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Abstract of Project Goal and Objective:

CICART is a partnership between the University of New Hampshire (UNH) and
Dartmouth College. CICART addresses two important science needs of the DoE: the
basic understanding of magnetic reconnection and turbulence that strongly impacts the
performance of fusion plasmas, and the development of new mathematical and
computational tools that enable the modeling and control of these phenomena. The
principal participants of CICART constitute an interdisciplinary group, drawn from the
communities of applied mathematics, astrophysics, computational physics, fluid
dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects
of magnetic reconnection and turbulence in fusion devices, smaller-scale laboratory
experiments, and space and astrophysical plasmas can be viewed from a common
perspective, and that progress in understanding in any of these interconnected fields is
likely to lead to progress in others. The establishment of CICART has strongly impacted
the education and research mission of a new Program in Integrated Applied Mathematics
in the College of Engineering and Applied Sciences at UNH by enabling the recruitment
of a tenure-track faculty member, supported equally by UNH and CICART, and the
establishment of an IBM-UNH Computing Alliance. The proposed areas of research in
magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas
include the following topics: (A) Reconnection and secondary instabilities in large high-
Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic
islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models,
(D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including
fusion-relevant) experiments. These theoretical studies make active use of three high-
performance computer simulation codes: (1) The Magnetic Reconnection Code, based on
extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh Refinement (AMR)
framework, (2) the Particle Simulation Code, a fully electromagnetic 3D Particle-/n-Cell
(PIC) code that includes a collision operator, and (3) GS2, an Eulerian, electromagnetic,
kinetic code that is widely used in the fusion program, and simulates the nonlinear
gyrokinetic equations, together with a self-consistent set of Maxwell’s equations.



Principal Accomplishments
Magnetic Reconnection

We have made fundamental breakthroughs on the problem of onset of fast reconnection
in high-Lundquist-number plasmas mediated by the plasmoid instability. The main
challenge is to explain why reconnection in nature or laboratory devices (including fusion
devices) can proceed rapidly from a relatively quiescent state in weakly collisional

plasma characterized by high values of the Lundquist number (§). The classical Sweet-

Parker theory, based on resistive MHD, predicts a reconnection rate that scales as s71/2

For many systems of interest, the Sweet-Parker reconnection rates are much slower than
those observed. Recent work has demonstrated that there is a fundamental flaw in the
Sweet-Parker argument, even within the framework of resistive MHD. When the
Lundquist number exceeds a critical value, the Sweet-Parker layer is unstable to a super-
Alfvenic tearing instability, hereafter referred to as the plasmoid instability, with a
growth rate that increases with increasing S. Thus, the original Sweet-Parker current
sheet breaks down into a chain of plasmoids and progressively thinner current sheets.
Numerical simulations, supported by heuristic scaling arguments, strongly suggest that
within the framework of resistive MHD, the nonlinear reconnection rate mediated by the
plasmoid instability becomes insensitive to the value of § Because the plasmoid
instability can initiate a cascade to current sheets that are much thinner than the original
Sweet-Parker sheet, the so-called Hall terms in the generalized Ohm’s law become
important, triggering the onset of Hall reconnection, which lead to higher reconnection
rates. We have carried out the largest 2D Hall MHD simulations to date that demonstrate
the rich dynamics enabled by the interplay between the plasmoid instability and the Hall
current. It is shown that the topology of Hall reconnection is not inevitably a single stable
X-point. There exists an intermediate regime where the single X-point topology itself
exhibits instability, causing the system to alternate between a single X-point and an
extended current sheet with multiple X-points produced by the plasmoid instability.
Examples of applications have been drawn from magnetically confined laboratory
plasmas, high-energy density plasmas, and space plasmas.

Thus, our understanding of the process of fast reconnection has undergone a dramatic
change driven, in part, by the availability of high-resolution numerical simulations that
have consistently demonstrated the break-up of current sheets into magnetic islands, with
reconnection rates that become independent of Lundquist number, challenging the belief
that fast magnetic reconnection in flares proceeds via the Petschek mechanism that
invokes pairs of slow-mode shocks connected to a compact diffusion region. The
reconnection sites are too small to be resolved with images but these reconnection
mechanisms, Petschek and the plasmoid instability, have reconnection sites with very
different density and velocity structures and so can be distinguished by high-resolution
line-profile observations. Using IRIS spectroscopic observations, the CICART and MPI
(Germany) groups have obtained a survey of typical line profiles produced by small-scale
events thought to be reconnection sites on the Sun. The profiles can be reproduced with
the multiple magnetic islands and acceleration sites that characterize the plasmoid
instability but not by bi-directional jets that characterize the Petschek mechanism. This



result suggests that if these small-scale events are reconnection sites, then fast
reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism
during small-scale reconnection on the Sun.
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IRIS observations of short-lived, small-scale brightening on the Sun: (a) Slit-jaw
difference image; (b-d) Si IV spectral images along the vertical black line and line
profiles (red) at the site of the yellow arrow in (a). The profiles have multiple components
often showing a bright core and broad wings.
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High Lundquist number MHD simulations (a, b) of the plasmoid instability show low- velocity,
high-density plasmoids within Alfvénic outflow jets. This characteristic current layer is used to
synthesize line profiles (c, d), which reproduce the observed bright line core and broad wings
seen in the IRIS spectra.

Recently, magnetic reconnection has been observed in high-energy-density, laser-
produced plasmas, in the presence of extremely high magnetic fields self-generated by
the Biermann effect. In the experiments, which open up a new experimental regime for
reconnection study, bubbles of high-energy-density plasma are created by focusing lasers
down to sub-millimeter-scale spots on a plastic or metal foil. The bubbles, created at
small separation, expand into one another, and their self-generated magnetic fields are
squeezed together and reconnect. The CICART group has carried out experiments (on the
Omega facility at the University of Rochester) as well as fully electromagnetic, particle-
in-cell simulations that account for salient features of these experiments. These laser-
driven experiments are in many ways complementary to traditional experiments with
magnetized discharge plasmas. Some notable features include the high plasma beta of
these experiments and the laser-driven plasma expansion, which drives the bubbles



together at approximately the sound speed, leading to much stronger inflows than have
traditionally been studied in reconnection experiments. The PIC simulations suggest that
these laboratory experiments are the first to produce magnetic flux pile-up at the
reconnection layer, which is a regime of great interest for a number of astrophysical
applications where supersonic, magnetized flows collide, such as the interactions of
planetary magnetospheres with the solar wind, the heliopause, accretion disks, and
supernova remnants.
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Astrophysical Turbulence

Our most important accomplishment in the area of astrophysical turbulence has been the
development of a quantitative theory for determining the stochastic heating rate in low-
frequency turbulence. This effort was a truly collaborative endeavor involving Barrett
Rogers and Bo Li at Dartmouth College and Ben Chandran and Kai Germaschewski at
UNH, as well as colleague Eliot Quataert (not part of CICART) at UC Berkeley. This
work resulted in a paper in the Astrophysical Journal in 2010 that has already been cited
77 times, attesting to the impact that CICART has had in the astrophysics community.
This paper also served as the basis for several follow-up papers that generalized our
original theory to account for minor ions and differential flow between ion species and
that tested our original theory using numerical simulations and solar-wind observations.
In related work, we also published two papers on the stochastic acceleration of electrons
in solar flares.

The second main area of progress was non-compressive Alfven-wave turbulence in the
solar wind and solar corona. We carried out direct numerical simulations of this type of
turbulence, accounting for the radial inhomogeneity in the solar-wind outflow velocity,
density, and magnetic field strength. These inhomogeneities reflect outward-propagating
waves back towards the Sun, providing the necessary mix of counter-propagating waves
needed to generate Alfven-wave turbulence. Our simulations were the first of their kind.
We showed that even if only large-scale Alfven waves are launched from the Sun,
reflection-driven turbulence is sufficiently vigorous that the Alfven-wave energy can
cascade to small scales and dissipate in the solar corona and near-Sun solar wind,
providing the turbulent heating that is needed in order to heat and accelerate the solar
wind. We published our work in the Astrophysical Journal.

Our third main accomplishment in the area of astrophysical turbulence was on the topic
of kinetic plasma instabilities in the solar wind, which are a source of small-scale
turbulence in the solar wind. We considered instabilities driven by several different
mechanisms, including differential flow between alpha particles and protons and the
temperature anisotropy of alpha particles or protons. Two hallmarks of our work were the



derivation of analytic expressions for the instability thresholds and the derivation of self-
consistent, non-Maxwellian, marginally stable distribution functions for protons in the
presence of parallel-propagating Alfven/ion-cyclotron waves. We published our work in
several papers in the Astrophysical Journal.
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Gyrokinetic reconnection and turbulence

The Dartmouth group has been remarkably successful in applying gyrokinetic theory and
simulations to (i) turbulent transport in fusion plasmas (core as well as edge) as well as
laboratory plasmas (ii) coherent structures such as zonal flows that emerge spontaneously
from turbulence, and (ii) studies and numerical implementation of sophisticated collision
operators that enable studies of plasmas at various levels of collisionality
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Other Support

CICART personnel have benefitted greatly from synergistic support from DOE, NASA,
and NSF, both during the period of the grant, as well as after. In other words, CICART
research has benefitted UNH and Dartmouth College in particular, and more broadly, the
state of New Hampshire in expanding the scope of research in laboratory, space, and
astrophysical plasmas.
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