
LA-UR-16-22108
Approved for public release; distribution is unlimited.

Title: Imperative, Declarative, Functional and Domain-Specific Programming…
Oh My!

Author(s): McCormick, Patrick Sean

Intended for: SOS 20 Workshop, 2016-03-22/2016-03-25 (Asheville, North Carolina,
United States)

Issued: 2016-03-29

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

NOTE: THIS IS
YOUR TITLE
SLIDE.

If you use the
Walk-in Slide, you
may replace the
gray LANL logo
on the Title Slide
with your
organization’s
logo and delete
the NNSA logo/
management
statement.

If you DO NOT
use one of the two
the Walk-in Slide
options, you
MUST keep the
LANL and NNSA
logos and
management
statement on this
Title Slide.

Los Alamos National Laboratory

Imperative, Declarative, Functional and
Domain-Specific Programming… Oh My!

Patrick McCormick
March 25, 2016

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

SOS 20 Workshop
March 22 - 25, 2016

Asheville, North Carolina

Los Alamos National Laboratory

2/9/16 | 2

NOTE:
This is the
lab color
palette. è Are we entering a new age of software

development for HPC?

Yes… I hope so…. Would like to think so...

But we still have a ways to go...

Los Alamos National Laboratory

2/9/16 | 3

NOTE:
This is the
lab color
palette. è The “Simple” set of Goals

•  Performance (fast)

•  Portability (run everywhere)
•  Fast… Standardized...

•  Productivity/Programmability
•  Easily, everywhere, and high-performance

•  What we are typically asking for is sequential
semantics with parallel execution…

Los Alamos National Laboratory

2/9/16 | 4

NOTE:
This is the
lab color
palette. è Is the key Cost Really Data Movement?

•  “Data movement is
expensive, compute
is free.”

• But...
•  Idle processors are

not free
•  Trinity: If you dump

data from memory to
disk you spend 10X
more power waiting on
the data to move than to
move the data!

•  So, no surprise, we
really want to keep
processors busy…

Courtesy Greg Asfaulk (HP) and Bill Dally (NVIDIA)

Operation Energy (pJ)
64-bit integer operation 1
64-bit floating-point operation 20
256 bit on-die SRAM access 50
256 bit bus transfer (short) 26
256 bit bus transfer (1/2 die) 256
Off-die link (efficient) 500
256 bit bus transfer (across die) 1,000
DRAM read/write (512 bits) 16,000
HDD read/write O(106)

Los Alamos National Laboratory

2/9/16 | 5

NOTE:
This is the
lab color
palette. è

AsyncRecv(X);
DoWork(Y);
Sync();
F(X);

•  How	much	work	should	I	do?		
•  Is	this	performance	portable?	
•  When	does	forward	progress	

really	occur?	
•  What	if	I	have	more	work	and	

data	movement	happening	in	
DoWork?	
–  What	resources	are	in	use?	

Where	is	the	data?	Who	is	using	
it	and	how?	

•  Is	this	modular?	

Concept	from:		Mike	Bauer’s	Thesis	(Stanford),	
Legion:		Programming	Distributed	Heterogeneous	Architectures	with	Logical	Regions	

The Importance of Programming
Abstractions

Impera've,	explicit	data	
movement:	
•  Focus	on	control	flow,	explicit	
parallelism	and	low-level	data	
abstrac'ons	

Los Alamos National Laboratory

2/9/16 | 6

NOTE:
This is the
lab color
palette. è Simplifying the Challenge

“Domain-Specific” Languages

•  Why?
•  Improved productivity, better

maintainability, portability, validation,
improved optimizations, thus improved
reliability and performance

•  But…
•  Risks in terms of costs associated with

their design, implementation, adoption,
maintenance/longevity, and education…

•  What can be done to reduce the
risks/costs?

Los Alamos National Laboratory

2/9/16 | 7

NOTE:
This is the
lab color
palette. è “Standalone” Source-to-Source Compilation

DSL
Compiler

DSL
Source

C++
Source

C++
Compiler

a.out

•  Simplified compiler – heavy lifting done by “real” compiler
•  Great way to prototype…

•  But… Custom language maintenance issues
•  Domain knowledge/semantics lost in code generation…

•  DSL compiler optimizations can be undone by C++ compiler
•  Developer ends up with C++ tools...

Los Alamos National Laboratory

2/9/16 | 8

NOTE:
This is the
lab color
palette. è

a.out C++
Compiler

C++ Embedded DSLs

C++
“DSL”

Source

IR
Form

Middle &
Back End

DSL.h

•  Meta-programmed code generation - standardized
“goodness”

•  Underlying infrastructure can be complex and difficult (and
often not as opaque as we might like). Stuck w/ C++ semantics
and syntax…

•  Once again, domain knowledge/semantics lost in code
generation (after template expansion)…
•  Can be hard to optimze, match semantic goals due to host

language restrictions
•  Developer (and optimizer) ends up with expanded “goop”

Los Alamos National Laboratory

2/9/16 | 9

NOTE:
This is the
lab color
palette. è Can you Spare a Minute? More C++

EDSL worries…
safe::printf<_S("Hello %s!")>(”World!"); !

“Domain-specific Language Integration with Compile-time Parser Generator Library”, Zoltan
Porkolab and Abel Sinkovics, Proceeding GPCE '10 the ninth international conference on
Generative Programming and Component Engineering.

Compilation Times

Los Alamos National Laboratory

2/9/16 | 10

NOTE:
This is the
lab color
palette. è Domain-Aware Toolchains

•  We really want a fully supported toolchain – not just a set of
“front end” semantics and abstractions…
•  Allow the developer (and the compiler) to reason in terms of the

original abstractions (not the “goop”)

•  OpenMP implementations do/can have similar issues…

Clang infrastructure

front end

abstract syntax tree

DSL metadata

input
source

Domain-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF

Los Alamos National Laboratory

2/9/16 | 11

NOTE:
This is the
lab color
palette. è Kokkos-Aware Clang

•  Code generation phase of Clang intercepts Kokkos
constructs prior to template expansion and implements
semantics-aware code generation
•  SC15 tutorial code:

•  Compile time is approx. 4.5 times faster
•  Code generation: parallel-for about 5% faster (GPUs), reductions

need to be optimized (about 2-3x slower at present)

Clang infrastructure

front end

abstract syntax tree

Kokkos Semantic metadata

Kokkos
source

Kokkos-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF

Los Alamos National Laboratory

2/9/16 | 12

NOTE:
This is the
lab color
palette. è Due to Complexity we Often Only Look at one

Piece of the Puzzle…

•  How do we?
•  Interoperate across different models/abstractions, languages

and legacy code bases?

•  Build a set of useful and flexible tools for understanding
details in terms of the abstractions we’re developing with?

•  Get applications to adopt new approaches for programming?

