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Are we entering a new age of software
development for HPC?

Yes... [ hope so.... Would like to think so...

But we still have a ways to go...
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The “Simple” set of Goals

* Performance (fast)

» Portability (run everywhere)
« Fast... Standardized...

* Productivity/Programmability
 Easily, everywhere, and high-performance

 What we are typically asking for is sequential
semantics with parallel execution...
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Is the key Cost Really Data Movement?

« “Data movement is _
expensive, compute |[hdaatully Energy (pJ)

is free.” 64-bit integer operation 1
* But... 64-bit floating-point operation 20
* Idle processors are 256 bit on-die SRAM access 50
not free 256 bit bus transfer (short) 26
» Trinity: If you dump 256 bit bus transfer (1/2 die) 256
data from memory to
disk you spend 10X Off-die link (efficient) 500
more power waiting on [ 256 bit bus transfer (across die) 1,000
the data to move than to DRAM r : ts) 16.000
move the data! : -
- So, no surprise, we DD read/write O(10°) |

really want to keep Courtesy Greg Astaulk (HP) and Bill Dally (NVIDIA)

processors busy...
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The Importance of Programming

Abstractions

e How much work should | do?

Imperative, explicit data e |s this performance portable?

movement:
* Focus on control flow, explicit ~® When does forward progress
parallelism and low-level data really occur?
abstractions e What if | have more work and
data movement happening in
AsyncRecv (X); DoWork?
Dowork (Y) ; — What resources are in use?
Sync () ; . L
F(X); Where is the data? Who is using

it and how?

e /s this modular?

Concept from: Mike Bauer’s Thesis (Stanford),
Legion: Programming Distributed Heterogeneous Architectures with Logical Regions
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Simplifying the Challenge

“Domain-Specific” Languages

« Why?
* Improved productivity, better
maintainability, portability, validation,
improved optimizations, thus improved
reliability and performance

 But...

 Risks in terms of costs associated with
their design, implementation, adoption,
maintenance/longevity, and education...

« What can be done to reduce the
risks/costs?
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“Standalone” Source-to-Source Compilation

DSL DSL C++ ‘ ﬂ a.out
SourceSource

« Simplified compiler — heavy lifting done by “real” compiler

« Great way to prototype...

« But... Custom language maintenance issues

 Domain knowledge/semantics lost in code generation...
« DSL compiler optimizations can be undone by C++ compiler
» Developer ends up with C++ tools...
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C++ Embedded DSLs

C++ C++ IR a.out
S‘:DSL” ‘ Compiler‘ Form ﬂ ”
ource

 Meta-programmed code generation - standardized
“goodness”

* Underlying infrastructure can be complex and difficult (and

often not as opaque as we might like). Stuck w/ C++ semantics

and syntax...

« Once again, domain knowledge/semantics lost in code
generation (after template expansion)...

« Can be hard to optimze, match semantic goals due to host
language restrictions

» Developer (and optimizer) ends up with expanded “goop”
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Can you Spare a Minute? More C++
EDSL worries...

safe::printf<_S("Hello %s!")>("World!");

Compilation Times

45

40 v
35
30
2 . - Homogenous
S arguments
3 -~ Heterogenous
@ Y arguments
M V- Multiple calls
10

0 1 2 3 4 5

number of arguments

“Domain-specific Language Integration with Compile-time Parser Generator Library”, Zoltan
Porkolab and Abel Sinkovics, Proceeding GPCE '10 the ninth international conference on
Generative Programming and Component Engineering.
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Domain-Aware Toolchains

d 4 - ____
EX‘e“de |
I
- |
|
|
executable
L ]
N

input AN
source

[ ] General-purpose code regions DSL metadata
B Domain-specific code regions

+ We really want a fully supported toolchain — not just a set of
“front end” semantics and abstractions...

 Allow the developer (and the compiler) to reason in terms of the
original abstractions (not the “goop”)

 OpenMP implementations do/can have similar issues...
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Kokkos-Aware Clang

x’te“ded _____ [

:

|

|
executable
1
I

el

Kokkos
source

Kokkos Semantic metadata

[ ] General-purpose code regions
B Kokkos-specific code regions

« Code generation phase of Clang intercepts Kokkos
constructs prior to template expansion and implements
semantics-aware code generation
« SC15 tutorial code:

« Compile time is approx. 4.5 times faster

« Code generation: parallel-for about 5% faster (GPUs), reductions
need to be optimized (about 2-3x slower at present)

29116 | 11




Los Alamos National Laboratory

Due to Complexity we Often Only Look at one
Piece of the Puzzle...

* How do we?

* Interoperate across different models/abstractions, languages
and legacy code bases?

 Build a set of useful and flexible tools for understanding
details in terms of the abstractions we’re developing with?

« Get applications to adopt new approaches for programming?
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