Large-Scale Compute-Intensive Analysis via a Combined
In-Situ and Co-Scheduling Workflow Approach

Christopher Sewell
CCS-7
Los Alamos National Lab
Los Alamos, NM 87545
csewell@lanl.gov

George Zagaris
Computing Applications
Lawrence Livermore Nat. Lab
Livermore, CA 94551
zagaris2@linl.gov

Adrian Pope
ALCF
Argonne National Lab
Lemont, IL 60439
apope@anl.gov

Bronson Messer
OLCF
Oak Ridge National Lab
Oak Ridge, TN 37831

Katrin Heitmann
High Energy Physics
Argonne National Lab

Lemont, IL 60439
heitmann@anl.gov

Suzanne T. Parete-Koon
OLCF
Oak Ridge National Lab
Oak Ridge, TN 37831

paretekoonst@ornl.gov

Nicholas Frontiere
University of Chicago
and
Argonne National Laboratory
nfrontiere@anl.gov

Salman Habib
High Energy Physics
Argonne National Lab

Lemont, IL 60439

habib@anl.gov

Hal Finkel
ALCF
Argonne National Lab
Lemont, IL 60439
hfinkel@anl.gov

Patricia K. Fasel
CCS-3
Los Alamos National Lab
Los Alamos, NM 87545
pkf@lanl.gov

Li-ta Lo
CCS-7
Los Alamos National Lab
Los Alamos, NM 87545
ollie@lanl.gov

James Ahrens
CCS-7
Los Alamos National Lab
Los Alamos, NM 87545
ahrens@lanl.gov

bronson@ornl.gov

ABSTRACT

Large-scale simulations can produce hundreds of terabytes to peta-
bytes of data, complicating and limiting the efficiency of work-
flows. Traditionally, outputs are stored on the file system and an-
alyzed in post-processing. With the rapidly increasing size and
complexity of simulations, this approach faces an uncertain future.
Trending techniques consist of performing the analysis in-situ, uti-
lizing the same resources as the simulation, and/or off-loading sub-
sets of the data to a compute-intensive analysis system. We intro-
duce an analysis framework developed for HACC, a cosmological
N-body code, that uses both in-situ and co-scheduling approaches
for handling petabyte-scale outputs. We compare different anal-
ysis set-ups ranging from purely off-line, to purely in-situ to in-
situ/co-scheduling. The analysis routines are implemented using
the PISTON/VTK-m framework, allowing a single implementation
of an algorithm that simultaneously targets a variety of GPU, multi-
core, and many-core architectures.

1. INTRODUCTION

The analysis of ever-increasing simulation output sizes poses a
major challenge in many areas of scientific computing. Tradition-

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

SC ’15, November 15 - 20, 2015, Austin, TX, USA

© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-3723-6/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2807591.2807663

ally, the simulation outputs, which can reach hundreds of terabytes
to petabytes in supercomputing applications, are written to disk and
analyzed off-line. Storing these amounts of data for extended peri-
ods on disk for analysis tasks is impossible if the number of sim-
ulations of this size and larger rapidly increases. In the future we
will therefore be forced to develop alternatives to the off-line anal-
ysis approach. One such alternative is to carry out the analysis
in-situ. This works particularly well if the analysis step is appro-
priately sized and load-balanced and is able to run on the same large
partition of the HPC system as the simulation itself. Other analy-
sis tasks, however, may not meet these requirements and not lend
themselves to efficient in-situ analysis.

There are a number of reasons why a subset of the analysis com-
ponent may not be fully suited to an in-situ approach. An obvious
reason is that these analysis tasks can have strong scaling bottle-
necks. These bottlenecks may arise from a number of causes; a
typical example is one where the task runs efficiently on the major-
ity of the nodes, but the workload on some nodes may become very
heavy, slowing the analysis step down, and destroying the overall
scalability of the approach. Off-loading the tasks to other nodes
will increase the complexity of the analytics tasks, especially given
that a large number of them may have to be performed, each with
its own specific (parallel) solution. Such an approach — even in the
cases where it applies — leads to problems with portability, main-
tainability, and code management.

In this paper, “in-situ” means that the analysis runs in the same
process as the simulation (e.g., a library call), while “off-line” means
that the analysis runs in a separate process (either on the same ma-
chine as the simulation, or on a different machine), which takes out-
put from the simulation process as its input. In a combined in-situ
and off-line workflow, some analysis is performed in-sifu and some

off-line. “Co-scheduling” means that analysis that is performed
off-line is computed by multiple independent processes, which can
be automatically queued on an analysis cluster as the data becomes
available, and run while the main simulation is still running on the
primary HPC system, rather than as a single off-line process that
is queued and run only after the main simulation terminates. “In-
transit” means that data is transferred from the main simulation to
co-scheduled off-line analysis processes through a separate mem-
ory device (such as NVRAM) that is shared between the main HPC
system and the analysis cluster, rather than by the analysis pro-
cesses reading files written by the simulation.

This paper presents a comparison of alternative workflows for
scientific simulation and analysis, including new ones enabled by
emerging in-situ and co-scheduling technologies. We implement
and compare three different approaches: purely in-situ, purely off-
line, and combined in-situ and off-line. We also discuss possible
variations of the last approach, including co-scheduling the off-line
analysis, and passing data to the off-line analysis through a shared
memory system rather than through file I/O.

The results reported here, as well as the approaches we have de-
vised to portably and efficiently handle a diverse range of analy-
sis tasks, with widely varying data sizes and computational loads,
should help inform decisions made for other large-scale simula-
tions as they encounter ever larger data sizes, more heterogeneous
computing platforms, and more complex analysis tasks.

We focus our discussion on computational cosmology and re-
lated analysis challenges of large N-body simulations, which rep-
resent some of the largest simulations carried out on HPC plat-
forms. Two examples in this area are the recently completed Outer
Rim simulation [12] that evolved more than a trillion particles on
Argonne’s IBM BG/Q Mira system and generated approximately
5Pbytes of raw outputs (not including check-point restart files) and
the Q Continuum simulation [13] — more than half a trillion par-
ticles on Oak Ridge’s CPU/GPU Titan system and approximately
2.5Pbytes of data. The very high mass resolution in the Q Contin-
uum simulation of ~ 103Mg, led to major challenges for the final
analysis steps. These challenges motivated a more complex anal-
ysis workflow to separate out very compute intensive tasks, dis-
cussed below.

An example for an efficient in-sifu analysis task in cosmology is
the determination of the density fluctuation power spectrum. This
calculation requires a density estimation on a regular grid via, e.g.,
a Cloud-In-Cell (CIC) algorithm and very large FFTs. Both of the
algorithms are efficiently parallelizable and in the case of the above
mentioned simulations, the determination of the power spectrum
takes only a few minutes, a small fraction of the computational
time required for a single time step. Therefore, the power spectrum
was determined at regular intervals as an in-situ operation during
the full runs. Another analysis example in cosmology is finding
matter clumps called halos and evaluating their properties. Halos
are regions of high density and are of scientific interest for diverse
reasons. They provide information about structure formation as
well as galaxy formation and are the basis for building sophisticated
synthetic sky catalogs from N-body simulations. The identification
of halos via standard cluster-finding algorithms is also efficiently
parallelizable, just like the power spectrum calculation. However,
the vast range of sizes of halos (in the Q Continuum simulation
we found a handful of halos with up to 25 million particles in the
late stages of the evolution, while billions of halos with 40 particles
were found) poses a problem for more compute-intensive analysis
tasks, e.g., finding the center of a halo as given by its gravitational
potential minimum. For a 40 particle halo, center finding takes less
than a second, while in the case of a halo with 25 million particles,

it can take hours, depending on the center definition. Following our
strategy, this suggests that the analysis be broken up into two parts:
small halos to be analyzed in-situ while large halos are sifted out
and handed over to another system. A detailed discussion including
timing information can be found in the main body of the paper.

More generally, our contention is that the nature of many ana-
Iytics tasks is suited to a workflow approach that combines an in-
situ step with an off-line step, which may be co-scheduled. In our
case, we first carry out an in-situ data analysis step to 1) reduce the
amount of data to be analyzed (in our example by a factor of five),
and 2) separate the data-intensive analysis tasks to be handled by
a different machine (or by a different sector of the same machine).
In this way, the data-intensive tasks are handed over to a compu-
tational resource that is responsible for the analysis tasks while
the main simulation code continues to run. We describe the analy-
sis workflow set up for the Hardware/Hybrid Accelerated Cosmol-
ogy Code (HACC) and explain our proposed combined in-situ/co-
scheduling approach.

Finally, a successful analysis strategy requires flexible tools that
can run on a variety of architectures. For example, most analy-
sis clusters have a very different architecture compared to the main
HPC resource. In order to ensure that our analysis routines run on a
variety of architectures, we have implemented them using the PIS-
TON framework. PISTON, a part of the VTK-m project, is built on
top of NVIDIA’s Thrust library, and allows a single implementa-
tion of an algorithm to be compiled to multiple backends, enabling
one to target a variety of multi-core and many-core architectures.
We have previously demonstrated the performance and portabil-
ity of PISTON for algorithms such as isosurfacing, KD-tree con-
struction, and dendrogram-based halo finding with variable linking
lengths [20, 33,40]. More broadly, this data-parallel programming
model has been used for a wide variety of algorithms in data struc-
tures, computational geometry, graphs, and numerical analysis [7].

The overall organization of this paper is as follows. We briefly
review related work in the field in Section 2. We then give a gen-
eral description of our workflow implementation, in particular the
in-situ and co-scheduling approach, in Section 3. We also provide
details about our flexible halo center finding implementation in the
same section. Finally, we show results from our implementation
in Section 4 and demonstrate the efficiency of our combined in-
situ/oft-line approach. In the future, on new architectures that pro-
vide burst-buffer capabilities, we will be well prepared to take full
advantage of these set-ups. Instead of writing out the files to be an-
alyzed to disk, we will be able to keep them in memory and off-load
them to other compute resources.

2. RELATED WORK

Increases in available computational power are outpacing growth
in I/O bandwidth and capacity [32]. The challenge this poses to tra-
ditional post-processing visualization and analysis workflows are
widely recognized [23]. The need for in-situ workflows, in which
visualization and analysis products are computed in the same pro-
cess space as the simulation, has been described in a variety of
workshop reports from agencies such as the National Science Foun-
dation and the Department of Energy [3, 17,25]. Libraries have
been developed to make algorithms from popular post-processing
tools available directly to the simulation in-sifu. These include Cat-
alyst [9], based on ParaView, and Libsim [39], based on Vislt. An
in-situ workflow typically has the advantage of needing to save
much less data (such as images or summary statistics) than the raw
data dumps required for post-processing workflows. While not sav-
ing all the raw data can potentially limit the ability to explore the
data in post-processing, traditional workflows also entail the loss

of data (often in the form of decreased time resolution), and in-situ
tools such as Cinema [4] can provide the user with greater flexibil-
ity in making trade-offs among factors such as time, space, and res-
olution. Additional in-situ research has focused on such issues as
reducing the memory footprint by sharing data between simulations
and visualization libraries with “zero-copy" data structures [42] and
automatically evaluating the relative importance of data in order to
produce reduced data products [29]. The increased temporal res-
olution available in-situ has been exploited by analysis algorithms
such as flow field analysis [2,44].

In-transit workflows transfer data from a simulation over a net-
work to a separate process that computes visualization and analysis
products while the simulation is running. The simulation and anal-
ysis processes are co-scheduled on the same machine, or on a sep-
arate system. Several frameworks have been developed to provide
network and/or storage services that enable in-transit coupling of
simulations with visualization and analysis processes. Examples of
these include Sandia National Laboratory’s Nessie (NEtwork Scal-
able Service Interface) [21,22] and Argonne National Laboratory’s
GLEAN [38]. ADIOS (Adaptable I/O System) [1] from Oak Ridge
National Laboratory includes support for staging data for analy-
sis before final output to disk. Nessie, GLEAN, and ADIOS are
compared and contrasted in Ref. [28]. A detailed study [31] at
Sandia compared in-situ and in-transit workflows using Catalyst
and Nessie for a shock physics code. They found their in-transit
workflow to be slower than in-sifu except in a few cases involv-
ing analysis algorithms that did not scale well. They also noted
that schedulers available at the time were generally inadequate for
the needs of in-transit workflows. Studies have demonstrated the
potential value of using solid state memory as a part of an in-
transit pipeline, computing visualization products on “burst buffer”
I/O nodes separate from the simulation nodes and the file system
nodes [6]. Task parallel systems take the co-scheduling approach
even further, allowing many asynchronous tasks to be scheduled to
execute at specified levels of the memory hierarchy [43]. General-
purpose task parallel runtimes include Legion [5] from Stanford
University and Uintah [26] from the University of Utah, while the
idea of a loosely-coupled distributed system of cooperating tasks
reaches its natural extension in grid computing [11].

Our initial co-scheduling scheme was derived from the Beller-
ophon software stack. Bellerophon is a workflow management sys-
tem developed with the goals of automating data analysis, work-
flow management, and software engineering tasks for HPC simula-
tion campaigns [18, 19]. It was initially developed and deployed to
monitor and analyze, in near real-time, long-running core-collapse
supernova simulations with the CHIMERA code [8,27]. The de-
sign of Bellerophon’s n-tier architecture includes a logic, data, and
presentation tier as well as a supercomputing tier. Elements of
the Bellerophon supercomputing tier monitor simulation progress,
process and analyze results, archive data, and transmit new data
to Bellerophon’s data server. Several analogous tasks are accom-
plished by the in-situ and co-scheduled components described here.

3. WORKFLOWS AND ALGORITHMS

The simulations and analysis methods presented in this paper
use the HACC cosmology code. HACC solves for the evolution
of cosmic structure, from very small initial fluctuations on a uni-
form background, to the highly nonlinear, clustered regime of the
present epoch. Once the first bound objects (halos) form, analy-
sis tasks are carried out to not only capture these structures within
one time snapshot but also to track their evolution to the end of the
simulation. Over time, halos merge and accrete mass and contain
structures within them (subhalos).

Off-line Workflow

()
- - I CosmoTools
Simulation Configuration

Input Deck HACC
Level 1
| Level 1 CosmoTools
> Framework

Jl Off-line

Storage

Level 2/3

L HPC System

In-situ Workflow

Simulation
Input Deck V—|—> HACC H

Level 1

[-
CosmoTools —|_.I CosmoTools Level2/3LJ

Configuration Framework H
In situ F

Storage

L HPC System

Combined In-situ/Oft-line Workflow (with Co-scheduling)

-
T
Simulation
Input Deck V—|—> HACC L
Level 1 Storage
5 Level 2 =
ol (triggers
CosmoTools CosmoTools listener) J < |level 3
Configuration —I—- Framework [F Partial =
v 2 H
In situ H Level 3
=
L HPC System Level 2)
DISC System

Off-line/Co-schedule H

CosmoTools CosmoTools
Configuration Framework [T[F J

Figure 1: Schematics of the analysis workflows we examined.
In the off-line approach, all analysis is computed in a separate
process after the simulation has completed, by reading data
written to disk by the simulation. In the ir-situ approach, all
analysis is computed in the same process as the simulation, with
no I/0 required to communicate between them. In the com-
bined approach, one part of the analysis is carried out in situ; a
subset of the results are stored on either disk or external mem-
ory and then read in and analyzed by an off-line process (which
may be co-scheduled). Results from both analysis steps are rec-
onciled and a complete analysis output is written to storage.

In order to enable a smooth analysis workflow, HACC is instru-
mented with CosmoTools, a flexible in-situ analysis capability. De-
tails of the CosmoTools design are discussed in Section 3.1. Fig-
ure 1 gives a general overview of the HACC simulation and analy-
sis set-up for the different workflows we examined.

The simulation ‘input deck’ contains all the simulation param-
eters for the main run. It also includes a trigger for CosmoTools
and a pointer to the CosmoTools configuration file. That file has
all the details about the separate analysis tools, at which time steps

to run them, and which parameters to use for each. While HACC
is running, CosmoTools is called at the requested time steps and
analysis tasks are performed. The output is then directly written
to the storage system, or in principle could be written to memory
for further analysis steps. As we describe later, some analysis tasks
are optimally performed on a different data-intensive platform or
on a smaller portion of the HPC resource. For these tasks, a co-
scheduled job can be triggered and data is read back in from stor-
age or memory. We will describe and analyze different analysis
approaches in Section 4 that are enabled with this general set-up.

The data hierarchy within HACC can be described in terms of
three levels. The first (Level 1) is the raw HACC output which can
either be the simulation particles (including positions, velocities,
and particle tags) or full grid information. HACC uses uniform
grids for calculating long-range forces, making these data struc-
tures very straightforward to store. The size of Level 1 data obvi-
ously depends on the number of particles simulated (typically, the
particle number and grid size are the same), as each particle car-
ries 36 bytes of information. Analysis tasks that require all Level
1 data, such as halo finding or power spectrum determination, re-
sult in Level 2 data. The analysis usually leads to a data volume
reduction by a factor of a few — in the case of the power spectrum
the resulting data is only one table, for the halo files the reduced
data volume depends on the data of interest but is often an order of
magnitude smaller. Finally, Level 2 data can be further analyzed
to generate Level 3 data. This step is often carried out off-line
and can require an independent set of analysis codes. Examples
are properties of halos, including halo centers, shapes, and subhalo
populations, the creation of synthetic sky maps, or summary statis-
tics such as mass functions and halo concentrations. For a more
extensive discussion, see, e.g., Ref. [14]. Table 1 gives two ex-
plicit examples for the simulations discussed in this paper later in
Section 4. Next, we will give a brief overview of the CosmoTools
implementation, our co-scheduling set-up, and the main analysis
tools used in our examples.

3.1 In-Situ Analysis via CosmoTools

CosmoTools is a parallel in-sifu analysis framework that is de-
veloped as an integral component of HACC. Performing the anal-
ysis in-situ enables analysis tasks to utilize the same memory and
compute resources with the simulation, alleviating I/O and stor-
age bottlenecks. However, embedding analysis tasks in the critical
path of the simulation code, i.e., within a simulation time-step, re-
quires careful design and poses additional challenges and consid-
erations. Chief among the considerations are the suitability of an
analysis task to be conducted in-sifu, in conjunction with its net
effect on performance and memory footprint throughout the life-
time of a simulation run. To address these challenges, the design
and development of CosmoTools employs several key principles.
It is minimally intrusive, providing a simple interface that can be
invoked within the main physics loop. It is lightweight, with negli-
gible overhead, and algorithms are designed to operate directly on
an already distributed HACC particle dataset (i.e., Level 1 data),
avoiding the need for deep copies, data transformations and/or data
redistribution (“zero copy"). It is extensible to support new analy-
sis algorithms, and is easily configurable in the problem setup, even
while the simulation is running for computational steering.

CosmoTools defines a pure abstract base class, InSituAlgorithm,
from which specific analysis tasks inherit. Each algorithm subclass
must implement three virtual functions: SetParameters () for
configuration, ShouldExecute () to determine if the analysis
should be exectued at a given time step, and Execute () to per-
form the analysis. The InSituAnalysisManager class holds a list of

references to concrete InSituAlgorithm instances and serves as the
primary object interacting with the simulation code. There is a very
small overhead for the virtual function calls, which could in princi-
ple be avoided by using the Curiously Recurring Template Pattern
(CRTP) [37].

In our target domain, computational cosmology, we found that
analysis tasks operating on Level 1 data (raw particles) are suit-
able candidates for in-situ analysis, while off-line analysis of Level
2 data can yield the best overall performance. To enable the com-
bined in-situ and off-line/co-scheduled workflow, CosmoTools also
provides a stand-alone driver that allows the algorithms to be in-
voked asynchronously by co-scheduling another analysis run, exe-
cuted in tandem with the simulation using different resources. The
details of our co-scheduled approach are out-lined in Section 3.2.
Section 4 further elaborates on the advantages of our workflow with
a specific example.

3.2 Co-Scheduling

Co-scheduling allows data to be analyzed as soon as it is made
available. Since the jobs generating and analyzing data can overlap,
co-scheduling can reduce the wall time for the overall task. How-
ever, the main advantage over the off-line approach is the conve-
nience of automatically enabling the analysis workflow as the main
application is still running. Optimally, secondary analysis jobs
should be run on resources with sufficient capacity to allow a short
queue time. Even under non-optimal conditions co-scheduling still
allows analysis to become an automated part of the simulation work-
flow, even with some level of “pile-up” in the analysis stack, where
many analysis jobs are queued while others run. The co-scheduling
approach allows the analysis jobs to be spread over multiple re-
sources if they are available. For the work presented here, a “lis-
tener” script, based on a scheme derived from the Bellerophon soft-
ware stack [18,19], is set up to run in the background of the main
application in the Titan batch script. The listener launches analysis
jobs when pre-specified output files are generated by the main ap-
plication. While the listener and the main job run asynchronously,
the rate at which the listener checks for new output files should be
chosen to be much higher than the rate at which the main code gen-
erates new output files. When a new output file is found the listener
generates a new batch script and input parameters, based on the
timestep of the data and template files, and then submits the new
job. The listener then resumes checking for new data.

Either the listener script or the main job can run in the back-
ground. In this case, the listener’s backgrounding allows the job to
end when the main application has completed rather than allowing
the listener to fruitlessly check for new data until the end of the user
defined wall time. If the last output files come at the very end of
the main application’s execution time, an additional instance of the
listener would run after the job completes to catch the last output
data.

For co-scheduling on resources at a user facility, it is important
to consider the facility’s queue policies and resource capabilities.
In HACC, the secondary analysis code is well optimized for GPUs.
OLCF’s designated analysis cluster, Rhea, has the capacity to en-
sure that enough nodes are available for smaller jobs to have short
queue waits. However, Rhea does not currently have GPUs. The
secondary job could be co-scheduled on Titan with the main job,
and use Titan’s GPUs. However, Titan’s queue is designed to fa-
vor large jobs. The queue policy only allows two jobs that use less
than 125 nodes to run simultaneously. Thus, co-scheduling on Ti-
tan would require a queue exemption if more than one secondary
analysis job is to run on Titan while the primary job is running.

Level 1 Level 2 Level 3
Examples Raw particles, Halo particles, Halo properties,
grid information density fields, galaxy catalogs,
subsamples of particles subhalos,
mass functions
concentrations

Size, 10243, last step only ~ ~40GB (raw particles)
Size, 81923, last step only ~ ~20TB (raw particles)

~5GB (halo particles, > 300,000 particles) Halo centers, ~43MB
~4TB (halo particles, > 300,000 particles)

Halo centers, ~10GB

Table 1: Examples for Level 1, 2, and 3 data products and sizes for the two case studies discussed in Section 4. The data sizes
obviously depend on the halo definition used. In the case of the 81923 particle simulation, very small halos were discarded, leading

to a smaller Level 3 data set.

3.3 Halo Analysis

3.3.1 Halo Identification

There are several definitions commonly used for identifying ha-
los within cosmology simulations (e.g., [30, 36]). In this study,
we use the percolation-based Friends-Of-Friends (FOF) halo defi-
nition [16], which imposes no restrictions on halo shape. An FOF
halo consists of all particles that are within the “linking length” of
at least one other particle in the halo (the choice of linking length
is connected to the choice of an isodensity surface that defines the
boundary of the halo). To avoid spurious identifications, halos with
fewer than a specified number of particles are discarded. Finding
FOF halos is equivalent to finding the connected components of a
graph in which each particle is a vertex, and there exists an edge be-
tween two vertices if and only if the distance between them is less
than the specified linking length. However, the number of edges (up
to O(n?) for n particles) makes it intractable to explicitly compute
and store an edge list or adjacency matrix.

We compute FOF halos in parallel across MPI ranks by distribut-
ing particles across the processors according to a domain decompo-
sition. “Overload regions” are defined at the boundaries of the pro-
cessors, with each of the neighboring processors receiving a copy
of the particles in this region. The size of the overload regions are
defined to be large enough relative to the maximum feasible halo
extent such that each halo is assured of being found in its entirety
by at least one processor. Within each rank, FOF halos are found
using a serial algorithm which constructs and then recursively tra-
verses a balanced k-d tree. Starting at the leaf nodes, which con-
tain individual particles, it merges particles into halos. At higher
levels of the tree, bounding boxes which define the space covered
by the subtree rooted at a node are used to reduce the number of
particle-to-particle distance comparisons, allowing whole subtrees
to be merged into a halo or excluded from a halo at once. After
each processor has found its halos locally, the parallel halo finder
identifies halos found in whole or in part by multiple processes, and
assigns them to a unique processor, see Refs. [15,41] for details.

Halos themselves contain sub-structure, which can be identified
using subhalo finders in simulations with sufficient resolution. For
this study, we used our implementation [10] of the subhalo find-
ing algorithm presented in Refs. [24, 35]. The local density for
each particle in the parent FOF halo is estimated by finding a spec-
ified number of nearest neighbor particles, and computing a density
based on the total mass of these particles and the distance to the fur-
thest of these. A Barnes-Hut tree, similar to an octree but with sup-
port for more efficient traversals, is used for calculating the local
densities using an SPH (Smoothed Particle Hydrodynamics) ker-
nel. A subhalo candidate tree is then constructed by iterating over
the particle list in sorted order according to density. Finally, candi-

date particles with high total energy are “unbound” from subhalos
in a multi-pass algorithm, removing no more than one-quarter of
the particles with positive energy at each step.

3.3.2 Halo Center Finding

Once a halo has been identified, accurately determining its cen-
ter is essential for comparison of results with observations and for
calculating halo properties such as concentration. The concentra-
tion is determined from the density profile of the halo as a function
of radius — if the center is not exactly at the density maximum, the
concentration will be underestimated. An accurate halo center is
also important for placing the central galaxy into the halo. Many
cosmological measurements that are extracted from the simulation
depend on accurate galaxy placements, such as galaxy-galaxy lens-
ing, the galaxy correlation function, or strong lensing measure-
ments. Computation of spherical overdensity (SO) halos [36] may
also be seeded at FOF halo centers. In this study, we use the Most
Bound Particle (MBP) definition for a halo center, which identi-
fies the center as the particle with the minimal potential (equivalent
to the density maximum), where the potential for a given particle is
computed as the sum over all other particles of the negative of mass
divided by its distance to the particle. A small constant offset term
may be added to the distance to avoid numerical issues caused by
extremely close particles.

Within each MPI rank, the center for each halo can be com-
puted with an A* search algorithm, which uses an optimistic heuris-
tic to estimate the potential for each particle, allowing it to lo-
cate the particle with minimum potential without having to ex-
plicitly compute the potentials for all particles. This algorithm is
reported to be faster than a brute force approach of computing po-
tentials for all particles by a problem-dependent factor of roughly
eight [10], but it is still a serial O(n?) algorithm. More recently,
using PISTON/VTK-m, we have implemented a simple algorithm
that computes the potentials for all particles and finds the mini-
mum. The algorithm is easily parallelizable, since the potential for
each particle can be computed in parallel.It runs portably across
multi-core and many-core accelerators using Thrust primitives. On
Titan’s GPUs, it is much faster than the serial A* algorithm run on
Titan’s CPUs [34]. Nevertheless, as an O(n?) algorithm, it can lead
to significant load imbalance. For example, finding the MBP cen-
ter of a halo with 10 million particles can take 10,000 times longer
than for a halo with 100,000 particles.

We note that more computationally efficient, but less accurate,
methods do exist for finding halo centers. We have experimented
with approximate center finding methods but none of them satis-
fied our strict accuracy requirements. Furthermore, as previously
discussed, significant load imbalance is inevitable for many analy-
sis tasks, thus motivating the off-line and co-scheduling workflows
described in this paper. Our MBP center finder serves as a good

Figure 2: Visualization of the Q Continuum simulation’s par-
ticle distribution, zoomed in to a sub-region of the volume of a
single node (one out of 16,384 nodes in total), showing the halos
that have formed in this region at the final time step.

test case for these approaches. In the context of cosmology simula-
tions, many subhalo finding algorithms also exhibit significant load
imbalance, with subhalo finding taking much longer for large halos
than for small ones.

4. RESULTS

4.1 Analysis of the Q Continuum Simulation

The implementation of our integrated in-situ/co-scheduling anal-
ysis approach was partially motived by the challenges we encoun-
tered when analyzing the very large, high-resolution, highly clus-
tered data resulting from the final time step of the Q Continuum
simulation. The simulation, described in detail in Ref. [13], evolved
81923 particles on Titan and we stored 100 time snapshots, result-
ing in more than 2Pbytes of raw (Level 1) data. A visualization pro-
duced based on the results of this simulation is shown in Figure 2.
HACC is equipped to carry out a complete in-sifu analysis and in
principle we could have carried out the following tasks while the
code was running on Titan: 1) Power spectrum calculation, based
on cloud-in-cell density estimation on a uniform grid and FFTs of
size 81923; 2) Halo identification, based on the clustering algo-
rithm discussed in Section 3.3; 3) Halo center finding, based on the
algorithm discussed in Section 3.3; 4) Sub-halo finding (identify-
ing sub-structure within halos); 5) Halo mass estimation based on
a spherical overdensity definition.

The power spectrum calculation, the halo identification, and the
spherical overdensity mass estimator all lend themselves well to
efficient parallel implementation. The halo center finder and sub-
halo finder, though, as explained in the previous section, slow down
rapidly with increasing halo size. In addition, the three halo anal-
ysis steps have to be carried out in sequence — hence, although the
over density mass estimator is very fast, it relies on information ob-
tained by the center finder. When the Q Continuum simulation was
started, the halo identification and center finding algorithms were
tightly coupled and only implemented to run on CPU systems. The
very high mass resolution of the Q Continuum simulation forced us
to rethink this strategy and, in the meantime, store the full raw out-
puts on disk to enable a later off-line analysis. As a first important
improvement step we re-implemented the center finder within PIS-
TON, to take full advantage of Titan’s GPUs as explained above.
This provided approximately a factor of fifty speed-up (here we
compare the halo finder run on one rank per node on the CPUs with
the GPU implementation — the memory requirements for this sim-

SLICE Redshiftz Max Min Max Min

Find Find Center Center
60 1.680 433 352 449 19
64 1.433 483 385 668 19
73 0.959 663 532 1819 19
100 0 2143 1859 21250 2.4

Table 2: Examples of timing results for different analysis steps.
Reported are the time the slowest and the fastest nodes took to
do the halo identification (Find) and the center finding (Cen-
ter). All times are quoted in seconds. The analysis of the last
step was split into two parts, one for small and medium ha-
los carried out on Titan and one for large halos carried out on
Moonlight, a separate GPU system. The time for the slowest
center finding result at z = 0 from Moonlight was adjusted by
a factor of 0.55 for ease of comparison with the Titan results.
The time for the fastest center-finding result at z = 0 from Titan
has improved compared to earlier redshifts since particles are
more tightly clustered the further the evolution has progressed.

ulation, as well as limitations of OpenCL, used for some physics
kernels, did not allow us to use more ranks per node).

After the analysis of the first 64 time slices, the load imbalance
of the center finder outweighed the cost of I/O and distribution code
necessary to carry out the analysis. We therefore implemented a di-
vision of labor for the center finding algorithm for small to medium
and heavy halos; this point is illuminated further with the timing
data shown in Table 2. Table 2 shows the timing for the full halo
analysis for four of our one hundred outputs. The redshift z in-
dicates the cosmic time at which the data was stored; the redshift
today (and therefore the end of the simulation) is z = 0. The simula-
tion started at z = 200 and the first output was stored at z = 10. We
report the timing for the halo identification (Find) and the center
finder on the GPU (Center) for the slowest and the fastest node. As
is easily seen, the identification is well balanced for each time step
shown. Since more and larger structures form over time, the over-
all identification time increases. The calculation for the halo center
finder on the other hand is already rather unbalanced at the 60th
analysis step. Nevertheless, in order to carry out the analysis of the
time step off-line, we are forced to read in the particle data (20TB
per snapshot) and distribute them among the processors. Reading
the full particle set from one snapshot on Titan takes roughly 10
minutes (see Ref. [13] for details on HACC’s 1/O implementation
on Titan) and another 10 minutes to distribute the particles among
the 16384 nodes which are needed to hold the particles. At that
point, 10 minutes of total analysis time for the center finding (even
if out of balance) is justified. For later time steps, this situation
dramatically worsened and we broke up the center finding into two
steps.

We use the final time step as an example to explain our strategy
and timings. We first read in the particles for the last time step and
carried out the halo identification which took approximately one
hour on 16,384 nodes. We then found the centers for all halos that
have less than 300,000 particles, which took just over one minute.
We printed out all the particles that reside in halos with more than
300,000 particles to the file system — the resulting data (Level 2)
was a factor of 5 less than the raw data at Level 1. Figure 3 shows
the number of halos as a function of mass to illustrate this cut. The
Level 2 data was moved to a different machine (Moonlight, a GPU
cluster at Los Alamos) where center finding was carried out. Moon-
light provided more flexibility for the queuing of small, long anal-
ysis jobs which was important for our analysis. In a final step, the

B T T S T O T O T S S S T S T B

10407 My R

16406 F]

100000
10000
1000
100 |
T
o

Halocount

T

10 T

0
0
0
0
0
0
0
1
1
1
1
1
1
1
2
2
2
2
2
2

169888e+
984904e+
106095e+

1
1
2.
3.
4.
6.
8.
1
1
2.
2
4.
5.
7
1
1
2.
2.
3.
5.
7
9.
1
1
2
3.
4.

Mass [Mg,n/h]

Figure 3: Log-log plot of halo counts as a function of mass at
z=0. The red histograms mark the halos that were fully ana-
lyzed after the halo finding step while the blue histograms show
the halos which were off-loaded to Moonlight for the center
finding step. Overall, we found 167,686,789 halos, out of which
84,719 were off-loaded. The center finding for the remaining
halos (99.9%) took approximately one minute on 16,384 nodes
of Titan.

two files from the Titan and Moonlight analysis were merged to
provide a complete set of halo centers and properties. Shown in
Figure 4 is the distribution of the time it would have taken each
node on Titan if all halo center finding had been computed in-situ,
with timings projected based on the sizes of the large halos.

While we chose this threshold of 300,000 manually, making the
choice of what analysis to perform in-situ and what to perform oft-
line could be made more automated. First, one would estimate
the time the code will spend in 1/O, t;,, if the analysis were off-
line. This depends on the total number of particles. The mass of
the largest halo, my o, that could be analyzed in time less than
tio, would then be estimated. (Halo mass is just a function of the
number of particles, with all particles having equal mass.) During
the simulation, all halo finding occurs in-situ, and the mass of the
largest halo, m,,4x_sim, can be found. If my4x sim < Mnax_io, the cen-
ters for all halos can be computed in-situ. If mpax sim > Mmax_io-
then all particles in halos with mass greater than m,,4x j, should
be saved out for off-line center-finding. To set up an optimized
co-scheduling job, one would first estimate the time, T, to analyze
all halos, which is easily available from the halo masses found in-
situ. From this, the time, f,,,y, it will take to analyze the largest
halo can be estimated. The number of ranks for the co-scheduling
task should be set equal to T /#,4. The halos should be distributed
so that each rank has roughly the same workload (estimated again
from halo masses).

For optimal I/O performance, the results from 128 nodes from
Titan were aggregated in one file, resulting in 128 files containing
128 blocks each. Each file was analyzed separately by a set of
single-node jobs on Moonlight. The longest analysis job took 37.8
hours, the shortest 6.0 hours. The longest single block analysis
took 10.6 hours. This block held a halo with ~25 M particles, and
several other large halos. Overall, the center finding required about
1770 node hours on Moonlight. On Titan, the analysis would have
been faster by a factor of roughly 0.55 (due to newer hardware —
the estimate is based on direct comparisons of our timings on the
two systems, and on the specifications of Moonlight’s M2090 and

100,000

10,000

1,000

=
1)
S

Number of nodes (log scale)
=
o

-

P L O .O.O.P.O.L.O.®
SLLLL L LSS
FEEHL LSS S

Time in seconds (bin centers)

Figure 4: Histogram for the distribution of projected center
finding times on Titan, showing node counts on a log scale
for bins of width 1000 seconds. Centers for large halos (over
300,000 particles) were actually computed off-line on Moon-
light, so these timings are projected based on the sizes of all
large halos output by each node on Titan. Times for finding
centers for small halos (under 300,000 particles), which were
computed in situ on Titan, are not included here, but no node
required more than approximately 60 seconds to complete all
its in situ center finding.

Titan’s K20X GPUs), resulting in 985 node hours, or ~ 30,000
core hours. Adding 0.5M core hours for the halo finding and center
finding for the small and medium size halos, the analysis required
0.52M core hours. If we would have carried out this step fully in-
situ or off-line, the time would have been dictated by the slowest
block. Therefore, we would have spent 5.9 hours on 16,384 nodes
plus one hour for halo identification on Titan, leading to 3.4M core
hours, a factor of 6.5 more expensive than the approach taken. We
emphasize that this large factor is due to the fact that this simulation
covers a very large volume at very high mass resolution, resulting
in very rare, large objects.

As should be clear from the above, the analysis workflow for this
large simulation is sub-optimal. The overheads due to I/O (writing
out the Level 1 files and reading them in again for analysis) and par-
ticle distribution are not small — on a simulation of the size of the
Q Continuum this by itself amounts to ~ 0.16M core hours (taking
into account the extra charges on Titan due to the GPUs) per anal-
ysis step (and we would like to emphasize that these steps were
heavily optimized for HACC and the I/O almost reached peak per-
formance on the Lustre file system). For future runs, we therefore
developed a more sophisticated analysis workflow with different
options for in situ, co-scheduling, and off-line analysis.

4.2 Comparison of Different Approaches

We now discuss our implementations of different analysis strate-
gies with CosmoTools’ in-situ capability and co-scheduling options
implemented on the OLCF machines. The analysis tasks we per-
form are the halo finding and the halo center determination. Since
the analysis of the Q Continuum run is very expensive, we focus
our discussion on a downscaled version. While this simulation does
not have clusters at the extreme mass scales found in the Q Con-
tinuum run (the largest halo in this smaller run contains 2,548,321
particles, an order of magnitude smaller than from the Q Contin-
uum run), due to its smaller volume, the mass resolution is very
similar and the results can be approximately scaled up. To be more
specific, the simulation evolves 10243 particles in a (162.5 Mpc)?
volume on 32 nodes of Titan. This reduces the problem by exactly

a factor of 512. The memory requirements for this run (including
the overhead for the overload regions) do not allow us to reduce the
number of nodes to smaller than 32. Table 3 summarizes our dif-
ferent approaches, while Table 4 shows more detailed results. We
only demonstrate results for the last time step — the reader should
keep in mind though that running the full analysis would involve
100 snapshots.

The first set-up is a complete in-situ analysis. This approach has
two major advantages: It does not require I/O nor a redistribution
of the particles after read-in since all the particles are readily dis-
tributed in memory already. In addition, it does not require extra
wait time in the queue since only the main simulation job has to be
submitted. For our test run, this approach takes overall 722 secs for
the halo and center finding task. On 32 nodes and with the addi-
tional charging factor of 30 for a node hour on Titan, this amounts
to just under 200 core hours. The major drawback is the load im-
balance of the center finder. In this smaller test case, the imbalance
between the fastest and the slowest node is a factor of 15, account-
ing for the time the halo with more than 2M particles takes.

With the second strategy, we perform a full off-line analysis step.
In this case, we have additional computational requirements for 1)
writing Level 1 data during the simulation, 2) reading Level 1 data
for analysis, and 3) redistribution of the particles after reading for
the analysis. In addition, the queuing time can be considerable,
since this approach requires as many nodes as the simulation run
itself to fit in all the particles. This can add days to a week of
wait time. The one advantage of the off-line approach is that the
data is now available for analysis tasks that were not foreseen when
the original simulation was set up. In cosmology, simulations are
science-rich and new questions often come up after the simulation
run has finished and the outputs are being investigated. Having the
full raw particle output in this case can be very important. In our
test case, we carry out the off-line analysis (halo finding and center
finding) in one step — we could certainly follow a more complex
strategy as we did for the Q Continuum simulation by breaking up
the center finding step into two parts (small and medium size halos
vs. large halos). Since the timing advantages of this approach are
shown in the next examples, we will not discuss it for a full off-line
approach separately. For the full off-line approach, more than 400
secs are added to the analysis for writing, reading, and redistribut-
ing the full Level 1 data set. Overall, this approach takes 1332 secs
(not counting the queuing time), leading to a charge of 355 core
hours (plus one core hour for writing Level 1 data during the sim-
ulation run), 163 more than the cost of the in-situ approach. Most
of this difference is due to the time required to write, read, and re-
distribute the data for off-line analysis (118 core hours), although
some (the 45 core hour difference between the analysis for the two
approaches) may be due only to noise in Titan’s performance. We
emphasize though that for a larger volume run, the center finder
time would outweigh the I/O and redistribution by a much larger
fraction so the difference between in-situ and off-line would be not
as large.

We describe three variations on the final strategy, which com-
bines an in-situ analysis step to reduce Level 1 to Level 2 data and
then a separate off-line analysis step to further investigate Level 2
data, possibly on a different machine. In the in-situ step in all three
cases, all halos and particles within the halos are identified. For
halos with less or equal than 300,000 particles (following our Q
Continuum analysis) we carry out the center finding on the fly as
well. Both steps combined (identifying all halos and finding cen-
ters for halos with less or equal 300,000 particles) takes ~361 secs,
reducing the full in-situ time by a factor of two.

Particles in halos with more than 300,000 particles are treated in

Method /0 Redist. Queueing Core hrs
in-situ none none none 193
off-line Level 1 Level 1 full 356
in-situ/oft-line
simple Level2 Level2 partial 135
co-scheduled Level2 Level2 partial simult (same)

in-transit none Level 2 partial simult (n/a)
Table 3: Analysis workflows investigated in this paper. The I/0
step always includes both reading and writing. The queuing
only includes the analysis job itself. Partial and full refer to the
allocation request compared to the simulation run, while simult
means that multiple small analysis jobs are queued automati-
cally as data becomes available from the simulation and can
run simultaneously with the simulation and each other. In the
case of the Q Continuum simulation, Level 2 data contains only
20% of Level 1 data. Core hours are calculated following the
Titan charge policy — an hour per node leads to a charge of 30
core hours. Core hours for the in-situ/co-scheduled workflow
would in theory be equal to the simple in-situ/off-line workflow
(135) if run on equivalent hardware. The last implementation
would be optimal but does not currently exist on systems to
which we have access.

three different ways. In the first, simple variation of this approach,
the particles in large halos are written to disk. Compared to the full
off-line approach, this reduces the I/O time and time for redistri-
bution of the particles by more than a factor of two. Compared to
the full in-situ analysis, this time is still non-negligible, amounting
to ~75 secs in our example. For the off-line analysis of the Level
2 data, we are now flexible with regard to our approach. Due to
the data reduction from Level 1 to Level 2 data, we only need 4
nodes for the following analysis (we tested that even one node is
sufficient, but the computational costs between one node and four
nodes are roughly the same while the wall clock reduced for four
nodes by a factor of four). The center finding took 1075 secs for
this test on Titan. Overall, the combined in-situ/off-line approach
reduces the cost in our example compared to the full in-situ ap-
proach by ~ 30%. Again, we point out that for a larger simulation
this cost-reduction would be even more, as discussed in the previ-
ous section. In this variation, this task is carried out off-line, so
some additional waiting time in the queue is required.

This waiting time could be reduced in the second variation of the
combined in-situ/off-line strategy. Here we co-schedule the main
run and therefore the in-situ analysis with the off-line analysis of
the Level 2 data. While we were able to run an in situ/co-scheduled
job successfully on the Titan/Rhea combination for one time step,
in order to verify that the listener on the OLCF system automat-
ically queues an analysis job when data becomes available (i.e.,
when a pre-specified file is written by the simulation), direct com-
parisons to in-situ analysis timings are not meaningful if the off-
line and co-scheduled analysis tasks are run on an analysis clus-
ter with different hardware. Rhea’s hardware is non-optimal for
our analysis tasks, and, even though our portable PISTON analysis
algorithms can run on CPUs as well as GPUs, the lack of GPUs
slowed down the center finding considerably. Therefore, we report
timing results only for analysis carried out on Titan from the simple
variation of the in-situ/off-line workflow. The core hours for the co-
scheduled workflow would be the same if run on an analysis cluster
with equivalent hardware to the main HPC system, since the only
difference between these variations is the scheduling. The advan-
tage of the co-scheduling variation is that the workflow is simplified
because the off-line analysis is queued automatically. Moreover, if

In-situ Only Workflow

Simulation Post-processing
Queuing Sim Analysis Write Total Queuing Read Redistribute Analysis Write Total
Time (sec) | One 32-node job 772 722 0.3 1494 + queuing - - - - - 0
Core hours - 206 193 0.1 399 - 0
Data - Level 1 in memory, Level 3 output - - -
Resources - 32 nodes None
Off-line Only Workflow
Simulation Post-processing
Queuing Sim Analysis Write Total Queuing Read Redistribute Analysis Write Total
Time (sec) | One 32-node job 779 0 5 784 + queuing One 32-node job, queued after sim 5 435 892 0.3 1332 + queuing
Core hours - 208 0 1 209 - 1 116 238 0.1 355
Data - Level 1 in memory, Level 1 output Level 1input | Level 1 comm. |Level 1in mem.| Level 3 output
Resources . 32 nodes 32 nodes
Combined In-situ / Off-line Workflows
Simulation Post-processing
Queuing Sim Analysis Write Total Queuing Analysis Write Total
One 4-node job covering all timesteps
Time (sec) | One 32-node job 774 361 3 1138 + queuing (only 1 in this test), queued after sim 1075 0.2 1153 + queuing
Co-scheduled or in-transit: a 4-node job for
each timestep, queued as data is available
Core hours - 206 96 1 303 0.1 2 36 0.01 38
Data Level 1 in memory, Level 2 and partial Level 3 output Level 2 input | Level 2 comm. | Level 2 in mem.| Level 3 output
In-transit: Level 1 in memory, Level 2 in external
memory, partial Level 3 output In-transit: None
Resources - 32 nodes 4 nodes

Table 4: Detailed results showing the trade-offs between time, core hours, data (memory usage and 1/0), and resource usage for each
of the considered workflow strategies. Timings are for the last timestep of the simulation. For the in-situ/off-line strategy, timings
are given only for the simple variation, while differences for the proposed co-scheduled and in-transit variations are shown in italics.
The core hours shown in Table 3 correspond to the sum of the core hours for the analysis and write steps of the simulation run, plus

the total core hours for the post-processing run.

the full simulation were to be run, and analysis jobs co-scheduled
for each desired time step, the total core hours would still be ex-
pected to be the same as if all off-line analysis were performed after
the completion of the simulation (assuming negligible start-up time
for the analysis tasks), but the scientist may have to wait a shorter
time for his/her results, since the co-scheduled analysis jobs could
run simultaneously with the main simulation.

The third variation we discuss is at this point only a hypothetical
implementation, but might be enabled on some machines in the
near future. (We did not have access to any machines that would
have allowed us to carry out this test.) In this case, the Level 1
to Level 2 reduction as well as the partial Level 2 data analysis
are carried out in-situ. Instead of writing out the Level 2 data that
require further analysis to disk, the data is now stored on a separate
memory device and the analysis is done in-transit. This could be
either NVRAM or an external memory set-up that is connected to
both the main HPC system as well as the analysis cluster. This
set-up would not require any additional I/O for the Level 2 data
or additional queuing of analysis jobs. It would, however, require
the redistribution of Level 2 data for the analysis system. This is a
small overhead compared to the additional computational costs for
a full in-situ analysis with a non-optimal load-balanced code.

As mentioned in Section 3.3, identifying subhalos within halos
is another analysis task that is not easily fully load-balanced. In ad-
dition, our current implementation based on a tree-algorithm does
not take advantage of GPUs. In our test problem, subhalos were
found for halos with more than 5000 particles. (Smaller halos will
not exhibit much substructure and the identification is unreliable if

the subhalo size itself is too small.) Subhalo finding carried out
in-situ on 32 nodes of Titan’s CPUs took 8172 secs for the slowest
and 1457 secs for the fastest node, an imbalance of more than a
factor of five. Co-scheduling to off-load this work to a fast analysis
system would again be expected to save compute resources for this
analysis step.

These halo analysis tasks fall into a broader category of fea-
ture extraction algorithms, which tend to require significant com-
putational resources, and result in feature catalogs and/or summary
statistics. Other algorithms in this category may also be able to
benefit from this combined in-situ/off-line approach. In contrast,
some other classes of analysis tasks, such as the generation of im-
age databases, which can quickly compute and save an output, may
be best suited to a simple in-situ workflow. Also, analysis tasks,
such as the computation of streamlines, which do not operate inde-
pendently on data from different time steps, may be more difficult
to adapt to a co-scheduled workflow.

5. DISCUSSION

The analysis of very large datasets is a nontrivial and signifi-
cantly time-consuming task and can easily become more compli-
cated — from the workflow perspective, often substantially more
complicated — than the main simulation run. In the application ex-
ample presented here, taken from computational cosmology, the
increasing size of simulations leads to the occurrence of large, rare
objects in very large simulation volumes. The existence of these
objects can lead to difficulties in the development of fully load-
balanced analysis routines. In our specific case, the computational

burden for the determination of halo properties (their potential min-
imum center and their subhalos) depends strongly on the size of the
halos. In current state-of-the-art large-volume, high-mass resolu-
tion simulations such as the Q Continuum or the Outer Rim runs,
the sizes of the halos vary vastly, but only a very small number of
extreme-size halos exists. The combination of well load-balanced
and difficult to load balance analysis tasks demands a flexible work-
flow implementation that combines in-situ and co-scheduled/off-
line approaches. The major advantage of a full in-situ analysis is
the savings in I/O and redistribution time, as well as queue wait
times. Additionally, it also helps to avoid problems with the file
system. Nevertheless, this approach can become too costly, and
software solutions at the algorithmic level can present their own
problems. We therefore advocate for a combined approach that can
take advantage of the HPC system for some in situ tasks and opti-
mize the analysis of a subset of the raw simulation data on either
a smaller portion of the HPC system or specialized data-intensive
machines. To fully automate the analysis process and avoid the
need of manual user interference, future systems will be well served
by sophisticated submission systems that are designed from the out-
set to allow and promote co-scheduling.

6. ACKNOWLEDGMENTS

The work performed by CS, LL, PF, and JA was supported by the
Scientific Discovery through Advanced Computing (SciDAC) pro-
gram funded by U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computing Research under the Institute of Scal-
able Data Management, Analysis and Visualization (SDAV). An
award of computer time was provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) pro-
gram. This research used resources of the OLCF, which is sup-
ported by DOE/SC under contract DE-AC05-000R22725. HF, SH,
KH, and AP were supported by the U.S. Department of Energy,
Basic Energy Sciences, Office of Science, under contract No. DE-
AC02-06CH11357. We would like to thank Silvio Rizzi and Joe
Insley of Argonne National Laboratory for the visualization shown
in Figure 2.

7. REFERENCES

[1] H. Abbasi, J. Lofstead, F. Zheng, K. Schwan, M. Wolf, and
S. Klasky. Extending I/O through high performance data
services. IEEE International Conference on Cluster
Computing and Workshops, 2009.

[2] A. Agranovsky, D. Camp, C. Garth, E.W. Bethel, K.I. Joy,
and H. Childs. Improved Post Hoc Flow Analysis Via
Lagrangian Representations. In Proceedings of the IEEE
Symposium on Large Data Visualization and Analysis
(LDAV), pages 67 — 75, Paris, France, November 2014.

[3] S. Ahern, A. Shoshani, K.-L. Ma, et al. Scientific discovery
at the exascale. DOE ASCR 2011 Workshop on Exascale
Data Management, Analysis, and Visualization, 2011.

[4] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D.H. Rogers,
and M. Petersen. An Image-based Approach to Extreme
Scale In-Situ Visualization and Analysis. International
Conference on Supercomputing, November 2014.

[5S] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
Expressing Locality and Independence with Logical
Regions. International Conference on Supercomputing, 2012.

[6] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P.
Tzelnic, and J. Woodring, Jitter-free co-processing on a
prototype exascale storage stack. IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST), 2012.

[7]1 G. Blelloch. Vector models for data-parallel computing. MIT
Press. ISBN 0-262-02313-X. 1990.

[8] S.W. Bruenn, A. Mezzacappa, W.R. Hix, J.M. Blondin, P.
Marronetti, O.E.B. Messer, C.J. Dirk, and S. Yoshida.
Mechanisms of Core-Collapse Supernovae & Simulation
Results from the CHIMERA Code. Probing Stellar
Populations Out To The Distant Universe: Cefalu 2008.

[9] N. Fabian, K. Moreland, D. Thompson, A.C. Bauer, P.
Marion, B. Geveci, M. Rasquin, and K.E. Jansen. The
ParaView coprocessing library: A scalable, general purpose
in-situ visualization library. IEEE Symposium on
Large-Scale Data Analysis and Visualization, October 2011.

[10] P. Fasel. Cosmology analysis software. Technical report, Los
Alamos National Laboratory, 2011.

[11] I Foster and C. Kesselman. The Grid: Blueprint for a new
computing infrastructure. Morgan Kaufmann, 1999.

[12] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D.
Daniel, P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V.
Vishwanath, Z. Lukic, S. Sehrish, and W.-k. Liao. HACC:
Simulating Sky Surveys on State-of-the-Art Supercomputing
Architectures arXiv:1410.2805, New Astronomy, submitted.

[13] K. Heitmann, N. Frontiere, C. Sewell, S. Habib, A. Pope, H.
Finkel, S. Rizzi, J. Insley, and S. Bhattacharya. The Q
Continuum Simulation: Harnessing the Power of GPU
Accelerated Supercomputers, The Astrophysical Journal
Supplement, accepted for publication.

[14] K. Heitmann, S. Habib, H. Finkel, N. Frontiere, A. Pope, V.
Morozov, S. Rangel, E. Kovacs, J. Kwan, N. Li, S. Rizzi, J.
Insley, V. Vishwanath, T. Peterka, D. Daniel, P. Fasel, and G.
Zagaris. Large-Scale Simulations of Sky Surveys. Comput.
Sci. Eng. 16, 14, 2014.

[15] C.-H. Hsu, J. Ahrens, K. Heitmann. Verification of the time
evolution of cosmological simulations via hypothesis-driven
comparative and quantitative visualization. Pacific Vis, 2010.

[16] J. Huchra and M. Geller. Groups of Galaxies I. Nearby
Groups, ApJ, 257(423), 1982.

[17] C. Johnson, R. Ross, et al. Visualization and knowledge
discovery. DOE/ASCR Workshop on Visual Analysis and
Data Exploration at Extreme Scale, 2007.

[18] E.J. Lingerfelt, O.E.B. Messer, J.A. Osborne, R.D.
Budiardja, and A. Mezzacappa. A Multitier System for the
Verification, Visualization and Management of CHIMERA.
Procedia Computer Science, 4(0), 2011.

[19] EJ. Lingerfelt, O.E.B. Messer, S.S. Desai, C.A. Holt, and
E.J. Lentz. Near Real-time Data Analysis of Core-collapse
Supernova Simulations with Bellerophon. Procedia
Computer Science, 29(0), 2014.

[20] L.-T. Lo, C. Sewell, and J. Ahrens. PISTON: A Portable
Cross-Platform Framework for Data-Parallel Visualization
Operators. Proceedings of the Eurographics Symposium on
Parallel Graphics and Visualization, May 2012.

[21] J. Lofstead, R. Oldfield, T. Kordenbrock, and C. Reiss.
Extending scalability of collective I/O through Nessie and
staging. In Proceedings of the 6th Parallel Data Storage
Workshop, Seattle, WA, November 2011.

[22] J. Lofstead, R.A. Oldfield, and T.H. Kordenbrock.
Experiences applying data staging technology in
unconventional ways. In 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), Delft, The Netherlands, May 2013. IEEE/ACM.

[23] K.-L. Ma. In-Situ Visualization at Extreme Scale:
Challenges and Opportunities. IEEE Computer Graphics

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Appl., vol. 29, no. 6, pp. 14-19, Nov. 2009.

M. Maciejewski, S. Colombi, V. Springel, C. Alard, and F.R.

Bouche. Phase-space structures II. Hierarchical Structure
Finder. Monthly Notices of the Royal Astronomical Society,
July 2009.

B.H. McCormick, T.A. DeFanti, and M.D. Brown, editors.
Visualization in Scientific Computing (special issue of
Computer Graphics), volume 21. ACM, 1987.

Q. Meng, A. Humphrey, and M. Berzins. The Uintah
Framework: A Unified Heterogeneous Task Scheduling and
Runtime System. Workshop on Domain-Specific Languages
and High-Level Frameworks for High Performance
Computing at the International Conference on
Supercomputing, 2012.

O.E.B Messer, S.W. Bruenn, J.M. Blondin, W.R. Hix, A.
Mezzacappa, and C.J. Dirk. Petascale supernova simulation
with CHIMERA. J. Phys.: Conf. Ser., July 2007.

K. Moreland, R. Oldfield, P. Marion, S. Joudain, N.
Podhorszki, V. Vishwanath, N. Fabian, C. Docan, M.
Parashar, M. Hereld, M.E. Papka, and S. Klasky. Examples
of in transit visualization. In Proceedings of the PDAC 2011
: 2nd International Workshop on Petascale Data Analytics:

Challenges and Opportunities, Seattle, WA, November 2011.

B. Nouanesengsy, J. Woodring, J. Patchett, K. Myers, and J.
Ahrens. Adr visualization: A generalized framework for
ranking large-scale scientific data using analysis-driven
refinement. In Large Data Analysis and Visualization, 2014.
M. A. Patwary, D. Palsetia, A. Agrawal, W.-K. Liao,

F. Manne, A. Choudhary. A new scalable parallel DBSCAN
algorithm using the disjoint-set data structure. International
Conference on Supercomputing, 2012.

D. Rogers, K. Moreland, R. Oldfield, and N. Fabian. Data
Co-Processing for Extreme Scale Analysis Level III ASC
Milestone (4745). Technical Report SAND2013-1122,
Sandia National Laboratories, November 2013.

R.B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L. Ma, H.
Yu, and K. Moreland. Visualization and parallel I/O at
extreme scale. Journal of Physics: Conference Series, 2008
C. Sewell, L.-T. Lo, and J. Ahrens. Portable Data-Parallel
Visualization and Analysis in Distributed Memory
Environments. Proceedings of the IEEE Symposium on

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Large-Scale Data Analysis and Visualization, October 2013.
C. Sewell, K. Heitmann, L.-T. Lo, S. Habib, and J. Ahrens.
Utilizing Many-Core Acclerators for Halo and Center
Finding within a Cosmology Simulation. Subm., 2015.

V. Springel, N. Yoshida, and S.D.M. White. GADGET: a
code for collisionless and gasdynamical cosmological
simulations. New Astronomy, 6, 79-117, 2001.

J.L. Tinker, A.V. Kravtsov, A. Klypin, K. Abazajian, M.S.
Warren, G. Yepes, S. Gottlober, and D.E. Holz. Toward a
halo mass function for precision cosmology: the limits of
universality. Astrophysics Journal, 2008.

D. Vandervoorde and N. Josuttis. C++ Templates: The
Complete Guide, 2002.

V. Vishwanath, M. Hereld, and M.E. Papka. Toward
simulation-time data analysis and I/O acceleration on
leadership-class systems. IEEE Symposium on Large Data
Analysis and Visualization, 2011.

B. Whitlock, J.M. Favre, and J.S. Meredith. Parallel in-situ
coupling of simulation with a fully featured visualization

system. In Proceedings of the 11th Eurographics Conference
on Parallel Graphics and Visualization, 2011.

W. Widanagamaachchi, P.-T. Bremer, C. Sewell, L.-T. Lo, J.
Ahrens, and V. Pascucci. Data-Parallel Halo Finding with
Variable Linking Lengths. Proceedings of the IEEE
Symposium on Large-Scale Data Analysis and Visualization,
November 2014.

J. Woodring, K. Heitmann, J. Ahrens, P. Fasel, C.-H. Hsu,

S. Habib, and A. Pope. Analyzing and visualizing
cosmological simulations with Paraview. The Astrophysical
Journal Supplement Series, 195(11), 2011.

J. Woodring, J. Ahrens, T. J. Tautges, T. Peterka, V.
Vishwanath, and B. Geveci. On-demand unstructured mesh
translation for reducing memory pressure during in-situ
analysis. Proceedings of the 8th International Workshop on
Ultrascale Visualization, ACM, 2013.

Y. Yan, et. al. Hierarchical place trees: A portable abstraction
for task parallelism and data movement. Languages and
Compilers for Parallel Computing, 2010.

H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma. In
situ visualization for large-scale combustion simulations.
IEEE Computer Graphics and Applications, 30(3), 2010.

