofacies-based permeabilities. MMPA is 
calibrated to core analytical data (e.g., thin-section and XRD analyses) and well log-based bulk 
density, matrix density, porosity, and irreducible water saturation data. The DFN is created using 
log data and data generated by macro- and microfracture analyses. The EERC combines MMPA 
and DFN results to establish a dual-porosity–dual-permeability model for the study reservoir.  
 
 Static and dynamic modeling activities were conducted using industry-standard software 
provided by Computer Modelling Group (CMG) and Schlumberger Carbon Services (SCS). The 
modeling activities were conducted on existing computer hardware at the EERC. Modeling 
hardware at the EERC includes a high-performance computer cluster that is designed and 
dedicated to serve the needs of advanced reservoir modeling and simulations. As with other 
components of the research program, the EERC worked closely with the operating partner to 
tailor the modeling activities for a specific study area to fit with the previous and/or ongoing 
efforts of that partner. 
 

Static Modeling Approach 
 
 Of the four North Dakota Bakken fields that were characterized, two were selected to be 
the focal points for static and dynamic modeling efforts. A portion of the Bailey Field in Dunn 
County was selected to represent a thermally mature area of the Bakken. The thermally immature 
area of the Bakken was represented by a portion of the Grenora Field in Williams County. These 
fields were selected for modeling because they had the largest, most detailed publicly available 
data sets of the four characterized fields. A significant amount of confidential characterization 
data was also provided by one of the partner companies for a well in the Bailey Field, further 
supporting its selection for detailed modeling activities. The creation of the static geologic 
models for the Bailey and Grenora study areas took place in a stepwise manner, starting with the 
development of a structural model, followed by the creation of matrix petrophysical and fracture 
petrophysical modeling. The types of data that were used to create the models include a variety 
of well log, stratigraphic, XRD, SEM, and routine core analysis data (e.g., effective porosity, 
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permeability, bulk volume and density, grain volume and density). MMPA was performed to 
derive mineral volumes, saturations of clay-bound and unbound water, saturations of oil, and 
porosity.  
 
 Structural surfaces of the upper, middle, and lower members of the Bakken Formation in 
each field were created from the well correlation process using gamma ray (GR) logs followed 
by geostatistical interpretation. Once the structural model was established, efforts were then 
focused on the creation of petrophysical models. Two different petrophysical models are required 
to support realistic dynamic modeling of a CO2 EOR scheme, a matrix petrophysical model and a 
fracture petrophysical model. The matrix and fracture petrophysical models are ultimately 
integrated to create a dual-porosity–dual-permeability model upon which dynamic simulations of 
CO2 injection and fluid production are conducted. An overview of the steps taken to create the 
petrophysical models is provided as follows.  
 

Matrix Petrophysical Modeling 
 
 The complex nature of the unconventional Bakken reservoir requires an understanding of 
the way CO2 will fundamentally interact with all of the key elements of the reservoir matrix. 
Specifically, an accurate model of the minerals, clays, and fluid saturations is critical to predict 
the interactions that CO2 will have with the reservoir system. The primary steps for developing 
the matrix petrophysical model can be categorized as data preparation, selection of key wells, 
synthetic well log creation, lithofacies correlation, incorporation of core data, MMPA, and 
petrophysical modeling. The first step of data preparation included the collection and placement 
of well logs into a Techlog database that allowed for efficient management of the log data and 
evaluation of data for log analysis and quality control purposes. The Techlog application 
included core data, core photos, thin-section photos, and MMPA precomputational analysis from 
well files and log headers. Techlog was also used to pick formation tops and lithofacies tops for 
the vertical portions of wells in the study area. Data preparation also included the use of Petrel 
for managing and manipulating data on wells and well deviations, well tops, well logs, mud logs, 
and results generated within Techlog. 
 
 Once the Techlog and Petrel databases had been established for each study area, a set of 
key wells was selected for detailed well log analysis that would ultimately lead to MMPA. Of the 
dozens of wells in each study area (72 in Bailey and 30 in Grenora), a much smaller subset of 
wells in each area had sufficient data for MMPA and served as key wells for analysis. Key wells 
were identified as those wells having a suite of GR, bulk density (RHOB), photoelectron effect 
(PEF), sonic (DT), neutron porosity (NPHI), resistivity (RT), and flushed-zone resistivity (RXO) 
logs. In some cases wells that were initially identified as being key were later identified as 
having bad PEF, DT, or RHOB log data and were removed from the list of key wells. In the 
Bailey Field, the Corrine Olson well had the largest and most detailed suite of core analysis data 
among the key wells. Its data were used for calibration of core analytical data to well logs. In the 
Grenora Field, there were three wells (NDIC-17946, NDIC-20844, and NDIC-20552) with 
essentially equal amounts of core analysis data, so all three were used for core-to-log calibration. 
Not all of the key wells had PEF or DT logs, the lack of which could adversely affect the results 
of MMPA. Synthetic logs were, therefore, created using Techlog. Synthetic DT logs were created 
for five of the key wells, while eight synthetic PEF logs were created. Once a full suite of logs 
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had been established for each of the key wells, then it was possible to correlate the primary 
Bakken middle member lithofacies in each of the study areas. 
 
 After the middle member lithofacies had been correlated, core data were integrated into the 
static geologic model. XRD data from core samples taken from the calibration wells were used to 
predefine the mineral solver. A RockView geochemical log was used for MMPA calibration and 
validation. Core lithofacies descriptions were also incorporated, and core data were depth-shifted 
as part of the quality control (QC) process for finalizing MMPA results. The core data were 
shifted based on core gamma measurements as compared to the well gamma log.  
 
 The use of MMPA is an approach that goes beyond simply assigning properties to a facies. 
MMPA is typically conducted to determine the complexity of oil and gas reservoirs and the 
effects of overall mineral content on fluid movement and production estimates. It is a more 
robust and rigorous means of assigning a multitude of properties to a given lithofacies, 
particularly with respect to mineral composition and fluid saturations and the relationships 
between those aspects of a reservoir. Mineral composition ultimately determines the physical 
parameters of the rocks and can be used as a tool to determine the overall characteristics of the 
reservoir and the depositional environment. Logs used in the inversion process typically include 
GR, neutron porosity, bulk density, formation resistivity, flushed zone resistivity, sonic, and 
photoelectric factor. The Quanti.Elan module in Techlog was used to calculate MMPA from the 
key well log data and determine the overall quantity and volume of different mineral components 
in each wellbore. This mineral volume calculation aids in determining the stratigraphy and the 
overall correlation from one wellbore to another, thus describing the geologic structure for 
property distribution in the 3-D model. MMPA can also help determine the interaction of bulk 
mineral volume and CO2. Other key properties calculated by the MMPA process include pore 
fluid volumes and the calculation of effective and total porosity. An example of an output from 
MMPA is shown in Figure 20, which is a correlation cross section created from the 12 vertical 
key wells in the Bailey Field, with the Corrine Olson well results on the far right of the image.  
 
 Upon completion of MMPA, the reservoir properties were imported into Petrel for the 
creation of the matrix petrophysical model for the Bakken in the respective study area. Petrel was 
then used to conduct variogram data analysis and geostatistically populate effective porosity, 
permeability, and oil and water saturation properties. Figure 21 illustrates an example of the 
distribution of effective porosity and permeability for the matrix petrophysical model of one of 
the lithofacies in the Bailey study area.  
 

Fracture Petrophysical Modeling 
 
 Because the matrix of the Bakken is characterized by low porosity and permeability, 
fracture networks are crucial to successfully producing oil from a Bakken reservoir. Fracture 
networks will also serve as the primary pathway for CO2 movement within the reservoir; 
therefore, a fracture petrophysical model is essential to predict the effectiveness of a CO2 storage 
and EOR scheme. The process to create a fracture petrophysical model includes core viewing to 
conduct macroscale fracture analyses, laboratory analysis to characterize macrofractures and 
microfractures, definition of fracture sets, and the creation of a DFN.  
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Figure 20. MMPA resuults for the 12 veertical key wells
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 To address the system’s response to CO2 injection for oil production, four cases were 
evaluated based on the near-wellbore single-porosity–single-permeability model for the Bailey 
area. The results of these cases were used to more accurately build models for simulations that 
utilize dual-porosity–dual-permeability models for both Bailey and Grenora areas. 
 
 
GEOLOGICAL MODELING DEVELOPMENT FOR SINGLE-POROSITY–SINGLE-
PERMEABILITY SIMULATIONS 
 
 A single-porosity–single-permeability geocellular model of the Bailey Field study area  
(Figure 26) was built based on a database containing geophysical well logs, well information, 
stratigraphy, routine core analysis data, XRD, XRF, SEM, and UVF. The study area covers  
38 square miles and includes 72 wells. A total of 13 key vertical wells were used in MMPA and 
stratigraphic correlation of lithofacies. Three of the key wells (Rogne, Burbank, and Corrine 
Olson wells) had preserved subsurface core, which was described and sampled for routine, 
special, and fracture core analysis. Correlated well logs showing the occurrence and thickness of 
the Middle Bakken lithofacies at the three key wells are shown in Figure 27. Routine analysis 
provided petrographic interpretation, grain and bulk densities, porosity, permeability, XRD, and 
XRF analysis. Special core analysis included SEM work to better understand mineral 
composition and the natural fracture system. A UVF technique was also used to identify naturally 
occurring fracture patterns, joint angles, fracture diagenesis, and hints toward improved 
understanding of natural vs. induced fractures. 
 
 The model was divided into four distinct lithofacies that were evident by sequence 
stratigraphy in understanding mechanical zones, ichnology, and biostratigraphic correlation 
among subsurface cores, MMPA, and fracture analysis. A structural model was built based on 
these four lithofacies and capped on top by the Upper Bakken shale and on the bottom by the 
Lower Bakken shale. These six zones were represented by a grid cell size of 33 × 33 ft laterally 
by an average of 0.5 to 1.0 ft vertically (Figure 28). The study area model has a total of  
50 million cells. Well logs were upscaled into the structural model, and data analysis was 
performed to develop variograms for major, minor, and vertical ranges: 6300, 5000, and 3 ft, 
respectively. These small variogram ranges introduce strong heterogeneity into the model both 
laterally and vertically. Geostatistical methods were then used to populate water saturation, 
effective porosity, and permeability into the structural model. Pressure and temperature were 
determined based on bottomhole parameters derived from drillstem tests within the study area. 
 
 A fine-scale, near-wellbore model was clipped from the study area model to test CO2 EOR 
by performing numerical simulation. The selection of the clipped model was based on a 
workflow to first understand connected volumes based on effective porosity and permeability 
cutoffs and then choose two wells that contain higher permeabilities from the inclusion of natural 
fracture properties into the matrix model. The model size is 6800 × 1800 ft laterally by 40 ft 
thick, with a grid cell size of 33 × 33 ft laterally by an average of 1 ft thick for 50 layers  
(Figure 26). The total cell count for the near-wellbore model is 610,000. 
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 The CO2 was also allowed to dissolve into brine to mimic the nature of the system. The 
aqueous density and viscosity of the fluids were, respectively, correlated by using the Rowe and 
Chou (1970) and Kestin and others (1981) methods with varying temperatures and pressures of 
the saline system over the location and depth. Henry’s law constant was correlated by Harvey’s 
method to determine the solubility of CO2 in the brine (Harvey, 1996). 
 
 To test CO2 recovery, a total of four cases were designed to address the potential for CO2 
EOR in the Bakken (Table 2). Cases 1 and 2 investigate oil production without CO2 injection. 
Cases 3 and 4 introduced continuous CO2 injection to investigate the potential to enhance 
recovery to above cases without CO2 injection. The bottomhole pressure (BHP) maximum was 
set on the injection well not to exceed 20% more than the initial reservoir BHP. All of the 
dynamic simulations were performed using CMG’s software package (www.cmgl.ca/) on a  
184-core, high-performance, parallel computing cluster. The results of all four single-porosity–
single-permeability simulation cases are shown in Table 2.  
 

Results and Discussion of Simulations Using Single-Porosity–Single-Permeability 
Model 

 
 The results of the four cases, including oil production, CO2 storage, and net CO2 
utilization, are listed in Table 2. Net CO2 utilization was calculated by dividing the total stored 
CO2 by incremental oil produced during the production periods. By comparing the oil 
production, 58% more oil was produced with CO2 injection in Case 3 than the production 
without CO2 injection in Case 1. This results in an increase in the cumulative oil production from 
839 bbl in Case 1 to 1323 bbl in Case 3. The cases that used fracture relative permeability curves 
experienced a similar increase when CO2 injection was utilized, with oil production in Case 4 
(2680 bbl) 43% higher than Case 2 (1869 bbl), which had no CO2 injection (Figure 5 and  
Table 2). By comparing the cases based on fracture or matrix relative permeability, the 
cumulative oil production was two to three times higher from fracture relative permeability in 
Cases 2 and 4 than the results using matrix relative permeability in Cases 1 and 3 (Table 2 and 
Figure 30). This explains the resulting lowered CO2 net utilization of cases based on fracture 
when compared to the matrix. With respect to CO2 storage, the matrix relative permeability case 
was observed to be more than twice as effective at storing CO2 as the fracture relative 
permeability case. 
 

Table 2. Results for All Four Cases Run Using the Single-Porosity–Single-Permeability 
Model 

Case 
No. RPT* 

CO2 
Recycle 

Injection 
Rate, 

Mscf/day 

Produced 
Oil,  
bbl 

Oil 
Change, 

% 

Incremental 
Oil,  
bbl 

Stored 
CO2,  
Mscf 

Net 
Utilization, 
Mscf/bbl 

1 Matrix No N/A 839 N/A N/A N/A N/A 
2 Fracture No N/A 1869 N/A N/A N/A N/A 
3 Matrix Yes 10 1323 58 484 11,213 23.17 
4 Fracture Yes 10 2680 43 811 4750 5.86 

* Relative permeability curves (matrix or fracture systems). 
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 The CO2 was also allowed to dissolve into brine to mimic the nature of the saline system 
for CO2 injection. The aqueous density and viscosity of the fluids were correlated by using the 
Rowe and Chou (1970) and Kestin and others (1981) methods, respectively, with varying 
temperatures and pressures of the saline system over the location and depth. Henry’s law 
constant was correlated by Harvey’s method to determine the solubility of CO2 in the brine 
(Harvey, 1996). 
 
 To test CO2 recovery in three scenarios, a total of six cases were designed to address 
factors such as CO2 injection strategies and well configurations (Table 3) in the Bailey Field. 
Scenario 1 focused on the comparison of oil production and CO2 injection results between the 
cases with one injector and one producer and two injectors and one producer. Scenario 2 added 
the diffusion phenomenon to the simulation to test the oil flowing out from the matrix to the 
fracture for EOR (Table 3). Scenario 3 opened production without CO2 injection for 14 months 
and then added CO2 injection to stimulate oil flow to the producer. The BHP constraint of the 
injection well was 20% more than the local BHP, which is less than the maximum pore pressure 
for injection. For the simulation of the Grenora Field, one case was tested based on the same 
settings of Case 2 of the Bailey Field (Table 4). 
 
 All of the dynamic simulations were performed using the CMG software package 
(www.cmgl.ca/) on a 184-core, high-performance, parallel computing cluster. The simulation 
time was started from April 1, 2015, to April 1, 2040. The CO2 net utilization was calculated by a  
5-year interval for the cases (Table 3). Results of the simulation of the Grenora Field are reported 
for just the first 200 days in Table 4.  
 

Results and Discussion of Simulations Using Dual-Porosity–Dual-Permeability Model  
 
 The results of the injection and production simulations that were run using the single-
porosity–single-permeability models indicated that CO2 storage in tight oil formations is possible 
and that, in some cases, CO2 injection could substantially improve oil production from the 
reservoir. The next step in the modeling process was to run the most promising CO2 injection 
and EOR scenarios identified in the single-porosity–single-permeability simulations through the 
dual-porosity–dual-permeability models. The dual-porosity–dual-permeability models are 
thought to more accurately represent the Bakken reservoirs. Running the most promising 
injection and EOR scenarios through the dual-porosity–dual-permeability models provides 
additional, refined insight to the potential effectiveness of these approaches and will support the 
development of an optimal field test design.  
 
 The results of the five injection and production cases that were run in the dual-porosity–
dual-permeability model, including oil production, CO2 storage, and net CO2 utilization for each 
case, are provided in Table 3. All five cases simulated schemes that included combinations of 
injection and production wells. Cases 4 and 5 start with a 14-month period of production without 
CO2 injection (to represent a period of primary recovery); followed by a period of CO2 injection 
(to represent a period of secondary recovery). A comparison of the relative effectiveness of the 
different injector–producer scenarios simulated in the dual-porosity–dual-permeability model is 
provided as follows.  
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Table 3. Results for the Six Cases for the Bailey Field Using the Dual-Porosity–Dual-Permeability Model 
Results Summary 

Case Well Settings 
Diffusion 
Included 

Production 
Before 

Injection 

Time of 
Injection, 

years 

CO2 
Injected, 

Mscf 

CO2 
Produced, 

Mscf 

CO2 
Stored, 
Mscf 

% of 
HCPV 

Oil 
Produced 

Before 
Injection, 

bbl 

Oil 
Produced, 
total bbl 

CO2 
Utilization 
Mscf/bbl 

1 One injector 
One producer 

No No 5 183,000 118,000 64,800 0.30 NA 28,000 2.31 

10 365,000 247,000 118,000 0.55 NA 52,800 2.23 

15 548,000 381,000 167,000 0.77 NA 76,000 2.19 
2 Two injectors 

One producer 
No No 5 365,000 264,000 101,000 0.47 NA 43,500 2.33 

10 731,000 564,000 167,000 0.78 NA 73,500 2.27 
15 1,100,000 874,000 222,000 1.03 NA 103,000 2.17 
20 1,460,000 1,190,000 274,000 1.27 NA 128,000 2.14 
25 1,830,000 1,500,000 322,000 1.50 NA 151,000 2.13 

3 Two injectors 
One producer 

Yes No 5 365,000 264,000 101,000 0.47 NA 47,500 2.13 
10 731,000 564,000 167,000 0.78 NA 80,700 2.07 
15 1,100,000 874,000 222,000 1.03 NA 110,000 2.03 
20 1,460,000 1,180,000 276,000 1.28 NA 136,000 2.03 

4 
One injector 

One producer 
No Yes 

(1.17 yr) 
5 1,770,000 1,230,000 535,000 2.49 5390 48,700 12.37 

5 
Two injectors 
One producer 

No Yes 
(1.17 yr) 

2 1,340,000 901,000 437,000 2.03 5390 59,500 7.35 
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Summary of Key Observations from CO2 Injection and EOR Simulations 
 
 The first round of CO2 injection–oil production simulations were run using the single-
porosity–single-permeability models. Initial simulation results indicated that not only is CO2 
injection into the Bakken feasible, but the potential for storage and EOR may be significant, with 
some scenarios showing the potential to produce over 50% more oil as compared to production 
without CO2 injection. Some of the injection–production scenarios were then simulated using a 
dual-porosity–dual-permeability model to provide further insight regarding their potential 
effectiveness in the field. Those results suggest that an EOR scheme that pairs two injectors with 
one producer will produce more oil than a single injector–producer scheme. They also indicate 
that patience may be rewarded, with the incremental recovery and efficiency improving with 
longer periods of injection.  
 
 The results of one of the dual-porosity–dual-permeability simulation runs indicated that 
diffusion may play a significant role in moving oil from the reservoir matrix into the fracture 
network. This modeling result is supported by the results of the laboratory-based CO2 
hydrocarbon elution experiments from Bakken rock samples, which also showed that well over 
50% of hydrocarbons could be mobilized from the matrix in a reasonable amount of time. While 
these modeling results might suggest that diffusion does not appear to significantly affect the 
amount of CO2 stored, it is important to note that these modeling exercises may not accurately 
account for all of the interactions that might occur between CO2 and these organic-rich rocks. An 
improved knowledge of those interactions, and their integration into future modeling activities, 
may show that the CO2 storage capacity of the Bakken is actually higher than what is shown in 
these results.  
 
 However, it is important to note that the high degree of complexity in the Bakken static 
models means that a single round of Bakken reservoir simulations will take several days to 
weeks to run. This limits the number of injection scenarios and cases that can be simulated over 
the course of a given project. These limitations precluded the running of enough simulations to 
do any robust sensitivity analyses or optimization studies on any of the potential CO2 injection–
EOR scenarios. Future studies of CO2 storage and EOR in the Bakken should include robust 
sensitivity analysis of the well placement, well spacing and operational optimization, diffusion 
analysis based on the potential formations, hydraulic fracture optimization based on the dual- 
porosity–dual-permeability system, and sequential multiwell huff ‘n’ puff investigations. Such 
efforts would provide tremendous insight into the design and implementation of field-based pilot 
tests.  
 
 
OIL CHARACTERIZATION RESULTS 
 

The Effects of CO2 on Bakken Oil 
 
 The challenges of EOR within the Bakken have to do with the mobility of traditional fluids 
(i.e., reservoir fluids and injected water vs. CO2, polymers, or surfactants) through natural or 
induced fractures relative to very low matrix permeability and the effects of exposing swelling 
clays to water, which can reduce permeability and damage the formation. Further, the oil-wet 
nature of much of the Bakken system will dramatically minimize the effectiveness and utility of 
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waterflooding. With these issues in mind, the use of CO2 as a fluid for EOR in the Bakken may 
be effective. To predict the performance of CO2 EOR in the Bakken, the program included a suite 
of experimental activities to help quantify phase behavior and fluid property under reservoir 
conditions. As with the reservoir characterization efforts, the specific oil–CO2 interaction data 
(i.e., minimum miscibility pressure [MMP]) were determined within the context of previously 
generated oil property data and in close consultation with the operating partners. The data 
generated by these activities not only provided insight regarding the effects of CO2 on Bakken oil 
but were ultimately integrated into the dynamic simulation modeling of potential CO2 EOR 
injection and production schemes. 
 

Rapid and Simple Determination of MMP (expedited MMP) 
 
 Methods to determine MMP of crude oil (e.g., slim tube, rising bubble) can be costly, slow, 
and subject to operational variations. In contrast, vanishing interfacial tension (VIT) methods 
rely on a more fundamental definition of miscibility, i.e., the conditions at which there is no 
interfacial tension (IFT) between the two fluids. IFT is determined at different injection fluid 
pressures, yielding an IFT/pressure curve which is extrapolated to zero IFT, with the pressure 
intercept being MMP. Determining IFT requires measuring the oil height in a capillary tube (with 
accurately known internal diameter) and the density of both fluid phases at each experimental 
condition. The requirement for density determinations adds complexity and cost because of the 
densitometer required as well as the need to transfer both fluids to the densitometer at each 
pressure step without affecting the oil composition in the experimental system (Ayirala and Rao, 
2011). 
 
 Fortunately, it is not necessary to measure IFT at several pressures to determine when the 
IFT goes to zero since a plot of the oil height in the capillary versus pressure will intercept the 
pressure axis at the same value as the IFT data. That is, both zero IFT and zero capillary rise 
height occur at the same pressure. This approach yields linear plots (rather than the curves from 
IFT versus pressure data), and no density measurements are needed, which greatly reduces 
instrument cost and experimental complexity. The need to transfer fluids to the densitometer is 
eliminated, assuring a constant oil composition during experiments, and only a few grams of oil 
is needed. The rising capillary approach to estimating MMP is based on determining when the 
surface tension between the bulk crude oil and the overlying CO2 phase goes to zero. This is 
measured by placing the oil in a view cell (the viewing window is ca. ¾ inches in diameter) and 
sequentially adding CO2 starting from ambient up to when the oil level in the capillary can no 
longer be observed to be above the level of the bulk oil in the bottom of the cell. Each sequential 
pressure addition of CO2 results in a very rapid change in the capillary height, so a new data 
point is produced with each pressure step. The method uses three capillaries with different 
diameters so that three full sets of data can be generated from each experimental run. Figure 36 is 
an example of the data that are generated by this method. The pressure at which the three lines 
converge on a zero value for height is considered to be the MMP value for CO2 in that particular 
oil sample.  
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mechanisms that control CO2 EOR from the matrix within tight reservoirs in order to provide 
insights on how to better design and manage CO2 EOR efforts. Understanding these mechanisms 
will also provide insight as to the extent that tight oil-bearing formations such as the Bakken may 
serve as targets for CO2 storage. 
 
 The basis for the approach that was taken in these experimental activities is that CO2-based 
EOR and storage mechanistic processes will be very different for these tight formations from 
those that control CO2 storage and recovery of oil from conventional reservoirs. From an oil 
recovery standpoint, CO2-induced processes that are important to EOR in conventional (i.e., 
permeable) formations, including oil swelling, lowered oil viscosity, and the formation of 
multiple-contact, miscible mixed CO2–oil phases are likely to also enhance oil recovery from 
tight formations (Jarrell and others, 2002). However, the displacement mechanism of oil 
production caused by the action of CO2 flowing through conventional reservoir rock matrix will 
not likely apply to tight formations. In tight formations, the bulk CO2 is expected to flow through 
natural and produced fractures but not significantly through the nonfractured rock matrix. Thus 
oil remaining in the unfractured rock will not experience significant sweeping (displacement) 
flow of CO2 from injection to production areas but will only see CO2 that permeates into the rock 
after the CO2 first fills the fracture spaces. 
 
 This section reports the results of CO2 exposure experiments designed to mimic the 
proposed mechanisms in an effort to better understand and, hopefully, to better exploit these 
processes to enhance EOR in the Bakken play (Hawthorne and others, 2013). It is important to 
note that these investigations focus solely on processes that control the transport of oil from the 
rock matrix into the CO2-filled fractures but do not address subsequent engineering, completion, 
and production steps needed to move the hydrocarbons to the production well.  
 
 Conceptual steps for the use of CO2 for EOR and storage in the Bakken include the 
following: 1) CO2 flows into and through the fractures; 2) unfractured rock matrix is exposed to 
CO2 at fracture surfaces; 3) CO2 permeates the rock initially driven by pressure, carrying some 
hydrocarbon inward, but the oil is also swelling and extruding some oil out of the pores; 4) oil 
migrates to the bulk CO2 in the fractures via swelling and reduced viscosity; and 5) as the CO2 
pressure gradient gets smaller, oil production is slowly driven by concentration gradient diffusion 
from pores into the bulk CO2 in the fractures. 
 
 To investigate these concepts, rock samples from the Middle Bakken (low permeability), 
Upper and Lower Bakken (very low permeability), and a conventional reservoir (high 
permeability) were exposed to CO2 at Bakken conditions of 110°C and 5000 psi (230°F,  
34.5 MPa) to determine the effects of CO2 exposure time on hydrocarbon production. Varying 
geometries of each rock ranging from small (mm) “chips” to 1 cm-diameter rods were exposed 
for up to 96 hours, and mobilized hydrocarbons were collected for analysis.  
 

Mechanistic Considerations for Hydrocarbon Elution Experiments 
 
 As noted above, it is likely that the flow patterns of CO2 (and other EOR fluids) will be 
substantially different in conventional reservoirs (where CO2 flows through the rock matrix and 
sweeps the oil out in a manner mimicked by the sand-packed and oil-saturated slim tube) and 
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 As in any chemical/physical process, there are two overall controlling factors that must be 
satisfied, i.e., the thermodynamics of the process (Is CO2 capable of mobilizing oil in tight 
formations under the temperature/pressure conditions of that reservoir?) and the kinetics of that 
process (Does the mobilization of the oil occur rapidly enough to be useful?). The experiments 
reported here are an attempt to answer those two fundamental questions. 

 
Hydrocarbon Elution Test Samples 

 
 Samples were obtained from two locations in the Bakken Formation. Samples of Middle 
Bakken reservoir rock and both upper and lower source shales from the same borehole in a 
thermally mature area of the formation in North Dakota were provided by an operator. Middle 
and Lower Bakken samples from another well were also obtained from the North Dakota 
Geological Survey core library, also representing a thermally mature region. In the regions 
sampled, Middle Bakken porosities range from 4.5% to 8.1% and permeabilities from 0.002 to 
0.04 mD (Kurtoglu and others, 2013). Values for the porosity and permeability of lower and 
upper shales are not available, but permeability is expected to be orders of magnitude lower 
compared to Middle Bakken reservoir rock. A sample from a conventional sandstone reservoir 
was also obtained to act as a reference sample that would display the “fastest” CO2-enhanced 
scenario under the experimental conditions used. Typical values in that region of the 
conventional reservoir are ca. 25% porosity and ca. 800 to 1100 mD permeability. 
 
 Different geometries (Figure 39) were prepared from the bulk samples, including 3–4-cm-
long round rods made with a ca. 1-cm coring bit, 3–4-cm-long × ca. 9 × 9-mm square rods cut 
with a high-pressure water jet, 2–3-mm-thick × ca. 9 × 9-mm squares (“chicklets”) by flaking of 
the square rods along existing fracture planes, and smaller particles prepared by crushing the 
samples to pass a 3.5-mm sieve. Crude oil samples were also obtained from similar locations for 
use as calibration standards.  
 

Hydrocarbon Elution Experimental Methods 
 
 All CO2 exposures were performed at reservoir conditions of 5000 psi and 110°C. 
Exposures were performed using an ISCO Model 210 SFX extractor, with the high-pressure CO2 
supplied by an ISCO Model 260D syringe pump set to deliver a constant 5000 psi of CO2 to the 
extraction unit. Rock samples were placed into the 10-mL sample cell shown in Figure 2. It 
should be noted that the 5- to 8-gram samples were not sealed to the cell wall in any way (in 
contrast to what would be done, for example, for a high-pressure permeation test), so that the 
CO2 was free to flow around the pieces of rock samples rather than being forced through the rock 
matrix, in order to mimic the fracture flow dominance anticipated in tight hydraulically fractured 
systems. CO2 entered through the top of the cell and exited through the bottom of the cell to pass 
through a heated flow restrictor that controlled the CO2 flow (measured as liquid CO2 at the 
pump) at 1.5 mL/minute. The heated outlet of the restrictor was placed in a vial containing  
15 mL of methylene chloride to collect the produced hydrocarbons. CO2 outlet flow could be 
continuous (dynamic mode) or stopped (static mode) as controlled by a shut-off valve located 
between the extraction cell outlet and the outlet restrictor. More detailed descriptions of the CO2 
exposure instrumentation and operation are provided by Hawthorne (1990). 
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96 hours. For the first day, the sample was pressurized to 5000 psi (110°C) under static 
(nonflowing) conditions for 50 minutes, followed by a 10-minute dynamic sweep with CO2 to 
collect the mobilized hydrocarbons as described above. Approximately 15 mL of dense CO2 (ca. 
2 cell void volumes) swept the cell during the 10-minute dynamic collection step 
(instrumentation automatically maintained the CO2 pressure and temperature at 5000 psi and 
110°C, regardless of whether the CO2 flow was static or dynamic). This 1-hour sequence was 
repeated for 7 hours, then followed by longer static exposures with 10-minute collections of the 
mobilized hydrocarbons at 24, 48, 72, and 96 hours. The remaining rock residue was then 
solvent-extracted to determine residual hydrocarbons as described above. 
 
 Results of the 96-hour exposures are shown in Figure 40. As might be expected based on 
its high permeability, hydrocarbons were rapidly recovered to nearly 100% from the 
conventional reservoir rock square rod sample. These results clearly demonstrated that even 
though the CO2 is not flushing through the reservoir rock, but is only surrounding it (followed by 
the recovery mechanisms discussed above), the hydrocarbon recovery is not only rapid but 
highly efficient. Surprisingly, the recoveries from the Middle Bakken were also high and quite 
rapid from the square rod. While it took only ca. 2 hours to recover 90% from the conventional 
reservoir square rod, 90% recovery was achieved by ca. 4 hours from the Middle Bakken square 
rod. Also, recovery rates from the smaller Middle Bakken chicklets were essentially the same as 
from the conventional square rod sample. 
 
 As would be expected, recovery from the even tighter Lower Bakken sample was much 
slower from the square rods, and only ca. 60% of the hydrocarbon was recovered in 96 hours, 
still surprisingly high considering the very low permeability of this source shale. In addition, 
hydrocarbon recovery in 96 hours from the Lower Bakken shale increased to >80% as the 
thinner chicklets were exposed to the CO2, as would be expected since smaller particles require 
less time for CO2 mobilization of interior hydrocarbons, as proposed in Figure 1 and the related 
mechanistic discussion. 

 
Hydrocarbon Recovery under Dynamic (flowing) CO2 Conditions 

 
 Since the times involved to achieve such high recoveries in a reservoir are likely to be 
much too long to be practical, and since even very small (e.g., 1%) increases in oil recovery 
represent a tremendous amount of additional oil produced, additional shorter exposures were 
performed under dynamic (flowing CO2) conditions using the operator-provided Lower, Middle, 
and Upper Bakken samples obtained from a single borehole. CO2 flow was continuous during 
the first 7 hours of extraction, then static from 7 to 24 hours, followed by a 1-hour dynamic 
collection of the produced hydrocarbons. In order to obtain data to investigate the very early 
exposure steps outlined in Figure 1, samples were collected from 0 to 10, 10 to 30, and 30 to  
60 minutes followed by hour-long collection periods. 
 
 As shown in Figure 4, recovery from the Upper and Lower Bakken round rods is very slow 
and only achieves ca. 40% after 24 hours of CO2 exposure. As noted for the other Middle 
Bakken sample in Figure 3, recovery from the Middle Bakken round rod is nearly as fast as that 
from the permeable conventional reservoir round rod, demonstrating that on the centimeter scale, 
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CO2 is fairly efficient at recovering hydrocarbons from the rock interior. As expected based on 
mass transfer consideration in the very low permeability Upper and Lower Bakken shales, 
increasing the surface area by grinding to <3.5 mm dramatically raises the recovery rates, with 
nearly complete hydrocarbon recovery achieved after 24 hours of CO2 exposure (Figure 41). 
 

Effect of Hydrocarbon Molecular Weight on Recovery Rates with CO2 
 
 Bulk effects of CO2 dissolving into the oil in the rock matrix (i.e., swelling and lowered 
viscosity) would be expected to show little molecular weight preference in the recovered 
hydrocarbons. In contrast, recovery processes that involve mobilizing hydrocarbons into the CO2 
would favor lighter hydrocarbons both because they have higher solubility than higher-
molecular-weight hydrocarbons and because formation of a new miscible phase of mixed CO2–
hydrocarbons favors lower- over higher-molecular-weight hydrocarbons. Therefore, it is useful 
to observe the molecular weight distribution in the hydrocarbons recovered during the CO2 
exposures. As shown in Figure 42 for the round rod samples, there is a great degree of preference 
for CO2 recovery of lighter versus heavier hydrocarbons, as is especially evident from the tighter 
Upper and Lower Bakken shales. For example, the C7 hydrocarbons are recovered ca. 10-fold 
faster than the C20 hydrocarbons from the Upper and Lower Bakken shales. Although the same 
range of hydrocarbons could not be observed from the Middle Bakken sample (because of their 
loss during transport and storage of the core sample), some preference for lighter hydrocarbons is 
also observed for the Middle Bakken sample. The implications of these results are discussed as 
follows. 
 

Implications of the Results of Hydrocarbon Elution Experiments 
 
 The experimental results discussed above support the overall mechanism proposed in 
Figure 1 for hydrocarbon recovery from tight formations. Some interpretations of these results in 
reference to the steps described in Figure 1 include the following: 
 

 Step 1: Since the rock samples are not sealed in the extraction vessel, the step of 
flowing the CO2 around the sample rather than through the rock matrix should be valid 
to represent fractured, tight systems such as the Bakken. 

 
 Step 2: Since there is no apparent lag in oil recovery, even when samples are collected 

during the first 10 minutes of exposure, the concern that the initial pressurization could 
reduce hydrocarbon production by carrying hydrocarbons into the rock matrix does not 
seem to be significant. Similarly, the absence of an especially fast recovery in the first 
few minutes indicates that the initial oil swelling is not a significant recovery 
mechanism (although it should be noted that these observations on small samples may 
not be relevant in the actual reservoir conditions). 

 
 Step 3: While both oil swelling and lowered oil viscosity caused by CO2 dissolving into 

the oil are likely to enhance recovery, the high degree of preference to produce lower-
molecular-weight hydrocarbons, shown in Figure 42, demonstrates that mobilization of 
hydrocarbons into the CO2 (rather than dissolution of CO2 into the bulk oil) is a 
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dominant recovery process. This could be from solvation of the oil hydrocarbons into 
the bulk CO2 phase and/or generation of a new miscible mixed CO2–hydrocarbon 
phase, since both of these processes select for lighter hydrocarbons (the 5000-psi 
exposures are substantially above the MMP for Bakken oils of ca. 2800 psi). 

 
 Step 4: The exponential decrease in recovery rates with time and the large effect on 

sample particle size both support a mass transfer-limited transport of hydrocarbons from 
the interior of the rock to the bulk CO2 at the surface, but speculation on the exact 
mechanism is difficult based on the available experimental results. However, the overall 
lesson is that the more surface area per mass of rock that can be accessed by CO2, the 
faster the hydrocarbons will be recovered. 

 
Estimation of Potential CO2 Storage Capacity of the Bakken in North Dakota 

 
 One of the goals of this program was to develop a first-order, reconnaissance-level 
estimate of the potential CO2 storage capacity of the Bakken Formation in North Dakota. There 
are currently no published studies that address the potential CO2 storage capacity of any tight oil 
formations, such as the Bakken. However, some work has been published on the potential 
storage capacity of natural gas-rich shale formations, including studies on the Devonian gas 
shales of Kentucky (Nutall and others, 2005), the Barnett shale of Texas (Uzoh and others, 
2010), and the Marcellus shale in the eastern United States (Godec and others, 2011). The 
approach that has been taken in those studies has been to assume that the CO2 storage, and  
 
subsequent methane recovery, in organic-rich gas shales will be controlled by essentially the 
same adsorption and desorption mechanisms as CO2 storage and methane recovery in coal 
seams. In those cases, the sorptive capacity of the organic content in the shales is assumed to 
play a significant role in determining the CO2 storage capacity of those shales. Unfortunately 
those approaches have limited applicability to the Bakken, since most of the Bakken Formation 
is not organic-rich shale but, rather, oil- and brine-saturated tight carbonates and clastics, as 
discussed in the sections above. With these characteristics in mind, published methods to 
estimate the storage capacity of oil reservoirs may be more applicable to estimating the potential 
storage capacity of the Bakken.  
 
 To develop first-order CO2 storage capacity estimates for the Bakken in North Dakota, an 
approach was used that estimates the amount of CO2 needed for EOR in the Bakken. 
Specifically, the methodologies for estimating CO2 storage capacity in oil formations based on 
production and volumetrics as presented in the Carbon Sequestration Atlas of the United States 
and Canada (U.S. Department of Energy, 2007) were applied to the Bakken Formation in North 
Dakota. In both of these approaches, it is assumed that the stored amount of CO2 would be equal 
to the purchased quantity. Through the EOR process, the gross mass (volume) would be greater. 
The results of these CO2 storage capacity estimation efforts are presented in Table 5.  
 
஼ைଶܩ  ൌ ௡∅௘ሺ1݄ܣ െ ܵ௪௜ሻ݌ܤ஼ைଶ௦௧ௗܧ௢௜௟/௚௔௦ [Eq. 1] 
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Table 5. Estimated CO2 Storage Capacity Results for the Bakken in North Dakota 

Scenario ND OOIP, stb 

Incremental 
Recovery 

Factor 
Net Utilization 
Factor, ft3/bbl 

Mass of CO2 
Storage, tons 

1 170,000,000,000 0.04 8000 3,155,200,000 
2 170,000,000,000 0.04 5000 1,972,000,000 
3 10,500,000,000 0.04 8000 194,880,000 
4 10,500,000,000 0.04 5000 121,800,000 

3 and 4 

ND Cum. 
Production 

Recovery 
Factor 

Rounded OOIP 

732,000,000 0.07 10,500,000,000 
 
 
 The first method, referred to as the volumetrics method, is largely based on estimating the 
OOIP of the Bakken according to known reservoir properties. Specifically, the product of the 
area (A), net thickness (hn), average effective porosity (φe), original hydrocarbon saturation  
(1-initial water saturation, expressed as a fraction [Swi]), and the initial oil (or gas) formation 
volume factor (B) yield the OOIP. The storage efficiency factor (Eoil/ gas) is derived from local CO2 

EOR experience or reservoir simulation as standard volume of CO2 per volume of OOIP. Using 
OOIP data from Nordeng and others (2010) for North Dakota, an estimate of a 4% increase in oil 
recovery (4% of OOIP) and two utilization factors, the mass of CO2 needed for a Bakken EOR 
effort (i.e., the potential CO2 storage capacity of the Bakken in North Dakota) ranges from 1.9 to 
3.2 billion tons (Scenarios 1 and 2).  
 
 A second approach, generally applied to mature oil fields or those for which key reservoir 
property data are unavailable, to determining OOIP is to use cumulative production divided by a 
recovery factor (e.g., 36%). In the case of the Bakken in North Dakota, a recovery factor of 7% 
was used along with a cumulative production of 732,000,000 bbl. This approach results in a 
predicted OOIP of 10.5 billion bbl and a corresponding CO2 storage capacity for the Bakken 
ranging from 121 to 194 Mt.  
 
 The estimates using the reservoir property-based OOIP approach are likely too high 
because the U.S. Department of Energy (DOE) method was developed based on knowledge 
derived from decades of studies and experience related to CO2 injection, utilization, and storage 
in conventional oil reservoirs. While the OOIP of the Bakken is known to be high (LeFever and 
Helms, 2008; Continental Resources Inc., 2012), the extremely tight nature of the formation may 
adversely affect injectivity and storage efficiency and thus reduce the storage capacity estimates. 
It is possible that the negative impact of the tight porosity and permeability may be at least 
somewhat positively offset by the potential adsorption of CO2 into the high-organic-content 
shales of the Bakken. However, the extent of that impact is unknown because of the lack of field-
scale data on CO2 behavior in tight oil formations, which is why two utilization factors  
(5 mcf/bbl and 8 mcf/bbl) were used in the estimation exercise. Alternatively, the estimates using 
the cumulative production approach are likely too low. Having just started in the mid-2000s, the 
Bakken play in North Dakota is still in its early stages of development, and the effects on CO2 
storage estimation are twofold. First, the North Dakota Department of Mineral Resources has 
estimated that Bakken production will likely continue for at least another 20 to 30 years. This 
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means that the cumulative production numbers used in this CO2 storage capacity exercise are 
likely only a small fraction of what the ultimate cumulative production of oil from the Bakken 
will be, and therefore the capacity estimates likely represent too small a fraction of the CO2 
storage resource. Also, because the play is in the early stages, there are only a few wells for 
which long-term decline curve data are available. The lack of such decline curve data means that 
operators and regulators are still in the process of determining the typical estimated ultimate 
recovery (EUR) of a Bakken well. Reported Bakken EUR values have been rising over the past 
few years, which again would strongly suggest that the CO2 storage capacity estimates based on 
current cumulative production are too low.  
 
 Since the high end of the estimated storage capacity range may be too high, and the low 
end is likely too low, it is clear that more data from laboratory- and field-based research efforts 
are required to develop improved CO2 storage capacity estimates for tight oil formations. Future 
evaluations of CO2 storage potential in tight oil formations like the Bakken may consider using a 
hybrid method that combines some elements of the shale gas capacity methods with elements of 
the oilfield methods. 
 

Evaluation of a Field-Based Pilot-Scale CO2 Injection Test in the Elm Coulee Area, 
Montana 

 
Overview of the Elm Coulee Area 

 
 The Elm Coulee area in Richland County, Montana, is one of the first areas to see prolific 
oil production from the middle member of the Bakken Formation. Oil production from the Elm 
Coulee Bakken play began in 2000, and it continues to be one of the most oil-productive areas in 
Montana, with approximately 50,000 barrels of oil per day produced in 2012 (Montana Board of 
Oil and Gas Conservation, 2013). As with the Bakken play in North Dakota, the application of 
horizontal drilling combined with hydraulic fracturing technologies were the critical components 
that enabled operators to economically produce oil from the Middle Bakken in Elm Coulee. In 
fact, for decades the Bakken Formation was known to hold tremendous amounts of oil 
throughout the Williston Basin (LeFever, 2006), but its unconventional nature discouraged most 
operators from trying to exploit it. This paradigm changed in the early 2000s when a number of 
successful Middle Bakken wells were brought online in the Elm Coulee area through the use of 
horizontal drilling and hydraulic fracturing. The Elm Coulee success prompted Williston Basin 
operators to rethink their Bakken assets and was the forerunner to the tremendous Bakken 
production that occurs in North Dakota today. As might be expected, the fact that the Elm 
Coulee play is one of the first productive Middle Bakken plays also means that it will be among 
the first to be considered for the application of EOR techniques. It is with EOR in mind that in 
2009 three companies (Continental Resources, Enerplus, and XTO) jointly conducted a pilot-
scale CO2 injection test in the Burning Tree–State 36-2H well (hereafter referred to in this report 
as the Burning Tree well) in the north central part of the Elm Coulee Field (Figure 43).  
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tests have been conducted around the world in conventional reservoirs (Mohammed-Singh and 
others, 2006), the literature indicates that very few have been conducted in tight oil formations 
such as the Bakken. In this regard, the Burning Tree CO2 huff ‘n’ puff test was a pioneering 
effort. 
 
 Over the course of a 45-day period between January 16, 2009, and February 28, 2009, 
approximately 45,000 mcf (2570 tons) of CO2 were injected into the Burning Tree well. The 
maximum injection pressure was 1848 psi BHP. While the average daily injection rate was 
approximately 1000 mcf/day, the actual injection operation was intermittent, with injection rates 
ranging from 0 to 3000 mcf/day. Specific reasons for the intermittent nature of the injection 
operations were not provided in any of the materials reviewed, but the intermittence may have 
been due to operational issues related to the trucked nature of the CO2 source and, possibly, even 
related to severe winter weather conditions. After injection, the well was capped and the CO2 
was allowed to soak for 64 days, from March 1 to May 3, 2009. On May 4, the well was opened 
and allowed to flow freely. Daily oil, water, and gas production data for the Burning Tree well 
for the period from May 3 to October 19, 2009, were examined. After rapidly climbing to a peak 
oil production of over 160 bbl/day 8 days after the well was brought back into production, the oil 
production settled into an average of about 20 bbl/day during the first 30 days after the end of the 
soak period. By the end of June 2009, the well was no longer flowing and was put on pump. The 
average oil production over the following 3 months rose slightly to about 22 bbl/day, with a 
range of about 15 to 25 bbl/day. By the end of September, the range of daily oil production was 
from 20 to 30 bbl/day, which was still below the preinjection range of 30 to 40 bbl/day. By the 
end of 2009, average daily oil production had risen to nearly 28 bbl/day. Oil production 
continued to slowly rise in early 2010, reaching a peak postinjection high approaching  
44 bbl/day in March 2010, which is a higher rate of production than was achieved during any of 
the 14 months immediately prior to the injection test. While oil production from the Burning 
Tree well remained above 35 bbl/day throughout the summer of 2010, by November of that year, 
it was back down to less than 30 bbl/day and has continued to decline. By the end of  
November 2013 (the latest month for which data were available) production had declined to 
slightly less than 15 bbl/day. Figure 45 shows the monthly oil production history of the Burning 
Tree well from June 2000 to November 2013. Figure 46 shows the monthly oil production from 
February 2008 to November 2013. 
 
 Typical “successful” CO2 huff ‘n’ puff operations in conventional wells see a dramatic 
improvement in oil production immediately following the soak that often takes several weeks, or 
even months, to return to preinjection rates (Mohammed-Singh and others, 2006). When 
compared to conventional huff ‘n’ puff tests, particularly when looking at the first 6 months of 
data after the soak, the Burning Tree huff ‘n’ puff test might not be considered successful. 
However, the Bakken is an unconventional play. In the Elm Coulee area, the porosity of the 
middle member of the Bakken commonly ranges from 4% to 6% and the permeability typically 
ranges from 0.06 to 0.12 mD (Almanza, 2012), and the play, therefore, requires the artificial 
generation of fracture networks to enable hydrocarbons to flow to wells. When viewed through a 
“conventional” lens, a reservoir that is highly fractured with a tight matrix is not an ideal 
candidate for any type of CO2-based EOR. But that is why the Burning Tree test should be 
viewed in the context of a pioneer and judged accordingly. It is true that other than in the first 
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few days, which saw an initial spike in fluid production that was likely the result of pressure 
buildup as opposed to any miscibility-related effects of CO2, the Burning Tree well did not see a 
dramatic increase in oil production. But CO2 was successfully injected and reservoir fluids 
produced from this tight, unconventional formation. When a longer view is taken, there was a 
period (January to March 2010) that saw a gradual increase in oil productivity, and though it was 
delayed and certainly not dramatic, this improved productivity, which lasted for another several 
months through the summer of 2010, might be attributable to the injection of CO2. 
 
 Unfortunately, the nature of the data that were available for this assessment makes it 
difficult to determine how much of that improvement may be related to the CO2 or if it is 
actually associated with other operational factors that have nothing to do with the CO2. Gaps in 
the CO2 monitoring data were perhaps the most significant limitation to fully assessing the effect 
of CO2 on the Burning Tree reservoir. While there are gas analysis data that showed 
approximately 50% of the CO2 injection volume was recovered from May 2009 to August 2009, 
no further testing results for CO2 in produced fluids from the Burning Tree well were found. 
Furthermore, it appears that during the test period, no offset producing wells were operated or 
monitored in a way that could shed light on possible migration of the injected CO2 (e.g., there are 
no CO2 analysis data from any of the producing wells in the vicinity of the Burning Tree well). 
The lack of well testing and sampling for CO2 in offset wells negatively impacts the mass 
balance to evaluate mobilized oil and the CO2 movement within that portion of the Elm Coulee 
reservoir. There are also no data that provide insight on where the CO2 may have left the 
wellbore. The well completion data indicate that the initial perforated interval received a 
hydraulic fracturing treatment, but the later hydro-jetted intervals appear to have not been 
stimulated, so it is difficult to speculate on where in the wellbore the CO2 may have entered the 
reservoir. 
 

Comparison of Elm Coulee Geology to Dunn County Geology 
 
 Of the North Dakota areas evaluated over the course of this program, it appears that the 
Dunn County area is the most attractive area with respect to a future CO2 injection test. 
Therefore the Elm Coulee information was evaluated not only in terms of the effectiveness of 
CO2 on the productivity of the Burning Tree well, but also in the context of how it may or may 
not be relevant to a potential Dunn County injection test.  
 
 The Elm Coulee and Dunn County areas are separated by approximately 80 miles. As parts 
of the same continuous sedimentary formation, the Bakken rocks in Elm Coulee and Dunn 
County of course share many similarities. But as might be expected, there are also many 
significant differences between the geology of the Bakken in the Elm Coulee and the Dunn 
County areas. A brief discussion of the geological characteristics of the Bakken Formation in the 
Elm Coulee area as compared to the Dunn County area is provided below. 
 

 The Bakken in the Elm Coulee area is approximately 1000 ft shallower than it is in the 
Bailey area, although with the top of the Bakken occurring at around 9700 ft depth from 
surface in the Elm Coulee area, it is still considered to be a deep reservoir.  
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 With respect to structure, the Dunn County area has notable anticlinal and synclinal 
structure and is bisected by the Heart River fault, whereas the Elm Coulee area appears 
to have a single, subtle fold along its east–west axis (Figure 47). 

 
 The thicknesses of Upper and Middle Bakken in the area of the Burning Tree well are 

generally fairly similar to those in the Dunn County area, with the Upper Bakken being 
about 6 to 10 ft thick and the Middle Bakken averaging between 40 and 45 ft thick. 
However, in the Elm Coulee area, the Middle Bakken thins toward the west, eventually 
to a thickness of only 5 ft.  

 
 The Lower Bakken shale is absent from the southern half of the Elm Coulee area 

(Figure 48), including the area of the Burning Tree well (Figure 49), whereas the Lower 
Bakken is present throughout the Dunn County area where it is consistently about 12 ft 
thick.  

 
 Both areas generally have multiple distinct lithofacies present in the Middle Bakken, 

including a laminated zone.  
 

 The number of lithofacies present in Elm Coulee declines as the formation pinches out 
towards the west, until there are only one or two distinct Middle Bakken lithofacies 
present (Figure 50).  

 
 The Dunn County area generally has five distinct lithofacies present across the entire 

area.  
 

 The porosity of the Middle Bakken is reasonably similar in both areas, with the Elm 
Coulee porosity typically ranging from 3% to 6% and the Dunn County porosity 
typically ranging from 2% to 7%.  

 
 The permeability of the Middle Bakken in the two areas is widely variable, depending 

on the lithofacies, but generally speaking, the areas appear to have similar permeability 
ranges and distribution.  

 
 Both the Elm Coulee and Bailey area Bakken are considered to be thermally mature 

(Sonnenberg and Pramudito, 2009; Nordeng and others, 2010; Meissner, 1984). As such 
a significant amount of natural fracturing has occurred as a result of the expulsion of oil 
from kerogen, and the reservoirs initial pressures are considered to be overpressured 
relative to the typical pressure gradient in their respective parts of the Williston Basin.  

 
 The lithology of the Middle Bakken in Elm Coulee is dominated by dolomite, whereas 

the lithology of the Middle Bakken in the Dunn County area is more of a mixed system 
of calcite-dominated carbonates and clastics (Alexandre and others, 2011; Almanza, 
2011). 
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injection zone would not likely be a factor in affecting its movements. While the Middle Bakken 
in the Dunn County area is less dominated by carbonates (particularly with respect to dolomite) 
and carbonates may be more reactive to CO2, there are many successful CO2 EOR operations in 
carbonate reservoirs. 
 

Applicability of Burning Tree Test Results to Potential Tests in Dunn County 
 
 One of the primary aspects of how CO2 in the Burning Tree well might behave as 
compared to a Dunn County well is the nature of the fracture network in the respective wells. 
Reservoir fluid flow in both the Elm Coulee and Dunn County areas is significantly influenced, 
if not controlled by, fracture networks (both naturally occurring and induced). With respect to 
naturally occurring fractures, although the type of detailed fracture analysis data that were 
developed for the Dunn County area were not found to be available for the Elm Coulee area, 
generally speaking, the literature suggests that the areas do not appear to be significantly 
different with respect to naturally occurring fractures. This is supported by the fact that both 
areas are thermally mature and have some structural elements and by the qualitative descriptions 
of Elm Coulee Bakken core. However, it is important to note that as one of the first hydraulically 
fractured Middle Bakken oil wells, the geometry of the hydraulically induced fracture network of 
the Burning Tree well is likely to be much different from the geometry of the induced fracture 
network of most Dunn County wells.  
 
 There are a few key aspects of the Burning Tree well that make it substantially different 
from a majority of North Dakota Bakken wells, including those in Dunn County. At a length of 
1592 ft, the Burning Tree horizontal lateral is significantly shorter than the typical North Dakota 
lateral length, which may be 5 to 10 times longer. As mentioned above, the Burning Tree well 
was hydraulically fractured using a single-stage stimulation operation. This means that the 
geometry of the fracture network in the Burning Tree well will be substantially different from 
any multistage hydraulically fractured well. In Dunn County, many of the older Middle Bakken 
wells were stimulated using single-stage hydraulic fracturing. However, many of those wells had 
openhole completions so their single-stage induced-fracture networks would likely be different 
from that of the Burning Tree well, which had cemented, perforated, production casing. 
Understanding the geometry of the induced fractures in the Burning Tree well and trying to 
apply them to North Dakota wells is further complicated by the fact that only the middle 800 ft 
of the Burning Tree lateral was perforated during the initial hydraulic fracturing operation in 
2001, and hydrojetting was done at several intervals along most of the length of the horizontal 
leg 3 years later in 2004. When considered together, all of these engineering aspects of the 
Burning Tree well severely limit the extent to which the observations and results from the 
Burning Tree CO2 injection may be applied to other potential Bakken CO2 injection tests.  
 

Key Lessons of the Burning Tree CO2 Huff ‘n’ Puff Test in Elm Coulee 
 
 As described above, the CO2 huff ‘n’ puff test conducted at the Burning Tree well in the 
Elm Coulee area of Montana was one of the first such tests not only in the Bakken Formation, 
but in any tight, unconventional oil reservoir. As such, it was a pioneering effort and the value of 
the observations and lessons learned generated by the consortium of operators who conducted 
that test cannot be overstated. Those key lessons include the following: 
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 It has been demonstrated that CO2 can be injected into the Bakken Formation at rates 
that may be considered to be reasonable for both potential EOR and storage operations.  

 
 Although the amount of CO2 stored and incremental oil produced as a result of the CO2 

injection may not be economically or technically significant, it appears that some 
incremental oil may have been produced. Unfortunately, the available data did not yield 
insight regarding the amount of CO2 that may have remained in the reservoir.  

 
 The delayed timing and relatively muted nature of the incremental oil production 

suggests that different mechanisms of interaction between CO2 and the reservoir may be 
at play in the Bakken (particularly with respect to the tight matrix) as compared to a 
conventional reservoir. This observation with respect to timing and nature of reservoir 
response may be indicative of the role that diffusion may play, as has been indicated in 
the laboratory-scale CO2 hydrocarbon elution studies conducted as part of this research 
program.  

 
 The Burning Tree huff ‘n’ puff test, as conceived, implemented, and reported, has not 

discouraged research or the planning of other field-based efforts to determine the 
effectiveness of using CO2 injection for simultaneous EOR and CO2 storage in the 
Bakken and other tight oil formations.  

 
 One of the primary goals of the evaluation of the Burning Tree huff ‘n’ puff observations 
and data was to develop recommendations for potential future CO2 injection tests in the Bakken 
Petroleum System. While the most useful application of specific data from this test to any future 
test would require a site-specific comparison and evaluation, some broadly applicable 
recommendations include the following: 
 

 Any field-based project must include thorough planning and adequate budget. 
 

 The geological understanding of the Bakken reservoir and laboratory analysis of live 
crude oil, formation water and gas, and fresh core samples is critical to understanding 
interactions between CO2 within the Bakken reservoir and will aid in the design of pilot 
and long-term CO2 storage and EOR projects. 

 
 CO2 injection rates should be consistent, and methodologies should be utilized to 

evaluate injection distribution along the length of the wellbore. Injection volume must 
be adequate for the technical evaluation of a pilot project. 

 
 Well testing and sampling of CO2 in the offset producing wells within the field during 

and after the injection test should be incorporated into the project design. A 
determination of mass balance to evaluate mobilized oil and the movement and 
disposition of CO2 within the reservoir is critical, particularly with respect to 
determining storage capacity. 

 
 Data gathering should be rigorous and well-documented.  
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SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 
 
 The Bakken CO2 Enhanced Recovery and Storage Program was conducted over the course 
of 2012 and 2013. The objective of the program was to use new and existing reservoir 
characterization and laboratory analytical data (e.g., core analyses, well logs, oil analyses, etc.) 
coupled with state-of-the-art modeling to determine the viability of using CO2 for EOR in the 
Bakken Formation. The research activities generated the following key results: 

 
 A first-order estimate of the potential CO2 storage capacity of the Bakken Formation in 

North Dakota suggests that it may range from 120 million tons to over 3 billion tons of 
CO2. This broad range suggests that additional laboratory experimental studies and field 
test data, are needed to better determine the storage capacity of tight oil-bearing 
formations.  

 
 The current CO2 capacity estimation methodologies may be somewhat limited in their 

applicability to tight oil formations because they have unique reservoir properties 
relative to other conventional CCS targets. A methodology that considers the effects of 
those unique properties, such as high total organic content, as part of the equation 
should be developed for future CO2 storage capacity estimations of tight oil formations. 
The development of a hydrid method that combines some elements of the shale gas 
capacity methods used by Nutall et al. (2005) with elements of the U.S. DOE 
methodology for oil fields may be an appropriate area of research since tight oil 
formations have increasingly become the focus of exploration in the past several years.  

 CO2 extraction studies on samples of Middle and Lower Bakken rocks indicate that CO2 
can remove over 90% of hydrocarbons from Middle Bakken reservoir rocks and over 
60% of hydrocarbons from Lower Bakken shales in small-scale experiments.  

 
 A rising capillary approach appears to offer a cost-effective, quick-turnaround means of 

evaluating the effects of CO2 on Bakken oil under a broad range of conditions, 
including changes in pressure, temperature, and hydrocarbon gas (i.e. methane, ethane, 
etc.) content. 

 
 In the Bakken, CO2 flow will be dominated by fracture flow, and not significantly 

through the rock matrix. Fracture-dominated CO2 flow could essentially eliminate the 
displacement mechanisms responsible for increased recovery in conventional reservoirs. 
As such, other mechanisms must be optimized in tight reservoirs such as the Bakken. 

 
 Because fractures will play a dominant role in CO2 flow through the Bakken, 

determining whether a fracture or microfracture in core is naturally occurring in the 
reservoir or was induced by the collection process is essential to developing an accurate 
understanding of the natural fracture network in any given reservoir. A variety of 
techniques, including SEM, UVF, and standard optical microscopy, showed promise 
with respect to identifying and describing microfractures. 

 
 Static petrophysical models were created of the Middle Bakken in the Bailey and 

Grenora areas. The modeling efforts included the development of both a single 
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porosity/single permeability model and a dual porosity/dual permeability model for both 
areas. Both models followed the same workflow, however data sets did vary, 
particularly with respect to the number and nature of the lithofacies (Grenora had more 
lithofacies zones and a somewhat more robust fracture network). Also, PVT and relative 
permeability data specific to Grenora were not available. The same values for those 
parameters that were used in Bailey were applied in Grenora, which is not likely an 
accurate assumption. So while a comparison can be made, there may be limitations to 
its applicability.  

 
 Dynamic simulation modeling of CO2 injection was conducted using the Bailey and 

Grenora models. A variety of schemes were simulated, and results suggest that CO2-
based EOR may be technically possible. Specifically, some of the simulated schemes 
showed increases in oil production by as much as 40 to 50% as a result of CO2 
injection, although actual increases would likely be lower.  

 
 The CO2 utilization factor (reported as mcf of CO2 injected per barrel of oil produced) 

is perhaps the best output parameter by which to compare the Bailey and Grenora areas 
with respect to CO2 storage and EOR potential. The simulations indicate that the 
Grenora Bakken reservoir had a CO2 utilization factor that was 5 to 6 times greater than 
the Bailey Bakken reservoir. This suggests that injection and EOR in the Bailey 
reservoir will be more efficient from an EOR standpoint than in the Grenora reservoir. 
The more fractured nature, complex lithofacies, and higher water saturation found in the 
Grenora Bakken as compared to the Bailey Bakken may be the primary reasons for the 
differences in the simulation results. However, many questions remain regarding the 
precise role that fractures will play, and the timeframe and economic viability of CO2-
based EOR in the Bakken.  

 
 Those results suggest that an EOR scheme that pairs two injectors with one producer 

will produce more oil than a single injector-producer scheme. They also indicate that 
patience may be rewarded, with the incremental recovery and efficiency improving with 
longer periods of injection.  

 
 The results of the static and dynamic modeling efforts underscored the importance of 

having detailed knowledge of both the natural fracture network and induced hydraulic 
fractures (at both the macro- and microscales) when predicting the effectiveness of CO2 
injection for EOR in the Bakken.  

 
 The results of one of the dual porosity/dual permeability simulation runs indicated that 

diffusion may play a significant role in moving oil from the reservoir matrix into the 
fracture network. This modeling result is supported by the results of the laboratory-
based CO2 hydrocarbon elution experiments from Bakken rock samples which also 
showed that as much as 90% of hydrocarbons could be mobilized from the Middle 
Bakken matrix in a reasonable amount of time. Furthermore, these laboratory and 
modeling results are also supported by an analysis of the results from the pilot-scale 
huff ‘n puff test conducted in the Burning Tree well in Elm Coulee, Montana. The oil 
production data from the Burning Tree well, which shows that it took several months 
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for the oil production rate to climb and remain above the pre-injection rates, also 
supports the notion that diffusion is an important mechanism controlling the mobility 
and disposition of CO2 within a tight oil reservoir.  

 
 The results of the research activities suggest that CO2 may be effective in enhancing the 
productivity of oil from the Bakken. However, there is no clear-cut answer regarding the most 
effective approach for using CO2 to improve productivity. It is likely that an unconventional 
resource will require unconventional methods for EOR and CO2 storage. With that in mind, it is 
clear that additional knowledge is necessary to make informed decisions regarding the design 
and implementation of potential injection and production schemes. Some of the key questions 
that came out of the research presented in this report include the following: 
 

 How far into the matrix can CO2 penetrate Bakken rocks (lower and middle) at larger 
scales? What is the time frame of that penetration? Does the CO2 affect the porosity 
and/or permeability of the matrix? 

 
 Is it possible to identify natural microfractures in the Lower Bakken shale? 

 
 How do the fracture networks behave as reservoir pressures are depleted, and how does 

that behavior impact reservoir permeability and production? How would CO2-based 
EOR and affiliated pressure changes affect reservoir and fracture permeability? 

 
 How can an improved understanding of microfractures be incorporated into the 

development of a DFN within a static model? How can data on microfractures be 
integrated into dual-porosity–dual-permeability models? 

 
 How much of the injected CO2 can be recycled, and how much is permanently stored in 

the formation? 
 

 How well, if at all, do the lessons learned on Bakken rocks translate to rocks of the 
Three Forks Formation? 

 
 With these questions in mind, the EERC is planning a second phase of the Bakken CO2 
Enhanced Recovery and Storage Project. The objective of Phase II is to refine the techniques and 
approaches developed under Phase I and apply them to the development and implementation of a 
pilot-scale injection test in the field. The technical aspects of Phase II will be divided according 
to three primary areas of technical activity, specifically 1) refined understanding of hydrocarbon 
extraction from tight rock matrix, 2) detailed microfracture characterization, and 3) participation 
in a pilot-scale CO2 injection test in a Bakken reservoir.  
 
 For future work, more field and laboratory experience such as detailed decline curve 
analysis, CO2 core flooding upscaling, natural fracture measurements, relative permeability tests 
under Bakken reservoir conditions of the study area, and the inclusion of a dual-porosity–dual-
permeability model may be added to the modeling and simulation processes to better understand 
the comprehensive mechanisms of CO2 EOR and storage in the unconventional Bakken 
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Formation. These efforts may help to improve the operational design and optimization of future 
laboratory and simulation efforts and a potential pilot project. 
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