ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-16-22108

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Imperative, Declarative, Functional and Domain-Specific Programming...
Oh My!

McCormick, Patrick Sean

SOS 20 Workshop, 2016-03-22/2016-03-25 (Asheville, North Carolina,
United States)

2016-03-29

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for

the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory

Imperative, Declarative, Functional and

Domain-Specific Programming... Oh My!

Patrick McCormick
March 25, 2016

SOS 20 Workshop
March 22 - 25, 2016
Asheville, North Carolina

78
g
NN SA
National Nuctear Security Administration
U.S. Department of Energy's NNSA

Operated by Los Alamos National Security, LLC for the

Are we entering a new age of software
development for HPC?

Yes... [hope so.... Would like to think so...

But we still have a ways to go...

Los Alamos National Laboratory

The “Simple” set of Goals

* Performance (fast)

» Portability (run everywhere)
« Fast... Standardized...

* Productivity/Programmability
 Easily, everywhere, and high-performance

 What we are typically asking for is sequential
semantics with parallel execution...

2/9/16 | 3

Is the key Cost Really Data Movement?

« “Data movement is _
expensive, compute |[hdaatully Energy (pJ)

is free.” 64-bit integer operation 1
* But... 64-bit floating-point operation 20
* Idle processors are 256 bit on-die SRAM access 50
not free 256 bit bus transfer (short) 26
» Trinity: If you dump 256 bit bus transfer (1/2 die) 256
data from memory to
disk you spend 10X Off-die link (efficient) 500
more power waiting on [256 bit bus transfer (across die) 1,000
the data to move than to DRAM r : ts) 16.000
move the data! : -
- So, no surprise, we DD read/write O(10°) |

really want to keep Courtesy Greg Astaulk (HP) and Bill Dally (NVIDIA)

processors busy...

2/9/16 | 4

The Importance of Programming

Abstractions

e How much work should | do?

Imperative, explicit data e |s this performance portable?

movement:
* Focus on control flow, explicit ~® When does forward progress
parallelism and low-level data really occur?
abstractions e What if | have more work and
data movement happening in
AsyncRecv (X); DoWork?
Dowork (Y) ; — What resources are in use?
Sync () ; . L
F(X); Where is the data? Who is using

it and how?

e /s this modular?

Concept from: Mike Bauer’s Thesis (Stanford),
Legion: Programming Distributed Heterogeneous Architectures with Logical Regions

2/9/16 | 5

Los Alamos National Laboratory

Simplifying the Challenge

“Domain-Specific” Languages

« Why?
* Improved productivity, better
maintainability, portability, validation,
improved optimizations, thus improved
reliability and performance

 But...

 Risks in terms of costs associated with
their design, implementation, adoption,
maintenance/longevity, and education...

« What can be done to reduce the
risks/costs?

2/9/16 | 6

Los Alamos National Laboratory

“Standalone” Source-to-Source Compilation

DSL DSL C++ ‘ ﬂ a.out
SourceSource

« Simplified compiler — heavy lifting done by “real” compiler

« Great way to prototype...

« But... Custom language maintenance issues

 Domain knowledge/semantics lost in code generation...
« DSL compiler optimizations can be undone by C++ compiler
» Developer ends up with C++ tools...

29116 | 7

Los Alamos National Laboratory

C++ Embedded DSLs

C++ C++ IR a.out
S‘:DSL” ‘ Compiler‘ Form ﬂ ”
ource

 Meta-programmed code generation - standardized
“goodness”

* Underlying infrastructure can be complex and difficult (and

often not as opaque as we might like). Stuck w/ C++ semantics

and syntax...

« Once again, domain knowledge/semantics lost in code
generation (after template expansion)...

« Can be hard to optimze, match semantic goals due to host
language restrictions

» Developer (and optimizer) ends up with expanded “goop”

2/9/16 | 8

Los Alamos National Laboratory

Can you Spare a Minute? More C++
EDSL worries...

safe::printf<_S("Hello %s!")>("World!");

Compilation Times

45

40 v
35
30
2 . - Homogenous
S arguments
3 -~ Heterogenous
@ Y arguments
M V- Multiple calls
10

0 1 2 3 4 5

number of arguments

“Domain-specific Language Integration with Compile-time Parser Generator Library”, Zoltan
Porkolab and Abel Sinkovics, Proceeding GPCE '10 the ninth international conference on
Generative Programming and Component Engineering.

2/9/116 | 9

Los Alamos National Laboratory

Domain-Aware Toolchains

d 4 - ____
EX‘e“de |
I
- |
|
|
executable
L]
N

input AN
source

[] General-purpose code regions DSL metadata
B Domain-specific code regions

+ We really want a fully supported toolchain — not just a set of
“front end” semantics and abstractions...

 Allow the developer (and the compiler) to reason in terms of the
original abstractions (not the “goop”)

 OpenMP implementations do/can have similar issues...

2/9/16 | 10

Los Alamos National Laboratory

Kokkos-Aware Clang

x’te“ded _____ [

:

|

|
executable
1
I

el

Kokkos
source

Kokkos Semantic metadata

[] General-purpose code regions
B Kokkos-specific code regions

« Code generation phase of Clang intercepts Kokkos
constructs prior to template expansion and implements
semantics-aware code generation
« SC15 tutorial code:

« Compile time is approx. 4.5 times faster

« Code generation: parallel-for about 5% faster (GPUs), reductions
need to be optimized (about 2-3x slower at present)

29116 | 11

Los Alamos National Laboratory

Due to Complexity we Often Only Look at one
Piece of the Puzzle...

* How do we?

* Interoperate across different models/abstractions, languages
and legacy code bases?

 Build a set of useful and flexible tools for understanding
details in terms of the abstractions we’re developing with?

« Get applications to adopt new approaches for programming?

2/9/116 | 12

