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NOTE: 
This is the 
lab color 
palette. è Are we entering a new age of software 

development for HPC? 

Yes…  I hope so….  Would like to think so... 
 

But we still have a ways to go...   
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NOTE: 
This is the 
lab color 
palette. è The “Simple” set of Goals 

•  Performance (fast) 

•  Portability (run everywhere) 
•  Fast…  Standardized...  

•  Productivity/Programmability 
•  Easily, everywhere, and high-performance 
 

•  What we are typically asking for is sequential 
semantics with parallel execution…  

 



Los Alamos National Laboratory 

2/9/16   |   4 

NOTE: 
This is the 
lab color 
palette. è Is the key Cost Really Data Movement? 

•  “Data movement is 
expensive, compute 
is free.” 

• But... 
•  Idle processors are 

not free  
•  Trinity: If you dump 

data from memory to 
disk you spend 10X 
more power waiting on 
the data to move than to 
move the data! 

•  So, no surprise, we 
really want to keep 
processors busy…  

Courtesy Greg Asfaulk (HP) and Bill Dally (NVIDIA)  

Operation Energy (pJ) 
64-bit integer operation 1 
64-bit floating-point operation 20 
256 bit on-die SRAM access 50 
256 bit bus transfer (short) 26 
256 bit bus transfer (1/2 die) 256 
Off-die link (efficient) 500 
256 bit bus transfer (across die) 1,000 
DRAM read/write (512 bits) 16,000  
HDD read/write O(106) 
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AsyncRecv(X);
DoWork(Y);
Sync();
F(X);

•  How	much	work	should	I	do?		
•  Is	this	performance	portable?	
•  When	does	forward	progress	

really	occur?	
•  What	if	I	have	more	work	and	

data	movement	happening	in	
DoWork?	
–  What	resources	are	in	use?	

Where	is	the	data?	Who	is	using	
it	and	how?	

•  Is	this	modular?	

Concept	from:		Mike	Bauer’s	Thesis	(Stanford),	
Legion:		Programming	Distributed	Heterogeneous	Architectures	with	Logical	Regions	

The Importance of Programming 
Abstractions 

Impera've,	explicit	data	
movement:	
•  Focus	on	control	flow,	explicit	
parallelism	and	low-level	data	
abstrac'ons	
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NOTE: 
This is the 
lab color 
palette. è Simplifying the Challenge  

“Domain-Specific” Languages 

•  Why? 
•  Improved productivity, better 

maintainability, portability, validation, 
improved optimizations, thus improved 
reliability and performance 

•  But… 
•  Risks in terms of costs associated with 

their design, implementation, adoption, 
maintenance/longevity, and education… 

•  What can be done to reduce the 
risks/costs? 
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NOTE: 
This is the 
lab color 
palette. è “Standalone” Source-to-Source Compilation 

DSL 
Compiler 

DSL 
Source 

C++ 
Source 

C++ 
Compiler 

a.out 

•  Simplified compiler – heavy lifting done by “real” compiler 
•  Great way to prototype… 

•  But…  Custom language maintenance issues  
•  Domain knowledge/semantics lost in code generation…  

•  DSL compiler optimizations can be undone by C++ compiler 
•  Developer ends up with C++ tools... 
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NOTE: 
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a.out C++ 
Compiler 

C++ Embedded DSLs  

C++ 
“DSL” 

Source 

IR 
Form 

Middle & 
Back End 

DSL.h 

•  Meta-programmed code generation - standardized 
“goodness”  

•  Underlying infrastructure can be complex and difficult (and 
often not as opaque as we might like). Stuck w/ C++ semantics 
and syntax… 

•  Once again, domain knowledge/semantics lost in code 
generation (after template expansion)…  
•  Can be hard to optimze, match semantic goals due to host 

language restrictions 
•  Developer (and optimizer) ends up with expanded “goop” 
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NOTE: 
This is the 
lab color 
palette. è Can you Spare a Minute?  More C++ 

EDSL worries…   
safe::printf<_S("Hello %s!")>(”World!"); !

“Domain-specific Language Integration with Compile-time Parser Generator Library”, Zoltan 
Porkolab and Abel Sinkovics, Proceeding GPCE '10 the ninth international conference on 
Generative Programming and Component Engineering. 

Compilation Times 
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NOTE: 
This is the 
lab color 
palette. è Domain-Aware Toolchains 

•  We really want a fully supported toolchain – not just a set of 
“front end” semantics and abstractions… 
•  Allow the developer (and the compiler) to reason in terms of the 

original abstractions (not the “goop”) 

•  OpenMP implementations do/can have similar issues… 

Clang infrastructure

front end

abstract syntax tree

DSL metadata

input
source

Domain-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF
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NOTE: 
This is the 
lab color 
palette. è Kokkos-Aware Clang 

•  Code generation phase of Clang intercepts Kokkos 
constructs prior to template expansion and implements 
semantics-aware code generation 
•  SC15 tutorial code: 

•  Compile time is approx. 4.5 times faster 
•  Code generation: parallel-for about 5% faster (GPUs), reductions 

need to be optimized (about 2-3x slower at present) 

Clang infrastructure

front end

abstract syntax tree

Kokkos Semantic metadata

Kokkos
source

Kokkos-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF
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NOTE: 
This is the 
lab color 
palette. è Due to Complexity we Often Only Look at one 

Piece of the Puzzle… 

•  How do we?   
•  Interoperate across different models/abstractions, languages 

and legacy code bases? 

•  Build a set of useful and flexible tools for understanding 
details in terms of the abstractions we’re developing with? 

•  Get applications to adopt new approaches for programming? 


