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Executive Summary 
 
We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity 
model based upon the finite element method. Hexahedral edge finite elements are implemented to 
accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate 
topographic variations. All matrices are reduced and solved using direct solution modules which avoids 
ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the 
finite element system and PLASMA for the parameter step estimate. Large model parameterizations can 
be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward 
problem and jacobians has been checked by comparison to integral equations results and by limiting 
asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test 
Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most 
capable yet for forming 3D images of earth resistivity structure and their implications for geothermal 
fluids and pathways. 



 
Project objectives 

 
The main goals of the project were to: 
 
 1), Develop a code for simulating 3-D EM responses over the earth’s surface with topographic 
variations. Two platform choices were to be pursued to determine the superior approach. 
 2), Incorporate the selected simulation code and the inversion parameter jacobians that follow 
from it into an existing inversion algorithm for imaging and monitoring and improve its efficiency. 
 3), Parallelize the inversion code on new-generation multi-core workstations to achieve fast 
calculations within a single, cost-efficient, shared memory processing (SMP or multi-core) box. 
 4), Apply the final algorithm to two important geothermal field data sets. 
 
In our view, the project objectives were met and substantially exceeded. The resultant 3D inversion 
algorithm is the best inexistence in its ability to accurately handle steep topography and achieve close-
fitting inversion models in a minimal number of iterations 
 
 Technical Approach and Results 
 

Our initial approach to the project was to further develop an existing 3D finite element modeling 
program placed into the public domain by the Australian research consortium at Macquarie University 
under the direction of now-retired Professor Art Raiche. This program solved for a magnetic Schelkunoff 
potential from which the E and H fields were to be obtained through local spatial differentiation. The 
original program invoked a severe approximation to get these fields through an integral equations 
approach which was especially limited for the E-field. Attempts to obtain the fields through rigorous 
spatial derivatives did not yield accurate results and we decided to leave this approach for another 
direction. A paper providing a rigorous basis for the vector potential approach was published by Kordy et 
al (2015, IJNAM, attached). 

Consequently a new edge finite element (FE) solution for the electric field was developed by 
Ph.D student Michal Kordy under direction of Wannamaker. Initially we looked at dense tetrahedral 
elements assembled into hexahedra for straightforward adaptation of our regularization coding, checked 
against our long-standing integral equations code. While accurate results were obtained, convergence of 
the iterative matrix solver was observed to be quite slow if the mesh element aspect ratios became 
extreme (long, thin elements). These are required to keep the total number of unknowns in the system 
from becoming impractically large while at the same time honoring the very high bandwidth (range of 
scales of wave penetration) typical of the MT problem. Unstructured meshes can avoid that, but also are 
complicated for defining a regularization mesh as has typically been used, namely explicit spatial 
smoothing by linking neighboring conductivity subdomains. Thus, we settled upon deformable hexhedra 
for defining a mesh, as described below 

About that time (autumn, 2012), we embarked upon using direct matrix solvers for the EM 
forward and jacobian simulations, motivated by our success with direct solutions for the inversion 
parameter step (Maris and Wannamaker, 2010, C&G, attached) and by advances in multi-core 
workstation capabilities. We obtained a reasonably economical workstation that contains 24 cores and 
500 GB of RAM ($14K USD). We settled upon simpler uniform but deformable (for topography) 
hexahedral elements which produce a banded system matrix. Initially we applied the matrix tiling 
approach for parallelizing the LDLT solution of the parameter step matrix to the banded FE matrix and 
achieved good scalability (factor of 21 for 24 cores) (Kordy et al., 2013, Proc 3DEM-5 Symp., attached). 
However, overall run-times were long, and thus we investigated the public domain, direct solution library 
MUMPS. This lead to a dramatic speedup, of ~30x, and which parallelizes moderately well (6x for 12 
cores). Subsequently, we replaced MUMPS with library PARDISO, which yielded a further speedup of 



~2.5 and matrix storage reduction of ~3. We are quite please with these results and current state of the 
algorithm. 

Direct solutions are nowhere near as sensitive to element aspect ratio issues as are iterative 
solutions, and we find almost no sensitivity of solution time upon these ratios which can exceed 1000 in 
our meshes. A further great advantage of direct solutions is in the very efficient computation of auxiliary 
source vectors once the system matrix has been factored. This is valuable when computing all the 
reciprocal source vector terms that represent the parameter sensitivities. A pdf of our paper on the forward 
modeling is attached to this report (Kordy et al., 2016a, GJI, attached). It demonstrates the great accuracy 
of the program compared to the integral equations platform and with independent topographic checks. In 
particular, it can accurately simulate the high-frequency refraction of EM waves normal to a slope for 
complex models such as the Mt Erebus volcanic edifice. With a current divergence correction, accurate 
results also can be obtained in dielectric air. 

 

 
 

Figure 1. Field example using the new topographic finite element program for the Kamojang Indonesia 
MT data set. Upper panel shows deformed FE mesh and station distribution. Lower panels show plan 
views at shallow and fluid production levels. 

 
The hexahedral deformable 3D mesh we now use allowed ready adaptation of the smoothing 

regularization matrix currently implemented in our finite difference inversion code. This was tested using 
simple synthetic models and also by comparison on the Sevier and Kamojang field data sets 
(Wannamaker et al., 2013, GRC Trans.; Raharjo et al., 2010, WGC Proc.) with good comparison (Figure 
1). The Kamojang model is embedded above. Furthermore, we transformed the parameter step equation 
from the traditional model-space formulation to a more recent data-space formulation (Parker, 1994, 
Princeton Press; Siripunvaraporn et al., 2005, PEPI) as is appropriate when there are many more 
parameters in the tomographic volume than there are inverted data. Now, computer run-time and memory 
requirements of the inversion problem are almost entirely determined by the demands of the forward 
problem. Our published paper on the inversion technology also is appended to this report (Kordy et al., 



2016b). It includes as an example the famous Mount St Helens MT data set across its volcanic edifice. 
The algorithm is seeing steady use at EGI in geothermal and orogenic-scale MT data sets (e.g., 
Wannamaker et al., 2016, SGW). 
 
 
Publications: 
 
Kordy, M. A., P. E. Wannamaker, V. Maris, E. Cherkaev, and G. J. Hill, Three-dimensional 

magnetotelluric inversion using deformed hexahedral edge finite elements and direct solvers 
parallelized on SMP computers, Part I: forward problem and parameter jacobians: 
Geophysical Journal International, 204, 74-93, 2016. 

Kordy, M. A., P. E. Wannamaker, V. Maris, E. Cherkaev, and G. J. Hill, Three-dimensional 
magnetotelluric inversion using deformed hexahedral edge finite elements and direct solvers 
parallelized on SMP computers, Part II: direct data-space inverse solution: Geophysical 
Journal International, 204, 94-110, 2016. 

Kordy, M. A., E. Cherkaev, and P. E. Wannamaker, Variational formulation for Maxwell’s 
equations with Lorenz gauge: existence and uniqueness of solution: International Journal of 
Numerical Analysis and Modeling, 12, 731-749, 2015. 

Kordy, M., V. Maris, P. Wannamaker, and E. Cherkaev, 3D edge finite element solution for 
scattered electric field using a direct solver parallelized on an SMP workstation, Proc. 5th 
International Symposium on Three-Dimensional Electromagnetics, Sapporo, May 7-9, 4 pp., 
2013. 

Maris, V., and P. E. Wannamaker, Parallelizing a 3D Finite Difference MT Inversion Algorithm 
on a Multicore PC using OpenMP: Computers & Geosciences, doi: 10.1016/j.cageo.2010. 
03.001, 5 pp., 2010. 

 
At present, the inversion algorithm is considered intellectual property of the University of Utah and is not 
being distributed in the public domain. This situation may change in the future. 
 



Computers & Geosciences 36 (2010) 1384–1387
Contents lists available at ScienceDirect
Computers & Geosciences
0098-30

doi:10.1

n Corr

E-m

(P.E. W
journal homepage: www.elsevier.com/locate/cageo
Short note
Parallelizing a 3D finite difference MT inversion algorithm on a multicore PC
using OpenMP
Virginie Maris a,n, Philip E. Wannamaker b

a Department of Geology and Geophysics, University of Utah, 383 F. A. Sutton Building, Salt Lake City, UT 84112, USA
b Energy and Geoscience Institute, University of Utah, 423 Wakara Way, Suite 300, Salt Lake City, UT 84108, USA
a r t i c l e i n f o

Article history:

Received 8 September 2009

Received in revised form

4 February 2010

Accepted 5 March 2010

Keywords:

Inversion

Magnetotellurics

Parallelization

Multicore processing
1. Introduction

Technology for imaging geophysical properties of the Earth’s
interior is increasingly demanding of computing resources as data
set sizes increase and the fully three-dimensional (3D) nature of
the problem is appreciated. One approach has been to develop
distributed computing clusters (e.g., Hargrove et al., 2001),
although these can require a substantial investment and facility
footprint. An attractive alternative is to exploit multicore PC
designs to which single-processor personal computers (PC’s) have
evolved; this presents the prospect of parallel computing within
an affordable, single-box, format.

Here, we describe modifications made to a 3D magnetotelluric
(MT) inversion program to allow it to run efficiently on a
multicore desktop PC. Parallelization is accomplished using
OpenMP, an easy to use application program interface developed
for shared-memory platforms, such as multicore PC’s. Auto-
parallelization, while attractive, is unlikely to yield improvements
as large as can be obtained by restructuring and explicit
parallelization. We demonstrate that excellent scalability with
increasing core number is achieved on important parts of the
inverse problem, while particular processor architecture limits
efficiency in other parts of the problem.
04/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.
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2. Magnetotelluric inversion overview

MT is a geophysical technique, whereby naturally occurring
electromagnetic (EM) waves are used as source fields for imaging
Earth’s electrical resistivity structure at depths ranging from tens
of meters to hundreds of kilometers (Vozoff, 1991; Simpson and
Bahr, 2005). It is used in resource exploration and in earthquake
and volcano studies. Estimating a discretized subsurface resistiv-
ity model from MT data is accomplished by non-linear regularized
inversion, requiring minimization of a parametric functional P of
the form (Eq. (1)) (Tarantola, 1987, 2005; Zhdanov, 2002)

P¼ :dpre�dobs:
2

2þ:S mð Þ:2

2 ð1Þ

The recovered resistivity structure, described by model
parameters m, is that which minimizes the misfit between
predicted (dpre) and observed (dobs) data, subject to a stabilizing
functional S such as, for example, a first order differencing matrix
emphasizing spatially smooth models. Data are predicted at
sounding locations, one frequency at a time, by solving Maxwell’s
equations to simulate the propagation of quasi-static EM fields,
throughout the model, for two orthogonal external plane wave
sources. A difficult and computationally intense task, 3D MT
inversion remains an active research area (Avdeev, 2005).

Sasaki (2004) developed a Gauss–Newton MT inversion
algorithm for serial PC’s, using the staggered-grid finite-difference
method to solve Maxwell’s equations. Minimization of Eq. (1)
requires linearizing the forward operator representing Maxwell’s
equations, accomplished by introducing the Fréchet derivative

www.elsevier.com/locate/cageo
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Fig. 1. Time required (top panel) and speedup (bottom panel) observed when

calculating predicted data, residual, and Fréchet derivatives at eight frequencies

for a synthetic data set. Speedup is calculated as ratio of execution times required,

when using one processor and when using several. Synthetic data were generated

using a 3D model for 100 sounding locations, over a finite difference mesh, with

35�35�29 nodes. Generally, the higher the frequency, the more quickly field

solution converges (Smith, 1996). To avoid complication of different frequencies

taking different serial run times, separate tests of scalability were carried out with

all eight frequencies assigned identical values of 200, 2, and 0.2 Hz.
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matrix F, and yielding a system of the form (Eq. (2))

½FT FþST S�Dm¼ ½FT
ðdpre�dobsÞ� ð2Þ

where S represents the stabilizing functional, the matrix on the
left ([FTF+STS]), forms the approximate regularized Hessian, and
the vector (dpre�dobs) is the residual. Determining the model
update Dm requires calculating, for some starting model,
predicted data and their Fréchet derivatives with respect to a
change in model parameters. Fréchet derivatives are computed by
imposing, one at a time, four reciprocal dipole sources (two
electric, two magnetic) at each sounding location for each
frequency, and simulating the fields throughout the domain.
Numerically approximating Maxwell’s equations generates a
system of equations, where the system matrix is identical for all
sources and receivers at a particular frequency, while the source
vectors vary. Sparse and symmetric with complex diagonal and
real off-diagonal entries, the number of rows in the system matrix
is proportional to the number of finite-difference nodes. Fields are
solved using the biconjugate gradient method, with a divergence
correction procedure developed by Smith (1996) to improve
convergence rates when processing low frequencies. The model
update is obtained by factoring the approximate regularized
Hessian, a dense, real, and symmetric matrix, using the LDLT

method (Golub and Van Loan, 1996).
The most time-consuming tasks are calculating the Fréchet

derivative matrix, and factoring the Hessian. The serial Fortran77
program has been restructured and parallelized under Linux using
OpenMP 2.0 directives embedded in the source code and tested on
an Intel Xeon 5355, 2.66 GHz, 8-core PC, with 16 GB of RAM. Two
key areas were parallelized, the frequency loop containing the
forward modeling, residual and Fréchet derivative calculations,
and the factoring of the Hessian matrix. The modifications do not
impair serial performance of the program, which can be run with
and without the parallelization enabled. We wished to avoid the
added complexity of message passing interface (MPI) protocols
and examine how much could be achieved using widely
accessible, commercial compiler capabilities.
3. Frequency loop parallelization

As there are no dependencies between frequencies, the
frequency-indexed loop containing the forward modeling, resi-
dual, and Fréchet derivative calculations, originally implemented
serially, is readily amenable to coarse-grained parallelization. The
modified program assigns to a separate thread the calculations
pertaining to a single frequency, until all frequencies have been
processed. Threads execute simultaneously and asynchronously.
All shared variables are either frequency-indexed or left unmo-
dified. The full Fréchet matrix is never formed. It can be
considered as a column of submatrices, each containing the terms
for a particular frequency. Only the submatrix entries pertaining
to the frequency being processed are stored; once the submatrix
is complete, it is written to a scratch file for retrieval when
generating the Hessian matrix, and the array is cleared. The
residual array is handled similarly. Once all frequencies have been
processed, the program exits the parallel section and the misfit is
calculated.

Increasing the number of CPU’s decreases the time required to
process the frequency loop (Fig. 1). However, speedup appears
limited. Simulated field calculations are dominated by sparse–
matrix–vector computations implemented conventionally using
compressed storage. Performance in such tasks is limited largely
by the processor-to-memory performance gap (Buttari et al.,
2007); these computations on a single processor usually run at
10% or less of the peak floating point performance (Vuduc et al.,
2002). With several processes sharing resources, data congestion
further degrades speedup. Solving for the fields due to different
sources concurrently rather than sequentially, thus transforming
inherent sparse–matrix–vector operations into sparse–matrix–
matrix operations, improves performance and speedup (Fig. 1).
When calculating Fréchet derivatives, fields due to the four dipole
sources, at each receiver, are solved for concurrently. Independent
solution update and exit criteria of the biconjugate gradient and
divergence correction methods are maintained. Fields required for
calculating the predicted data are similarly handled.
4. Parameter update parallelization

We have used fine-grained, asynchronous parallelization
(Buttari et al., 2007) to implement the LDLT method of factoring
the approximate regularized Hessian matrix for the model
parameter update. To reduce the storage requirements, the
diagonal and triangular entries of the Hessian matrix are stored
in a 1D array, of length NP(NP�1)/2, where NP is the number of
parameters. The FTF term of the Hessian is generated in double
precision in a separate parallel section after the frequency loop
and then stored in single precision. The algorithm is based on a
block-cyclic column layout similar to that used by Baboulin et al.
(2005), within a simple construct consisting of OpenMP locks
(Fig. 2). The matrix is subdivided into smaller blocks; work
propagates from block to block both horizontally and vertically,
maximizing reuse of the data in each block. Each thread is
assigned one column of blocks, starting from the leftmost and
progressing sequentially through to the rightmost column. Once
the leading triangle and adjacent block of a row have been



Fig. 2. Schematic representation of workflow for LDLT factorization, for four CPU’s.

Work proceeds from panel a through panel d. For each panel, blocks which are

unavailable as yet to process are colored white; those in which processing has

been completed are colored black. Remaining blocks are available to be processed,

with work in each thread propagating in direction indicated by arrows.

Fig. 3. Speedup observed when factoring Hessian matrix using the LDLT method.

Matrices of order equal to the number of parameters were tested.

Fig. 4. Time required to factor a matrix using the LDLT method, as a function of

number of parameters and number of CPUs active.
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operated on, the algorithm assigns work to proceed vertically
down to the leading triangle beneath, or horizontally to adjacent
blocks. A column of blocks must be completely processed, before
releasing the CPU to a queued column. Numerical accuracy in
factoring is maintained through double-precision operations and
rolling sums. OpenMP locks ensure that blocks are not operated
on prematurely by requiring that each thread acquires ownership
of the leading triangle prior to working on a block of the same
row, stalling until the lock becomes available. The simplicity of
this implementation is possible, because we do not require
pivoting. Doubling the number of processors used to factor the
system matrix, approximately halves the time required (Fig. 3).
The NP3 dependence of runtime, consistent with O(NP3)
operations required by LDLT factoring, is preserved (Fig. 4).
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5. Conclusions

We have achieved substantial efficiency increases for 3D MT
inversion by parallelizing an original serial algorithm to run on
multicore PC’s. Parallelization of the forward modeling, residual,
and Fréchet derivative calculations is implemented by assigning
the calculations for each frequency to separate threads, which can
execute concurrently. Increasing the number of CPU’s used allows
more frequencies to be processed at the same time, decreasing the
time required. Scalability is reduced due to lags in data transfers;
newer processor architectures are expected to improve this
considerably (Barker et al., 2008). Fine-grained and asynchronous
parallelization of the LDLT process, used to obtain the model
parameter update, is implemented by using the block-cyclic
algorithm and compact storage. The time required to factor the
system is essentially halved as the number of CPU’s doubles at
least for the 8-core platform considered here. Taken together,
these modifications have resulted in significantly reducing the
time required to complete a 3D MT inversion, while operating in a
single workstation format.
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SUMMARY

We have implemented an edge finite element solution to simulate the Helmholtz equation for scattering of the electric field
from subsurface electrical conductivity structure. First-order elements on hexahedral grid are used where the electric field
is constant along the edges and varies linearly between edges. Choosing this basis allows the incorporation of topography
through deformation of the mesh, and yields a relatively compact system matrix structure. The frequency range considered
is appropriate for diffusive EM propagation in a conducting earth, but we retain dielectric properties for the air medium.
A secondary E-field formulation is used that facilitates arbitrary impressed sources, which we have tested so far using plane-
wave (MT) source fields. Several factors discussed herein have motivated us to migrate from iterative to direct system matrix
solvers. Using a matrix tiling approach too parallelizing the modified Cholesky (LDLT) factorization, we have achieved
excellent scalability on a 24-core workstation with 0.5 TB RAM. However, use of a direct solution even with double precision
arithmetic does not necessarily escape parasitic E-fields in the form of gradient of a scalar potential, especially in the air.
Hence, a divergence correction also using a parallelized direct solver was implemented and successfully recovers the correct
field. The magnetic field, obtained by curl of E, is not affected by this problem. Good agreement using this solution is obtained
for conductive and resistive prisms in a half space, and for a simple hill structure, in comparison to other approaches.

Keywords: forward modeling, finite element, divergence correction, multicore CPU, direct solver, edge elements

FINITE ELEMENT FORMULATION

Consider Maxwell’s equations in the frequency domain with
eiωt time dependence, with the electric source J imp:{

∇× E = −iωµH
∇×H = σ̂E + J imp , σ̂ = σ + iωϵ

(1)

The weak form of the equation for E, with homogeneous
tangential Dirichlet boundary conditions, is given below:∫

Ω

1

µ
∇×E ·∇×K+ iω

∫
Ω

σ̂E ·K =

∫
Ω

J imp ·K (2)

satisfied for all K ∈ H0(∇×). The solution of this equa-
tion E is in the same space H0(∇×), defined as a family of
vector fields K : Ω → C3, such that:∫

Ω

||K||2 +
∫
Ω

||∇ ×K||2 < ∞, n×K|∂Ω = 0

For a finite mesh, H0(∇×) space is replaced with finite di-
mensional space Hh

0 (∇×) of linear combinations of first or-
der edge shape functions Ni where i is an edge index. A
linear system of equations is obtained

Ax = b (3)

Ai,j =

[∫
Ω

1

µ
∇×Ni · ∇ ×Nj + iω

∫
Ω

σ̂Ni ·Nj

]
(4)

bi =

∫
Ω

J imp ·Ni (5)

Vector x contains coefficients of a linear combination of
shape functions. The approximation of the electric field is

E =

ne∑
i=1

xiNi (6)

Magnetic field is then calculated from (1) as

H =
−∇× E

iω
(7)

PARALLEL DIRECT SOLVER

There are several reasons why a direct solver is considered in
this paper. Because of the presence of the air in the domain,
and as a result the small value of ωσ̂ = ω2ϵ0, especially for
small frequencies, the system matrix is ill conditioned. The
condition number is further increased if element aspect ra-
tios become extreme which is a common issue with a struc-
tured hexahedral mesh if the mesh boundaries are to be suf-
ficiently far from the center of the domain. High condition
number causes an iterative solution to be slow. Moreover,
some geoelectrical methods as well as direct Gauss-Newton
inversion approaches require that many source vectors be
solved; this can become much more efficient with direct so-
lutions once the system matrix has been factored. Finally,
recent advances in the power of symmetric multiprocessing
(SMP) computers make available an affordable, single-box
workstation with numerous cores to parallelize and up to 1
TB of memory.
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The system matrix is symmetric, complex valued and, for
a structured grid, banded. As a result LDLT factorization
will result in L matrix that has the same bandwidth as the
original matrix. This allows one to store only the portion of
the matrix within the outer band ( 2% of the memory is re-
quired for the biggest model considered in this paper, with
97x97x50 elements). We discuss parallel factorization at a
later point.

DIVERGENCE CORRECTION

Even though a direct solver is used, because of finite pre-
cision (double precision is used here), the electric field in
the air can experience oscillatory behavior especially toward
low frequencies. This is due to a parasitic solution of the
form ∇φ, which is added to the true solution (e.g., (Smith,
1996)). This error requires a divergence correction to the
electric field.

For H0(∇×) space, there exists a Hodge decomposition
(Bochev & Gunzburger, 2006), a decomposition into the
range of the gradient R(∇) (which is equal to the null space
of the curl) and the space orthogonal to it R(∇)⊥σ̂ :

H0(∇×) = R(∇)⊕R(∇)⊥σ̂

where

R(∇) = {∇φ : φ ∈ G0}
R(∇)⊥σ̂ = {K ∈ C0 :

∫
Ω
σ̂K · ∇φ = 0 ∀φ∈G0}

Let the solution E to equation (2) be represented by

E = ∇φE + E⊥ φE ∈ G0, E⊥ ∈ R(∇)⊥σ̂

By setting K = K⊥ ∈ R(∇)⊥σ̂ and then K = ∇φ, one can
show that (2) is equivallent to two uncoupled equations on
R(∇)⊥σ̂ and R(∇) respectively.∫

Ω
1
µ∇× E⊥·∇ ×K⊥ + iω

∫
Ω
σ̂E⊥·K⊥ =

∫
Ω
J imp·K⊥

iω
∫
Ω
σ̂∇φE · ∇φ =

∫
Ω
J imp·∇φ

Imposing the second of the two equations is called diver-
gence correction. This correction is important when ωσ̂ is
small.

Edge elements on hexahedral grid are designed in such a
way that the Hodge decomposition holds, if one considers
the gradient operating on the space of node shape functions
defined on the same grid (Bochev & Gunzburger, 2006).
Divergence correction requires solving a Poisson equation
which has 3 times less variables, and the matrix has three
times smaller bandwidth, than the finite element system ma-
trix. Thus to store the correction matrix in a banded dense
format one needs 9 times less memory, and the factorization
is about 10 times faster, than for the system matrix.

NUMERICAL RESULTS

Models considered
First we consider two models of a prism in a half space. The
prism has dimensions 2km x 1km x 2km and its upper side

is buried 500m below the ground. The conceptual plot of
this model is presented on Figure 1. Both coarser and finer
discretization grids are computed, with the central portion of
the finer presented in Figure 2.

Figure 1. Conceptual plot of a prism in half space model
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Figure 2. Central portion of the hexahedral grid for finer
mesh for prisms in half-space; side and plane
view

The first model is a conductive (1Ωm) in a 100Ωm half-
space. The second model is a resistive (1000Ωm) prism in a
10Ωm half-space. For both of the prism models we calculate
the electric field with plane wave source going downwards,
with incident electric field in x-direction and magnetic field
in y-direction. The code solves for the scattered field — the
difference between the total E-field with the prism and the
E-field of half space background only.
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Figure 3. Central portion of the finer grid for 3-D hill model

The third model is the 3D trapezoidal hill considered in
(Nam et al., 2007). The hill is 0.45 km high, 0.45 km wide
at the hilltop and 2 km wide at the base. The calculations are
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done for a single frequency 2Hz, and the magnetotelluric re-
sponse is compared with the response in (Nam et al., 2007).
The finer grid of two grids considered is presented in Figure
3.

Calculated field
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Figure 4. The electric field E and magnetic field H calcu-
lated for a conductive prism (1Ωm) in a 100Ωm
half-space; frequency 0.1Hz

For the coarse prism grid of 21x22x23 elements, there were
29,042 unknowns, while for the finer grid of 85x88x46 ele-
ments there were 1,001,583 unknowns. The factorization of
the system matrix, using 24-core CPU took 10 seconds, and
2 hours and 15 minutes, for the coarse and fine prisms re-
spectively. Electric and magnetic fields at the surface calcu-
lated for the conductive prism, normalized by their primary
fields, are compared with those from the Integral Equation
(IE) code (Wannamaker., 1991) in Figure 4 at 0.1 Hz. For
the IE computations, the prism was divided into 20 bricks of
equal dimension in the x-y-z directions. Agreement appears
good for both discretizations. Similarly good agreement was
obtained for 10Hz and 0.001Hz, but is not plotted to save
space. For the model of a resistive prism in a half space, the
agreement between methods is good as well at 0.1Hz (figure
5), and similarly for 10Hz and 0.001Hz.

For the 3D-hill model two grids were tried. The finer grid
has 97x97x50 elements and as a result the number of un-
knowns (edges inside the domain) is 1,373,376. To store the
system matrix in dense banded format, 301GB was needed.
The factorization of the system matrix, using 24 core-CPU
took 4 hours and 46 minutes. A coarser grid has 27x27x24
elements, the number of unknowns is 48,516, the memory
needed to store the system matrix is 1.4GB, and the factor-
ization time is 30 s.

Our values for apparent resistivity and phase from the MT
impedance elements Zxy and Zyz are compared in Figure
6 with those in Nam et al (2007), which we have digitized.
The agreement between the results is considered very good.
Apart from using a direct solver, it is worth noting that both
our and the Nam formulations are the same: edge finite el-
ements of the first order on hexahedral grid. The grids pre-
sented here also differ from Nam et al, which was 31x31x24.
In part the large grid was computed to test direct solution run
times for model sizes that could be practical for moderately
large field data sets.
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Figure 5. The electric field E and magnetic field H calcu-
lated for a resistive prism (1000Ωm) in a 10Ωm
half-space; frequency 0.1Hz
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Figure 6. The apparent resistivity and the phase calculated
for Zxy and for Zyx for a 3-D hill model
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Divergence correction
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Figure 7. The electric field E calculated for a conductive
prism (1Ωm) in a 100Ωm half-space; calculated
in the air, at height 75m; frequency 0.1Hz; be-
fore and after divergence correction

Using our conductive prism as an example, the electric field
response at 0.1Hz before and after the divergence correc-
tion is presented in Figure 7. One can observe that the field
values before the correction have large numerical error es-
pecially over center of the body which divergence correction
successfully removes. The divergence error is even worse at
the lower frequency of 0.001Hz, but again can be fully cor-
rected as in Figure 8. It is worth noting that the magnetic
field in the air (not plotted), which is calculated using curl
of the electric field (see equation (7)) is not affected by the
parasitic solution and has the same (proper) value before and
after the correction. The divergence problem was not visible
at the frequency 10Hz.
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Figure 8. The electric field E calculated for a conductive
prism (1Ωm) in a 100Ωm half-space; calculated
in the air, at height 75m; frequency 0.001Hz;
before and after divergence correction

Direct solver scalability
A parallel factorization algorithm, that uses a matrix tiling
approach in modified Cholesky (LDLT) factorization, de-
scribed in detail in Maris and Wannamaker (2010), has been
adapted to complex valued and banded matrices. The scal-
ability of the direct solver, measured in the speedup in the
factorization time depending on the number of cores used,
is presented in Figure 9. The values were calculated on a
model with grid: 53x53x38, number of unknowns: 306,696,
and the system matrix in the dense banded format needed
28GB. We achieve nearly linear speedup versus number of
cores. Efficiency of this process is still being researched, for
example determining the optimal tile size relative to proces-
sor cache memory.
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speedup (time of factorization using one core/
time of factorization using n cores)
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VARIATIONAL FORMULATION FOR MAXWELL’S EQUATIONS

WITH LORENZ GAUGE: EXISTENCE AND UNIQUENESS OF

SOLUTION

MICHAL KORDY, ELENA CHERKAEV, AND PHIL WANNAMAKER

Abstract. The existence and uniqueness of a vector scalar potential representation with the
Lorenz gauge (Schelkunoff potential) is proven for any vector field from H(curl). This repre-
sentation holds for electric and magnetic fields in the case of a piecewise smooth conductivity,
permittivity and permeability, for any frequency. A regularized formulation for the magnetic field
is obtained for the case when the magnetic permeability µ is constant and thus the magnetic field
is divergence free. In the case of a non divergence free electric field, an equation involving scalar
and vector potentials is proposed. The solution to both electric and magnetic formulations may
be approximated by the nodal shape functions in the finite element method with system matrices
that remain well-conditioned for low frequencies. A numerical study of a forward problem of a
computation of electromagnetic fields in the diffusive electromagnetic regime shows the efficiency
of the proposed method.

Key words. Lorenz gauge, Schelkunoff potential, Maxwell’s equations, Finite Element Method,
Nodal shape functions, Regularization

1. Introduction

Fast and stable methods are needed for calculating electromagnetic (EM) fields
in and over the Earth. Such a simulation has applications in imaging of subsurface
electrical conductivity structures related to exploration for geothermal, mining,
and hydrocarbon resources. Over commonly used frequencies, EM propagation
in the Earth is diffusive since the conduction dominates over the dielectric dis-
placement. The finite element method (FEM) is attractive for this simulation in
comparison with other techniques in that it may be easily adapted to complex
boundaries between regions of constant EM properties, including the topography
or the bathymetry. The 3D interpretation of geophysical data is numerically ex-
pensive, as the forward problem needs to be computed many times [26, 3, 14].

For large scale simulation problems, iterative methods have been the ones of
choice to solve linear systems resulting from FEM formulations [7, 16, 11, 34, 29].
The speed of iterative methods is strongly related to the properties of the varia-
tional problem used. Difficulties arise when the computational domain includes a
high contrast, both the non-conducting air and a conducting medium in the Earth’s
subsurface, especially for low frequencies. Furthermore, the Earth’s subsurface in
general is characterized by the spatially changing conductivity, dielectric permit-
tivity and magnetic permeability. This can slow or prevent iteration convergence
[23, 31].

There have been multiple approaches to addressing the difficulties encountered
with high physical property contrasts and potentially discontinuous EM field vari-
ables. One is to apply special finite elements, so-called edge elements, that have a
discontinuous normal component of the vector field across elements, while keeping
the tangential field component continuous [24, 18, 4]. The edge elements are also

Received by the editors June 21, 2013 and, in revised form, January 25, 2015.
2000 Mathematics Subject Classification. 65N30,86A04,35Q61.
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compatible with the curl operator and are a part of the de Rham diagram [6]. How-
ever, if the curl-curl equation for the electric field E is used, and if the conductivity
is very small in a part of the domain (e.g., in the air) or if the frequency is very
low, the problem becomes ill-posed and the system matrix has a very large near
null space. This requires use of sophisticated preconditioners that handle the null
space of the curl properly in order to use iterative solvers. Such preconditioners
have been developed (see [38, 17, 19, 21, 2, 39]).

An alternative is to not solve directly for the EM fields themselves, but instead to
initially solve a well conditioned equation for a quantity which is continuous across
interfaces. Subsequently, the EM fields are obtained through a spatial differentia-
tion with the field discontinuities defined by the property jumps. One such quantity
is a vector potential with the Lorenz gauge, also called the Schelkunoff potential
[37, 8, 33, 9], which we examine in this paper. In general, this potential has both
scalar and vector components, and there are both electric and magnetic versions.
Using the Lorenz gauge, the scalar potential can be expressed as a function of the
vector potential, and as a result only the vector potential is needed to represent the
EM field.

In this paper, we show that the Lorenz gauged vector potential representation
exists for any member of H(∇×). Thus one can use it to represent the electric field
E as well as the magnetic field H . We prove that this representation exists for any
frequency ω > 0, if the permittivity ǫ is bounded and the magnetic permeability
µ and the conductivity σ are bounded away from 0 and ∞. The electromagnetic
properties ǫ, µ, σ are allowed to be discontinuous. We discuss an application of
this potential for FEM approximation of the EM field. In principle, it is enough to
use only the vector Lorenz gauged potential to represent the EM field. However,
when the conductivity σ is not constant and the electric field is not divergence-
free, it is difficult to find a weak equation involving only the vector potential. In
particular, we show that the vector potential does not satisfy the weak form of
the Helmholtz equation, sometimes erroneously used as a basis for FEM simulation
[33]. For the general case of non divergence-free EM fields, we propose a mixed
formulation involving the scalar and vector potentials.

We consider also the case of representing the magnetic field using a vector poten-
tial with the Lorenz gauge. If the magnetic permeability µ is constant, the magnetic
field is divergence-free and the vector potential coincides with the magnetic field.
We show that the Lorenz gauge approach leads to a regularized weak equation for
the magnetic field involving a divergence term, and as a result the equation does
not suffer from the large near null space.

We show that sesquilinear forms of the equations for both magnetic vector po-
tential and electric scalar-vector formulations remain coercive at low frequencies.
It makes iterative solvers fast even if only standard vector multigrid precondition-
ers [35] are used. Another advantage is that the considered vector potential is a
member of H(∇×) ∩ H(∇·). This allows to use nodal elements, which have more
widely available implementations than edge elements. The edge elements, due to a
discontinuity of the shape functions across elements boundaries, require post pro-
cessing to get a value of a field at a specific point within an element. In geophysical
applications, the domain is a convex polygon, so nodal discretization is dense in
H0(∇×) ∩H(∇·) or in H(∇×) ∩H0(∇·) [13, 6].

Regularization of the curl-curl equation using a divergence term has been also
suggested in [1, 13]. The current paper extends these ideas to the case of non-
constant, complex valued electromagnetic properties and non divergence-free fields.
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In [1], the authors consider the existence, the uniqueness and proper boundary con-
ditions for a Lorenz gauged vector potential only for the case of constant electro-
magnetic properties. In [13], the authors consider non-constant properties; however,
they seek a solution E ∈ H(∇×) such that σE ∈ H(∇·). If σ is not constant, it
is difficult to construct a compatible finite element discretization for the space of
vector fields of the suggested kind.

In this paper, we consider a different approach. The vector potential term −iωA
and the vector electric field E differ by ∇ϕ. The scalar potential ϕ satisfies the
Poisson equation for which the source term is given by the jumps of the normal
component of E across boundaries of regions with different EM properties. Repre-
senting the discontinuities of the electric field using ∇ϕ allows the vector potential
to be continuous, or more precisely to lie in the space H(∇×)∩H(∇·), which allows
to approximate it using the nodal elements.

A representation of the electric field related to our vector-scalar formulation was
considered in ([9] Lorenz gauge #2), where the authors proved the uniqueness of
the Schelkunoff potential continuous across interfaces for a nonlossy medium using
a mixed formulation that involved both scalar and vector potentials. The mixed
formulation involving scalar and vector potentials considered in the current paper
(section 6) is a reformulation of this approach for a medium with losses. We prove
not only the uniqueness, but also the existence of the solution (Theorem 6.1).

A closely related work was presented in [15], where the authors consider an eddy
current problem, with ǫ = 0 and σ > 0 in a part of the domain and ǫ = σ = 0 in
the rest of the domain. They show existence and uniqueness of the vector potential
representation with the Lorenz gauge. They consider also a mixed formulation
similar to ours. Here, we consider ǫ > 0. Also in our equation we apply a scaling
to the scalar potential, which makes a sesquilinear form coercive at ω → 0. Finally
our proof of the coercivity is more general, it does not require a smallness of the
coefficients used in the equation.

The structure of the paper is as follows. In section 2, a brief description of the
vector-scalar representation of the electric field with the Lorenz gauge is given in
the way it typically appears in the literature. We also show that it satisfies the
Helmholtz equation if the electromagnetic properties are constant.

In the third section, a theorem of the existence and the uniqueness of a Lorenz
gauged vector potential representation for any vector field in H(∇×) is formulated
and proven.

The purpose of section 4 is to build some intuition about the vector potential
with the Lorenz gauge. We consider a representation of the electric field by the
Schelkunoff potential. We present conditions that are satisfied on an interface
between two regions with different conductivity. We show how a jump in the normal
component of the electric field is represented by a jump of the normal derivative of
the scalar potential, allowing the vector potential to be continuous.

In section 5, a difficulty in obtaining a weak equation involving only the vector
electric Schelkunoff potential is presented.

In section 6, a mixed formulation involving a scalar and a vector potential is
developed for the electric Schelkunoff potential.

In section 7, a different approach is suggested to avoid the difficulties with the
electric potential. A magnetic Schelkunoff potential is defined and, in the situation
where magnetic permeability µ is constant, an appealing weak form of the governing
equation is derived.
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The last section (8) shows results of numerical simulations. We use the de-
veloped magnetic Schelkunoff potential approach to calculate the electromagnetic
field generated by a conductive brick in a resistive whole space with a plane-wave
(magnetotelluric) source. A comparison of the results with calculations done by an
independent Integral Equations code [36], is shown. A good agreement between the
calculated fields provides a verification of the validity of the method.

2. Lorenz gauged formulation of Maxwell’s equations

Let us consider the electromagnetic field satisfying Maxwell’s equations in the
frequency domain, with a time dependence eiωt, with the electric source J imp, in
some bounded domain Ω ⊂ R

3:

(1)

{

∇× E = −iωµH
∇×H = σ̂E + J imp , σ̂ = σ + iωǫ

Here, σ and ǫ are the conductivity and the permittivity of the medium, µ is the
magnetic permeability, and ω is the frequency.

The Schelkunoff potential, or the electric Schelkunoff potential, is a vector po-
tential A used together with a scalar potential ϕ to represent the electric field E

[37, 8, 33, 9] in a form:

(2) E = −iωA+∇ϕ
A relationship between A and ϕ, called the Lorenz gauge, is imposed:

(3) ∇
(∇ · A

σ̂µ

)

= ∇ϕ

As a result the electric field is represented as:

(4) E = −iωA+∇
(∇ ·A

σ̂µ

)

Substituting the first equation to the second one in (1) and using (2) to represent
the electric field E, in a region of constant properties σ̂, µ we obtain:

∇×
(

∇× 1

µ
A

)

= J imp − σ̂iωA+ σ̂∇ϕ

Application of the vector identity (51) results in:

∇
(

∇ · 1
µ
A

)

−∇ ·
(

∇
(

1

µ
A

))

= J imp − σ̂iωA+ σ̂∇ϕ

If the equation is multiplied by −µ (it is assumed that σ̂, µ are constant), the Lorenz
gauge (3) is used, then the following vector Helmholtz equation is obtained:

(5) ∆A− iσ̂µωA = −µJ imp

Yet the vector potential satisfies this equation only if the electromagnetic properties
are constant. The weak form of the Helmholtz equation is a separate equation for
each componentAk of the vector field, k = 1, 2, 3. For any test functionKk ∈ H1(Ω)
the following is satisfied:

(6)

∫

Ω

∇Kk · ∇Ak + iω

∫

Ω

σ̂µAk ·Kk =

∫

Ω

µJ
imp
k ·Kk

The equation above imposes conditions on interfaces between regions of different
σ̂, µ listed below:
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1. Ak is continuous, k = 1, 2, 3 2. ∂
∂n
Ak is continuous, k = 1, 2, 3

where n is a vector normal to the interface. In section 3 the existence and the
uniqueness of an electric Schelkunoff potential satisfying those conditions is inves-
tigated. As it turns out, with some reasonable assumptions when σ̂, µ are not
constant, an electric Schelkunoff potential continuous across interfaces (condition
1 is satisfied) exists, yet the condition 2 is not satisfied. As a result there is no
electric Schelkunoff potential that satisfies the weak form of the Helmholtz equa-
tion (6), so it should not be used as a basis for finite element approximation if the
electromagnetic properties are not constant.

3. Existence and uniqueness of the Schelkunoff potential

In this section we formulate and prove a theorem stating the existence and the
uniqueness of the Schelkunoff potential. All is done in an abstract setting that
uses the theory of the Sobolev spaces. Some physical interpretation, for the case of
representation of the electric field E, is given in the following section.

Consider an open bounded domain Ω ⊂ R3 with Lipschitz boundary. We use
the following notation for the Sobolev spaces:

(7)

L2 = L2(Ω) =
{

ψ : Ω → C :
∫

Ω
|ψ|2 <∞

}

H1 = H1(Ω) =
{

ψ : Ω → C :
∫

Ω |∇ψ|2 +
∫

Ω |ψ|2 <∞
}

H(∇×) = H(∇×, Ω) =
{

K : Ω → C3 :
∫

Ω
|∇ ×K|2 +

∫

Ω
|K|2 <∞

}

H(∇·) = H(∇·, Ω) =
{

K : Ω → C
3 :

∫

Ω |∇ ·K|2 +
∫

Ω |K|2 <∞
}

If homogeneous boundary conditions are assumed, a subscript ”0” is added. For
H1

0, H0(∇×), H0(∇·), the value of the function, tangential and normal components
of a vector field are fixed respectively. If n is a vector normal to the boundary ∂Ω,
then

(8)
H1

0 = H1
0(Ω) =

{

ψ ∈ H1(Ω) : ψ|∂Ω = 0
}

H0(∇×) = H0(∇×, Ω) = {K ∈ H(∇×, Ω) : n×K|∂Ω = 0}
H0(∇·) = H0(∇·, Ω) = {K ∈ H(∇·, Ω) : n ·K|∂Ω = 0}

Additionally, the notation for norms is as follows:

(9)
‖ψ‖0 =

√

∫

Ω |ψ|2

‖ψ‖1 =
√

‖ψ‖20 + ‖∇ψ‖20 =
√

∫

Ω
|ψ|2 +

∫

Ω
|∇ψ|2

We use the following Poincare inequality (see Appendix A in [6]). There is a
constant c > 0, dependent on the domain Ω, such that:

(10) c‖ψ‖0 ≤ ‖∇ψ‖0 for ψ ∈ H1
0

Theorem 3.1. For a vector field G ∈ H0(∇×) and a scalar complex valued function
γ satisfying

(11)

γ = γR + iγI , γR, γI : Ω → R

|γR| ≤ γRM <∞
0 < γIm ≤ |γI | ≤ γIM <∞
γI > 0 in Ω or γI < 0 in Ω

there is a unique T ∈ H0(∇×) ∩H(∇·) satisfying

(12)
∇ · T
γ

∈ H1
0

(13) G = T +∇
(∇ · T

γ

)
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Proof. Consider an equation for ϕ ∈ H1
0:

(14)

∫

Ω

∇ϕ · ∇ψ −
∫

Ω

γϕψ =

∫

Ω

G · ∇ψ

satisfied for any ψ ∈ H1
0. We will prove that there is a unique solution ϕ to this

equation, ϕ = ∇·T
γ

. It is obvious that with assumptions (11), the sesquilinear form

(15) B(ϕ, ψ) =
∫

Ω

∇ϕ · ∇ψ −
∫

Ω

γϕψ

is bounded with respect to the norm ‖.‖1, defined in (9). We will prove that B is
also coercive.

|B(ψ, ψ)| =
∣

∣

∣

∣

∫

Ω

|∇ψ|2 −
∫

Ω

γ|ψ|2
∣

∣

∣

∣

=

∣

∣

∣

∣

(
∫

Ω

|∇ψ|2 −
∫

Ω

γR|ψ|2
)

− i

∫

Ω

γI |ψ|2
∣

∣

∣

∣

If the real part of a complex number is decreased, then the modulus is decreased,
so we can write that for any α ∈ (0, 1]

(16)

|B(ψ, ψ)| ≥
∣

∣α
(∫

Ω
|∇ψ|2 −

∫

Ω
γR|ψ|2

)

− i
∫

Ω
γI |ψ|2

∣

∣

≥ 1√
2

[
∣

∣α
(∫

Ω |∇ψ|2 −
∫

Ω γR|ψ|2
)
∣

∣+
∣

∣

∫

Ω γI |ψ|2
∣

∣

]

≥ 1√
2

[

α
(∫

Ω |∇ψ|2 −
∫

Ω |γR‖ψ|2
)

+
∫

Ω |γI‖ψ|2
]

≥ 1√
2

[

α
(

‖∇ψ‖20 − γRM‖ψ‖20
)

+ γIm‖ψ‖20
]

≥ min( α√
2
, γIm−αγRM√

2
)
(

‖∇ψ‖20 + ‖ψ‖20
)

This proves the coercivity of B if only α is taken such that γIm
γRM

> α > 0.

As G ∈ H0(∇×) ⊂ (L2)3, the right hand side of (14) is a bounded linear func-
tional on H1

0 , thus from the Lax-Milgram theorem there is a unique ϕ ∈ H1
0 satis-

fying (14).
Define

(17) T = G−∇ϕ

As ϕ ∈ H1
0, then ∇ϕ ∈ H0(∇×). As G ∈ H0(∇×), we conclude that T ∈ H0(∇×).

Take any smooth function with a compact support in Ω, ψ ∈ C∞
c (Ω). Such a

function is also in H1
0, so it satisfies (14). Evaluation of ∇ · T at ψ gives

〈∇ · T, ψ〉 = −
∫

Ω

T · ∇ψ (17)
= −

∫

Ω

(G−∇ϕ) · ∇ψ (14)
=

∫

Ω

γϕψ

This shows that ∇ · T is a function and

∇ · T = γϕ

As |γ| ≤
√

γ2RM + γ2IM < ∞ and ϕ ∈ L2, then ∇ · T ∈ L2, which proves that
T ∈ H(∇·). Moreover as γ 6= 0, we have

(18)
∇ · T
γ

= ϕ

which proves (12). Definition (17) of T , together with (18) proves (13). �

Remark 3.2.

• One could consider non-homogeneous Dirichlet boundary conditions. For
any G ∈ H(∇×) the same proof would give a vector potential T ∈ H(∇×)∩
H(∇·) such that n× T = n×G on ∂Ω.
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• One could consider G ∈ H(∇×) and a different potential T , satisfying
different boundary conditions. If equation (14) is considered for φ, ψ ∈ H1,
it will lead to T ∈ H(∇×) ∩ H0(∇·). To prove that in this case T has the
normal component equal to 0 on ∂Ω, one can take any ψ ∈ H1 and evaluate

∫

∂Ω

(T · n)ψ =

∫

Ω

T · ∇ψ +

∫

Ω

(∇ · T )ψ =

∫

Ω

(G−∇ϕ) · ∇ψ +

∫

Ω

γϕψ = 0

• In the case of (14) for ϕ, ψ ∈ H1
0 assumption |γI | > 0. may be weakened.

Even if γI = 0 the theorem holds as long as γRM 6= 0 and γRM < c, where c
is the constant in Poincare inequality (10). The proof of the coercivity has
to be adapted as follows. Continuing with the calculation (16) for α = 1 we
obtain for some β, such that 1 > β > γRM

c
> 0:

√
2|B(ψ, ψ)| ≥ ‖∇ψ‖2 − γRM‖ψ‖2 = (1 − β)‖∇ψ‖2 + β‖∇ψ‖2 − γRM‖ψ‖2

≥ min(1 − β, βc− γRM )(‖∇ψ‖2 + ‖ψ‖2)

Corollary 3.3. To obtain the Schelkunoff potential representation (4) of the elec-
tric field E, one has to set G = E, T = −iωA and γ = −iωµσ̂ = ω2ǫµ − iωσµ.
The assumptions (11) of Theorem 3.1 will be satisfied for any ω > 0 if there exist
constants µm, µM , σm, σM , ǫM such that

(19)
|ǫ| ≤ ǫM <∞

0 < σm ≤ σ ≤ σM <∞
0 < µm ≤ µ ≤ µM <∞

4. Interface conditions

In this section, we discuss interface conditions of the Schelkunoff potential for
the electric field E. Consider a fragment of the domain Ω with two subsets V1, V2
and the interface ∂V1∩∂V2 between them (see Figure 1). For simplicity, we assume
that all considered vector and scalar fields are smooth in V1 as well as in V2,
and have limits of values and derivatives on the interface ∂V1 ∩ ∂V2, yet the limit
if one approaches the interface from V1 may be different from the limit if one
approaches the interface from V2. With this assumption, the members of H1,
such as the scalar potential ϕ, are continuous across the interface. The members of
H(∇×), such as the electric field E and ∇ϕ have continuous tangential components
across the interface, but may have discontinuous normal components. Members of
H(∇×) ∩ H(∇·), such as A and T have continuous both tangential and normal
components across the interface. The fields in the subdomain Vj are denoted by a
subscript “j”. The vector normal to the surface and pointing out of V1, towards V2
(see Figure 1), is denoted by n.

Let us consider representation (2) of the electric field E, with ϕ = ∇·A
σ̂µ

. In

this representation, all the components, E, A, ∇ϕ are members of H(∇×), so they
have continuous tangential components across the interface. Analysis of the normal
components is more interesting. Using the fact that the normal component of A
has to be continuous, we obtain the condition on the jump of the normal derivative
of ϕ:

(20)
−iω (n · A1) = −iω (n ·A2)

n · (E1 −∇ϕ1) = n · (E2 −∇ϕ2)
n · (∇ϕ2 −∇ϕ1) = n · (E2 − E1)

We will show that this is exactly the condition imposed by equation (14). Inte-
grating equation (14) by parts for a test function ψ with the support in the interior
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Figure 1. The properties σ̂, µ experience a jump on ∂V1 ∩ ∂V2.
As a result the normal component of E has a jump. The field ∇ϕ
is chosen in such a way, that its normal component jump allows
−iωA to be continuous.

of V1 ∪ V2 and using G = E, we obtain the following:

(21)

∫

V1∪V2

[−∇ · ∇ϕ− γϕ]ψ +
∫

∂V1∩∂V2

n · (∇ϕ1 −∇ϕ2)ψ =

−
∫

V1∪V2

(∇ ·E)ψ +
∫

∂V1∩∂V2

n · (E1 − E2)ψ

For a test function with the support entirely in V1 or entirely in V2, the interface
terms are 0, hence

(22) ∇ · ∇ϕ+ γϕ = ∇ · E

almost everywhere in V1 ∪ V2. Using this result in (21), for a test function non-zero
on the interface, one gets only the boundary terms and subsequently one obtains
condition (20) for the jump in the normal derivatives of ϕ.

Notice that in many applications, the source term J imp in (1) is divergence free.
If additionally σ̂ = const in V1 and in V2, then taking divergence of the second
equation in (1), one obtains that

∇ ·E = 0

in V1 as well as in V2. In this case, the strong equation (22) has the right hand
side equal to zero. As a result the source term in (14) is related only to the jump
of the normal component of E. More precisely if E has a jump in the normal
component, then its divergence is a distribution. This distribution is the source
term in equation (14).

If the electromagnetic properties have corners or edges, then the electric field
has singularities [12], which can be represented by a gradient of a scalar function
∇ϕ. The Lorenz gauged vector potential that we consider, exploits exactly this
property. It allows to represent the electromagnetic field, which is a member of
H(∇×), with a more regular field A, which is in H(∇·) ∩H(∇×). The singularity

is contained in the term ∇
(

∇·A
σ̂µ

)

.
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5. A difficulty in obtaining a weak form of the governing equation for

the vector potential representation of the electric field E

To be able to use the finite element method for a calculation of the EM field, a
weak form of a governing equation satisfied by the electric Schelkunoff potential is
needed.

In order to obtain a weak equation, one starts from Maxwell’s equations (1).
Dividing the first equation by −iωµ, taking curl and substituting into the second
equation, one obtains

(23) ∇× 1

−iωµ∇× E − σ̂E = J imp

Next −iωA+∇
(

∇·A
σ̂µ

)

is substituted for E and the equation is multiplied by a test

vector field K. The result is

∫

Ω

(

∇× 1

µ
∇×A

)

·K −
∫

Ω

∇
(∇ ·A

σ̂µ

)

· (σ̂K) +

∫

Ω

iωσ̂A ·K =

∫

Ω

J imp ·K

In order to integrate by parts the first term in the above equation, one uses con-
tinuity of the tangential component of 1

µ
∇ × A, which is equivalent to continuity

of the tangential component of the magnetic field H and one needs the tangential
components of K to be continuous across interfaces (like the interface ∂V1 ∩ ∂V2
considered in section 4).

On the other hand, in order to integrate by parts the second term, one would use
a continuity of ∇·A

σ̂µ
, and one needs the normal components of σ̂K to be continuous

across interfaces. So if σ̂ is discontinuous, so is the normal component of K. This
is the essence of the problem in obtaining a proper weak form of the equation
for A. A family of vector finite element shape functions with continuous tangential
components and normal components experiencing specific jumps is difficult to build.
One may consider a mixed formulation involving scalar and vector potentials (see
section 6), but that increases the number of coefficients needed to represent the
field.

It turns out that, assuming that µ is constant, it is possible to obtain an equation
involving only the vector potential, but for a vector potential representation of the
magnetic field H . This idea is presented in section 7.

6. A formulation with both scalar and vector potentials

If the original field is not divergence free, an equation involving both scalar and
vector components must be considered. Although the number of coefficients per
point in space increases from 3 to 4, the obtained equation is valid for non-constant
electromagnetic properties and a non divergence free field. Also, if the boundary
of the domain Ω is connected, a sesquilinear form of the equation remains coercive
as ω = 0.

In [9], in the case of the Lorenz gauge #2, the authors proved the uniqueness of
the Schelkunoff potential given as a solution of an equation (see (58) in [9]) that
has the following bilinear form in the left hand side:

G ((A, ρ), (K,ψ)) =
∫

Ω[∇×A · 1
µ
∇×K +∇ · A 1

µ
∇ ·K − ω2ǫA ·K

−iωǫ∇ · ψA+ ǫ∇ρ · ∇ψ − ω2ǫ2µρψ − iωǫ∇ · ρK]
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This bilinear form, considered for a purely imaginary frequency ω = iω̃, ω̃ > 0,
may be rewritten as

G =

∫

Ω

1

µ
(∇·A+µω̃ǫρ)(∇·K+µω̃ǫψ)+

∫

Ω

ǫ(ω̃A+∇ρ)·(ω̃K+∇ψ)+
∫

Ω

1

µ
(∇×A)·(∇×K)

Using this form we can prove the boundedness and the coercivity of G for A, K ∈
H0(∇×,Ω) ∩ H(∇·,Ω), ρ, ψ ∈ H1

0(Ω). So from the Lax-Milgram theorem, there
exists a unique solution to the equation for the Lorenz gauged vector and scalar
potentials that is considered in [9]. This formulation may be adapted to a lossy
medium, which is expressed in Theorem 6.1.

Theorem 6.1. Let the assumptions (19) be satisfied. The unique electric
Schelkunoff potential A, together with a scalar field

(24) φ =
∇ · A√
ωσ̂µ

satisfy the following equation

(25)

∫

Ω
1
µ
(∇×A) · (∇×K) +

∫

Ω
1
µ
(∇ · A−√

ωµσ̂φ)(∇ ·K −√
ωµσ̂ψ)

+i
∫

Ω
σ̂(
√
ωA+ i∇φ) · (√ωK + i∇ψ) =

∫

Ω
J imp · (K + i∇ψ√

ω
)

∀K ∈ H0(∇×) ∩H(∇·) and ψ ∈ H1
0

(26) A ∈ H(∇×) ∩H(∇·), n× (−iωA) = n× E on ∂Ω, φ ∈ H1
0.

The sesquilinear form associated with equation (25) is bounded and coercive with
respect to the norm

(27) ‖(K,ψ)‖B =
√

‖K‖20 + ‖∇×K‖20 + ‖∇ ·K‖20 + ‖∇ψ‖20 + ‖ψ‖20
Hence if J imp ∈ (L2)3, then the solution to this equation exists and is unique.

Remark 6.2.

• If the domain is a convex polygon, or if the domain has C2 boundary, then
one may use nodal shape functions to approximate both A and φ.

• In order to obtain the electric field E, one has to calculate

(28) E = −iωA+
√
ω∇φ

• If one drops all the terms multiplied by ω, the resulting sesquilinear form
remains coercive. To prove this, one has to use the Poincare inequality
for H0(∇×) ∩ H(∇·) (see [1], Corollary 3.19). The proof of this result is
easier than the proof of coercivity of the original sesquilinear form, so it is
omitted.

• In [15], the authors present a similar equation to ours. In our formulation,
we apply a scaling 1√

w
on the scalar function ϕ. As a result our sesquilin-

ear form remains coercive for ω = 0. Instead of 1
µ
, one can consider an

arbitrary weight in the middle term of the sesquilinear form, the term con-
taining the divergences. The authors of [15] denoted this weight by 1

µ∗

and

their proof of the coercivity of the sesquilinear form depends on the small-
ness of the upper bound of µ∗. The proof we present is not dependent on
such a bound, thus is valid as long as µ∗ is bounded away from 0 and from
∞. Also in our formulation and in the proof, we consider the case of non
zero ǫ and an arbitrarily large frequency ω, thus an arbitrarily large term
iωǫ.
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Proof. The fact that the vector potential A of Corollary 3.3 and φ defined in (24)
satisfy equation (25) is straightforward and is explained as follows. A consequence
of (24) is that the middle term on the right hand side of (25) vanishes. The definition
of φ implies (28). If (28) is used, then equation (25) simplifies to
∫

Ω

1

µ
(∇× E) · (∇×K) + iω

∫

Ω

σ̂E ·
(

K + i
∇ψ√
ω

)

= −iω
∫

Ω

J imp ·
(

K + i
∇ψ√
ω

)

Since K ∈ H0(∇×) ∩ H(∇·) and ψ ∈ H1
0, then K̃ = K + i∇ψ√

ω
∈ H0(∇×) and

∇ × K̃ = ∇ × K, so it remains to show that for any K̃ ∈ H0(∇×) the following
equation is satisfied:

∫

Ω

1

µ
(∇× E) · (∇× K̃) + iω

∫

Ω

σ̂E · K̃ = −iω
∫

Ω

J imp · K̃

This is a standard equation satisfied by the electric field E which satisfy Maxwell’s
equations (1). The equation is satisfied for all K̃ ∈ H0(∇×). This concludes the
proof that A and φ defined in (24) satisfy equation (25).

Let us now focus on a proof of the boundedness and the coercivity of the sesquilin-
ear form B((A, φ), (K,ψ)) defined as the left hand side of the equation (25).

Denote σ̂M = (σM + ωǫM ). The boundedness of B is straightforward, as from
the Cauchy-Schwartz inequality, it follows that:

|B((A, φ), (K,ψ))| =

=

∣

∣

∣

∣

∫

Ω

1

µ
(∇×A)·(∇×K)+

∫

Ω

1

µ
(∇·A−

√
ωµσ̂φ)(∇·K−

√
ωµσ̂ψ)

+i

∫

Ω

σ̂(
√
ωA+i∇φ)·(

√
ωK+i∇ψ)

∣

∣

∣

∣

≤ 1

µm

∫

Ω

|∇ ×A| |∇ ×K|+
∫

Ω

1

µm
|∇ · A−

√
ωµσ̂φ| |∇ ·K −

√
ωµσ̂ψ|

+

∫

Ω

σ̂M |
√
ωA+ i∇φ| |

√
ωK + i∇ψ|

≤ 1

µm
‖∇×A‖0‖∇×K‖0 +

1

µm
‖∇ · A−

√
ωµσ̂φ‖0‖∇ ·K −

√
ωµσ̂ψ‖0

+ σ̂M‖
√
ωA+ i∇φ‖0‖

√
ωK + i∇ψ‖0

≤ 1

µm
‖∇×A‖0‖∇×K‖0+

1

µm
(‖∇·A‖0+

√
ωµM σ̂M‖φ‖0) (‖∇·K‖0+

√
ωµM σ̂M‖ψ‖0)

+σ̂M (
√
ω‖A‖0+‖∇φ‖0) (

√
ω‖K‖0+‖∇ψ‖0)

≤ max

(

1

µm
,

√
ωµM

µm
σ̂M ,

ωµ2
M

µm
σ̂2
M , σ̂M , σ̂M

√
ω, σ̂Mω

)

‖(A, φ)‖B‖(K,ψ)‖B
To prove the coercivity, we have to prove that there exists a constant d > 0 such

that for any (K,ψ) ∈ (H0(∇×,Ω) ∩H(∇·,Ω)) ×H1
0(Ω)

|B((K,ψ), (K,ψ))| ≥ d‖(K,ψ)‖2B
It is enough to prove that it is not possible to have a sequence of (Kn, ψn)

∞
n=1 such

that

1 = ‖(Kn, ψn)‖2B
= ‖Kn‖20 + ‖∇×Kn‖20 + ‖∇ ·Kn‖20 + ‖∇ψn‖20 + ‖ψn‖20(29)

and

(30) B((Kn, ψn), (Kn, ψn)) −−−−→
n→∞

0
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For a proof by contradiction, assume that there is a sequence (Kn, ψn) satisfying
(29) and (30). We will prove that there is a subsequence of (Kn, φn) convergent to
0 in ‖.‖B. Using the compact embedding of H0(∇×) ∩H(∇·) in (L2)3 (Maxwell’s
compactness property, [25]) and the compact embedding of H1

0 in L2 (Rellich’s
theorem), there is a subsequence (Knk

, ψnk
) convergent to (K,ψ) in (L2)4. To

simplify the notation we will write n instead of nk, thus replacing the original
sequence with its subsequence. We obtain that

(31) ‖Kn −K‖0 −−−−→
n→∞

0

(32) ‖ψn − ψ‖0 −−−−→
n→∞

0

We will prove that Kn converges to K in H0(∇×) ∩ H(∇·), ψn converges to ψ in
H1

0 , and that ψ = 0 and K = 0 .
Consider the imaginary part of B((Kn, ψn), (Kn, ψn)). Using the fact that σ̂ =

σ + iωǫ, we obtain:

(33) Im[B((Kn, ψn), (Kn, ψn))] =

∫

Ω

σ|
√
ωKn + i∇ψn|2 −−−−→

n→∞
0

Similarly, taking the real part, we have:

Re[B((Kn, ψn), (Kn, ψn))] =
∫

Ω

1

µ
|∇ ×Kn|2 +

∫

Ω

1

µ
|∇ ·Kn −

√
ωµσ̂ψn|2 −

∫

Ω

ωǫ|
√
ωKn + i∇ψn|2

Using (33) and the bounds (19) for σ and ǫ, we conclude that the third term in
the above approaches 0. As the remaining two terms are nonnegative, we conclude
that:

(34)

∫

Ω

1

µ
|∇ ×Kn|2 −−−−→

n→∞
0

(35)

∫

Ω

1

µ
|∇ ·Kn −

√
ωµσ̂ψn|2 −−−−→

n→∞
0

Using the bounds (19) on σ and µ, we conclude that (33), (34), (35) imply:

(36) ‖
√
ωKn + i∇ψn‖0 −−−−→

n→∞
0

(37) ‖∇×Kn‖20 −−−−→
n→∞

0

(38) ‖∇ ·Kn −
√
ωµσ̂ψn‖20 −−−−→

n→∞
0

Taking any smooth vector field Z with a compact support in Ω, Z ∈ (C∞
c (Ω))3,

using (31) and (36), we obtain:
∣

∣

∣

∣

〈i∇ψ,Z〉+
∫

Ω

√
wK · Z

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

Ω

iψ(∇ · Z) +
∫

Ω

√
wK · Z

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

i(ψn − ψ)(∇ · Z) +
∫

Ω

(i∇ψn +
√
wKn) · Z +

∫

Ω

√
w(K −Kn) · Z

∣

∣

∣

∣

≤ ‖ψn − ψ‖0‖∇ · Z‖0 + ‖i∇ψn +
√
wKn‖0‖Z‖0 +

√
w‖K −Kn‖0‖Z‖0 −−−−→

n→∞
0

which implies that

(39) i∇ψ = −
√
ωK ∈ (L2)3
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Moreover as a consequence of (31) and (36)

(40)
‖∇ψn −∇ψ‖0 = ‖i∇ψn − i∇ψ‖0
≤ ‖√ωK −√

ωKn‖0 + ‖√wKn + i∇ψn‖0 −−−−→
n→∞

0

Thus ψn converges to ψ in ‖.‖1, and as ψn ∈ H1
0 and H1

0 is a closed subspace of
H1, then ψ ∈ H1

0 .
Similarly, taking any Z ∈ (C∞

c (Ω))3, using (31) and (37), we obtain

(41)

|〈∇ ×K,Z〉| = |〈∇ × (K −Kn), Z〉+ 〈∇ ×Kn, Z〉|
=

∣

∣

∫

Ω
(K −Kn) · (∇× Z) +

∫

Ω
(∇×Kn) · Z

∣

∣

≤ ‖K −Kn‖0‖∇× Z‖0 + ‖∇×Kn‖0‖Z‖0 −−−−→
n→∞

0

Thus ∇×K = 0. This, together with (37) implies that

(42) ‖∇×K −∇×Kn‖0 = ‖∇×Kn‖0 −−−−→
n→∞

0

In a similar way, using (38) and (32) one shows that

(43) ∇ ·K =
√
ωµσ̂ψ ∈ L2

(44) ‖∇ ·Kn −∇ ·K‖0 −−−−→
n→∞

0

We have proven that (Kn, ψn) converges to (K,ψ) in ‖.‖B. To prove that K = 0
and ψ = 0, notice that (43) and (39) imply

(45) −∇ · ∇ψ + iωµσ̂ψ = 0

which rewritten in a weak form says:

(46)

∫

Ω

∇ψ · ∇ν −
∫

Ω

(−iωµσ̂)ψν = 0

for any test function ν ∈ H1
0. The sesquilinear form of this equation is a bounded

and coercive sesquilinear form, which has been shown in the proof of Theorem 3.1
for γ = −iωµσ̂. Thus from the Lax-Milgram theorem the equation admits a unique
solution ψ = 0. This and (39) imply K = 0. We have obtained a contradiction
with (29). Hence the sesquilinear form B is coercive.

If J imp ∈ (L2)3, then the right hand side of (25) is a bounded linear functional on
the space (H0(∇×)∩H(∇·))×H1

0 with the norm ‖.‖B, thus from the Lax-Milgram
theorem, there exists a unique solution to equation (25). �

The vector-scalar formulation of Theorem 6.1 forms a basis for a general finite
element simulation scheme for non divergence-free EM fields.

7. A representation of the magnetic field H

If the original field is divergence-free, a simpler weak equation involving only the
vector potential may be obtained. This approach is presented for a representation
of the magnetic field H . This representation is mentioned in [37],

(47) H = F −∇
(∇ · F
iωσ̂µ

)

Existence of this representation follows from Theorem 3.1 if assumptions (19) are
satisfied. Although in a geophysical setting it cannot be assumed that the conduc-
tivity is constant, most of the rocks have magnetic permeability µ = µ0. In this
case the magnetic field H is divergence free:

∇ ·H = 0
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In this situation, the vector potential for which ∇·F
iωσ̂µ

= 0 on ∂Ω, coincides with the

magnetic field:
F = H

We start with the standard curl-curl equation for the magnetic field H :

(48)

∫

Ω

1

σ̂
(∇×H) · (∇×K) + iω

∫

Ω

µ0H ·K =

∫

Ω

1

σ̂
J imp · (∇×K)

Substitution of
(

H −∇
(

∇·H
iωσ̂µ

))

instead of H , results in the equation presented

below:
∫

Ω

1

σ̂
(∇×H) · (∇×K)+

∫

Ω

1

σ̂
(∇ ·H)(∇ ·K) + iω

∫

Ω

µ0H ·K

=

∫

Ω

1

σ̂
J imp · (∇×K)(49)

∀ K ∈ H(∇×) ∩H(∇·), n×K|∂Ω = 0

H ∈ H(∇×) ∩H(∇·), n×H |∂Ω = n× Ĥ |∂Ω
where n× Ĥ denote tangential boundary values for H .

The sesquilinear form of this equation for σ̂ ∈ R and 0 < σm ≤ σ̂ ≤ σM < ∞ is
coercive and bounded with respect to the norm

‖K‖∇·,∇× =
√

‖∇×K‖20 + ‖∇ ·K‖20 + ‖K‖20
So the equation admits a unique solution, which is the magnetic field H .

The advantage of the equation (49) is that the sesquilinear form is coercive, even
if the term iω

∫

Ω
µ0H · K is not present, as long as the boundary of the domain

Ω is connected. This situation happens when the frequency w = 0. As a result
the system matrix is well conditioned for small frequencies. If there is a jump in
conductivity, the condition number of the system matrix increases, yet the situation
is similar to the case of a discontinuous coefficient in the Poisson equation. Even
for a high contrast in conductivity, it should be sufficient to use standard vector
multigrid preconditioners [35] for an iterative solver to converge.

This kind of regularization has been studied in the literature (see [1, 13]) without
introducing the notion of the Schelkunoff potential. Indeed, if the original field is
divergence free, then the Schelkunoff potential of Theorem 3.1 coincides with the
original field. An interesting eigenvalue analysis for the equation with and without
the divergence term is presented in [30].

In geophysical applications a computational domain is usually a convex polygon
(in magnetotellurics it is a cuboid). In this situation (H1)3 ∩ H0(∇×) is dense in
H(∇·) ∩ H0(∇×), so the use of the nodal shape functions leads to a convergent
discretization. Caution is needed when applying this method to other problems as
(H1)3 ∩H0(∇×) is not always dense in H(∇·) ∩ H0(∇×) (see [13] or Appendix B
in [6]). In application to magnetotellurics, numerical tests involving equation (49)
are presented in section 8.

8. Numerical results

In this section, the magnetic field H for a plane-wave (magnetotelluric) source
is calculated using equation (49) and compared with a field calculated by an inde-
pendent integral equation code of [36].

The considered model is a conductive brick of resistivity 1Ωm and dimensions
1km x 2km x 2km in the whole space of resistivity 100Ωm. The field is calculated
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500m above the brick, along a line going in the y-direction. The second order nodal
shape functions for a hexahedral mesh (Q2) are used for each component of the
field. A sketch of the model and the hexahedral mesh is presented in Figure 2.

The solution H is approximated by

(50) H =

n
∑

j=1

xjNj

where n is the number of degrees of freedom, Nj are shape functions. Inserting
(50) into equation (49) gives

∫

Ω
1
σ̂

(

∇×∑n
j=1 xjNj

)

· (∇×Nk) +
∫

Ω
1
σ̂

(

∇ ·∑n
j=1 xjNj

)

(∇ ·Nk)

+iω
∫

Ω
µ0

∑n
j=1 xjNj ·Nk =

∫

Ω
1
σ̂
J imp(∇×Nk)

which produces a linear system Ax = b to be solved, where

Akj =

∫

Ω

1

σ̂
(∇×Nj) · (∇×Nk) +

∫

Ω

1

σ̂
(∇ ·Nj)(∇ ·Nk) + iω

∫

Ω

µ0Nj ·Nk

bk =

∫

Ω

1

σ̂
J imp · (∇×Nk)

The total field generated by a plane wave in the whole space with the brick, is
decomposed into a primary electromagnetic field (Hp, Ep) and a secondary electro-
magnetic field (Hs, Es)

Ht = Hp +Hs, Et = Ep + Es

The primary field is a plane wave traveling in increasing z direction in the 100Ωm
whole space with H field purely in the y direction. The secondary field is the change
of the field due to the presence of the brick. The code solves for the secondary field
Hs, with n×Hs = 0 on ∂Ω. It is assumed that σ = σt is the conductivity of a con-
ducting brick in a whole-space, with the source J imp = Epσs, where σs = σt − σp
is the difference between the conductivity of the whole-space with the conducting
brick and the conductivity of the whole space. Two frequencies were considered:
0.001Hz and 10Hz. The mesh consisted of 15x15x20 hexahedral elements and ex-
tended more than 20km from the brick. The inner part of the mesh is presented
in Figure 2. The linear system had 98, 397 unknowns. QMR with incomplete LU
preconditioner converged to the relative residual norm of 10−7 in 28 iterations for
the frequency 10Hz and in 54 iterations for 0.001Hz.

Figure 3 presents a ratio of the secondary field to the primary field. The fields
calculated by an Integral Equation code [36] and FEM code that uses (49), are sim-
ilar for both frequencies. The proposed method gives proper values of the magnetic
field H .
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Figure 2. Sketch of a considered model for numerical simula-
tion(left); Hexahedral mesh cross-sections(right).

9. Appendix

Three vector identities are used. For K,L : R3 → C3, u : R3 → C, which are at
least C2 regular in Ω, we have:

(51) ∇×∇×K = ∇(∇ ·K)−∇ · (∇K)

(52)

∫

Ω

(∇×K) · L =

∫

Ω

K · (∇× L) +

∫

∂Ω

(n×K) · L

(53)

∫

Ω

∇u ·K = −
∫

Ω

u∇ ·K +

∫

∂Ω

u(K · n)

[27, 28, 5, 10, 32, 40, 22, 20, 15]
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S U M M A R Y
Following the creation described in Part I of a deformable edge finite-element simulator for
3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm
named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers
parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for
the Gauss–Newton model update. By exploiting the data-space approach, the computational
cost of the model update becomes much less in both time and computer memory than the cost of
the forward simulation. In order to regularize using the second norm of the gradient, we factor
the matrix related to the regularization term and apply its inverse to the Jacobian, which is done
using the MKL PARDISO library. For dense matrix multiplication and factorization related
to the model update, we use the PLASMA library which shows very good scalability across
processor cores. A synthetic test inversion using a simple hill model shows that including
topography can be important; in this case depression of the electric field by the hill can cause
false conductors at depth or mask the presence of resistive structure. With a simple model of two
buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more
accurate locations for the tomographic images compared to weightings which were a function
of parameter Jacobians. We implement joint inversion for static distortion matrices tested using
the Dublin secret model 2, for which we are able to reduce nRMS to ∼1.1 while avoiding
oscillatory convergence. Finally we test the code on field data by inverting full impedance
and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain.
Among several prominent structures, the north–south trending, eruption-controlling shear
zone is clearly imaged in the inversion.

Key words: Numerical solutions; Inverse theory; Electrical properties; Magnetotellurics;
Volcanic arc processes; Explosive volcanism.

1 I N T RO D U C T I O N

In Part I (Kordy et al. 2015), we have shown that moderately large
3-D magnetotelluric (MT) models including topography can be
simulated accurately in practical run-times using a direct solver on
a single-box, server-class multicore workstation with large RAM.
The deformable mesh approach allows us to avoid expending many
rows of cells to define just the topography as is done typically with
finite differences, and which even then may not escape local electric
field distortion (e.g. Liu et al. 2009; Stark et al. 2013). The MKL
PARDISO library is effective on this platform, showing an overall

scalability of 15 on 24 cores. For a mesh with 176 cells in x-direction,
176 cells in y-direction and 70 cells in z-direction (176x 176y 70z),
2000 source vectors (corresponding to 400 MT sites) could be
solved in 2.5 times the time required for factorization, with total
time for both under 2.5 hr. Meshes comparable to that could simulate
site arrays of similar size to the Earthscope MT Transportable Array
of the U.S. Pacific Northwest using this parallelized direct solver
(Meqbel et al. 2014).

Here in Part II, we also use direct solvers exclusively to create
a 3-D regularized inversion algorithm for MT data including to-
pography, which we name HexMT. Due to its good convergence

94 C© The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society.

 by guest on N
ovem

ber 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

mailto:kordy@math.utah.edu
http://gji.oxfordjournals.org/


3-D MT FEM inversion with direct solvers 95

properties, we pursue a Gauss–Newton formulation for the non-
linear, iterative parameter update, as have others (deGroot-Hedlin
& Constable 1990; Key & Constable 2011; Grayver et al. 2013;
Oldenburg et al. 2013). The number of parameters usually is
significantly greater than the number of data for tomographic-style,
regularized inversion. As noted by Siripunvaraporn et al. (2005a),
inverse formulations using fewer parameters than data may suffer
from a dependence of solution upon parametrization. One may also
expect some lack of fit to data to occur if parameters are not defined
optimally. On the other hand, tomographic inversions for MT data
sets of a few hundred sites may require a number of parameters
of order one million (e.g. Meqbel et al. 2014). Direct factorization
of the reduced Hessian matrix in the traditional model-space defi-
nition (e.g. deGroot-Hedlin & Constable 1990; Sasaki 2001; Usui
2015), even using parallelization across multicore (Maris & Wan-
namaker 2010), is not practical for that scale of parametrization.
As a result, researchers have tended to retain iterative solvers for
the model update whether cast as Gauss–Newton or otherwise (e.g.
Commer & Newman 2008; Zhdanov et al. 2011; Grayver et al.
2013; Schwarzbach & Haber 2013).

An alternative is to investigate the data-space formulation for
solving the Gauss–Newton model update (Parker 1994; Siripun-
varaporn & Egbert 2000; Siripunvaraporn et al. 2005a). This ap-
proach reduces the size of the matrix that needs to be inverted from
Nm × Nm to Nd × Nd (m = model parameters, d = data), while the
solutions in theory are identical. Consider an MT survey of 400 sites
with 20 frequencies (four per decade say) and 12 data per frequency
(four complex impedance and two complex tipper elements). The
total data set size would be 96 000. As we show, this turns out to
be a very manageable size of matrix to invert using direct solvers,
particularly as parallelized across multicore symmetric multipro-
cessor (SMP) computers. Matrices twice this size in fact are not
impractical, allowing data sets of more sites, greater bandwidth, or
finer frequency sampling, with a fairly arbitrary number of model
parameters.

This paper sets out with a brief overview of both model- and
data-space approaches to solving the Gauss–Newton model update.
Attention is paid to the mechanics of solving stably the normal sys-
tem equation for a model gradient regularization functional. Run-
time and scalability of the model update solver is investigated for
multicore using different sized trial models. At this point it appears
that model update solution time will remain significantly smaller
than forward simulation run-time across all models with moder-
ately fine parameter discretization. The inversion code is tested on
several models. These include a simple conductive brick below a
hill to show the strength of effect that topography can have on in-
version models assuming a flat surface. Subsequently we examine a
multiprism test model used as a community standard (Miensopust
et al. 2013) and experiment with various regularization weighting
schemes. Finally, we invert an extensive MT data set acquired over
the volcano Mount St Helens (Hill et al. 2009) to show performance
for a model where parameter number approaches one million.

2 F O RWA R D P RO B L E M

The forward problem is described in detail by Kordy et al. (2015),
touched on briefly here to define terms. We consider the MT prob-
lem in a domain � that includes the air and earth’s subsurface. The
Earth’s surface is allowed to have topography. In order to calcu-
late the MT response due to an arbitrary 3-D conductivity structure
σ = σ (x, y, z) we consider a hexahedral edge finite-element dis-

cretization of the equation for the secondary electric field E:∫
�

1

μ
∇×E · ∇ × M + iω

∫
�

σ̂ E · M =
∫

�

−iω(σ̂ − σ̂ p)E p · M

(1)

for E, M ∈ H0(∇×,�), where ω is angular frequency, ε > 0 is
dielectric permittivity, μ is magnetic permeability, σ̂ = σ + iωε

and σ̂ p = σp + iωε. Ep is the primary electric field, which is that
of an arbitrarily 1-D earth of conductivity structure σ p. We assume
that σ ≈ σ p close to the domain boundaries. The solution space is
defined below:

H0(∇×,�) =
{

M :� → C
3 :

∫
�

(|M |2 + |∇ × M |2) < ∞,

n × M |∂� = 0

}
. (2)

The approximate solution to eq. (1) is obtained using edge elements.
Secondary magnetic field H is calculated as

H = −∇ × E

iωμ
. (3)

The total field Et, Ht is a sum of secondary and primary fields:

Et = E + E p, H t = H + H p. (4)

The MT response is obtained by finding Z, K such that⎡
⎢⎣

Et
x

Et
y

H t
z

⎤
⎥⎦ =

⎡
⎢⎣

Zxx Zxy

Z yz Z yy

Kzx Kzy

⎤
⎥⎦

[
H t

x

H t
y

]
(5)

is satisfied no matter what is the polarization of the primary
(Ep, Hp) plane wave.

3 G AU S S - N E W T O N I N V E R S I O N
P RO C E D U R E

For defining inversion terminology, we consider again fig. 1 of Part I
(Kordy et al. 2015) where layers of hexahedral elements are de-
formed vertically to represent topography. This was efficient for the
forward problem, but also will be for inversion. Although elements
below the earth surface could be grouped to form a parameter, for
maximal flexibility we usually consider each element as being a
possible parameter linked through regularization in a tomographic
inversion.

3.1 Description of the method

As is usual, the portion of the model domain � below the air–earth
interface is split into Nm model parameters, which are disjoint re-
gions with constant resistivity. Let m = (m1, . . . , mNm ) be the vector
of parameter log10 resistivity values. We work with log10 resistivity
as this ensures that resistivity remains positive during inversion and
makes the square norms of the reduced Hessian matrix columns
more nearly equal in magnitude (Hohmann & Raiche 1988). There
are Nd data points collected, denoted as d = (d1, . . . , dNd ). As in-
dividual data values, we consider the real and imaginary parts of
all entries in Z, K for all Nrec receivers, namely Nd = 12Nrec and
for all frequencies. Let e1, . . . , eNd be the vector of measurements
errors, for which standard deviations si are known. By F(m) ∈ R

Nd

we denote the response of the current model m, calculated by the
forward code.

 by guest on N
ovem

ber 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


96 M. Kordy et al.

Denote Bd as a diagonal matrix with 1
s2
i

as entries. The inversion

procedure seeks a model m such that the weighted data misfit

‖F(m) − d‖2
Bd

= (F(m) − d)T Bd (F(m) − d)

=
Nd∑
i=1

(
Fi (m) − di

si

)2

(6)

is minimal, together with the constraint that some measure of rough-
ness of the model m is limited. The roughness will be measured by

‖m − m0‖2
Bm

= (m − m0)T Bm(m − m0) (7)

where m0 is a reference model and Bm is a symmetric non-negative
definite matrix, so that ‖.‖Bm is a seminorm. Often Bm is such that
‖m − m0‖Bm = ‖∇(m − m0)‖L2 , where ∇ denotes spatial gradient
(in all three directions) of the log10 resistivity model. In the deformed
mesh geometry we implement, the three directions in general are
not purely perpendicular; one remains vertical while the other two
lie along the variably deformed layer of elements.

Specifically, in the inversion we seek a model m that minimizes
the functional

W (m) = ‖F(m) − d‖2
Bd

+ λ‖m − m0‖2
Bm

(8)

for some suitable value of λ > 0.
The Gauss–Newton is an iterative procedure that seeks a min-

imizer of (8). It starts with an initial guess m1. Given a current
model mn, the Gauss–Newton scheme approximates the response
F(m) around mn by the first-order Taylor expansion:

F(m) ≈ F(mn) + J [m − mn] (9)

where J is a Nd × Nm matrix of derivatives of F

Ji, j = ∂ Fi

∂m j
(m), i = 1, . . . , Nd , j = 1, . . . , Nm (10)

whose computation we have described in Part I. If (9) is used, the
functional (8) becomes quadratic and the minimizer mn+1 satisfies
a linear equation:

[J T Bd J + λBm](mn+1 − m0) = J T Bd d̂ (11)

where d̂ = d − F(mn) + J [mn − m0].
The reduced Hessian matrix enclosed in square brackets in

eq. (11) is dense, symmetric positive definite, and has dimension
Nm × Nm. This is the traditional model-space parameter update for-
mulation. The numerical complexity of solving this equation using
Cholesky decomposition is O(N 3

m). This cubical growth eventually
makes direct solution of the model-space Gauss–Newton scheme
impractical for arbitrarily large model size Nm.

The data-space method (Parker 1994; Siripunvaraporn & Egbert
2000; Siripunvaraporn et al. 2005a) replaces eq. (11) with a linear
equation having only Nd unknowns. For the moment we assume that
Bm is invertible (which implies that Bm is positive definite and ‖.‖Bm

is a norm), the treatment of which we will revisit shortly. When (11)
is left-multiplied by B−1

m , we obtain:

B−1
m [J T Bd J + λBm](mn+1 − m0) = B−1

m J T Bd d̂

B−1
m J T (Bd J )(mn+1 − m0) + λ(mn+1 − m0) = B−1

m J T Bd d̂

mn+1 − m0 = B−1
m J T 1

λ
Bd [d̂ − J (mn+1 − m0)]

This proves that

mn+1 − m0 = B−1
m J T β (12)

for some β ∈ R
Nd . When (12) is plugged into (11) and the equation

is left-multiplied by B−1
m , we obtain an equation equivalent to (11):

B−1
m J T [Bd J B−1

m J T + λI ]β = B−1
m J T Bd d̂. (13)

This equation will be satisfied if β satisfies

[Bd J B−1
m J T + λI ]β = Bd d̂ (14)

which is equivalent to

[J B−1
m J T + λB−1

d ]β = d̂. (15)

The latter equation has a unique solution as J B−1
m J T is symmetric

nonnegative definite and B−1
d is symmetric positive definite. The

data-space Gauss–Newton method finds β, the solution to (15) and
uses (12) to calculate a model update mn+1.

The model update mn+1 in eq. (11) minimizes the inversion func-
tional W using a linearized forward response F. However, the update
may fail to decrease W if it is too far from current model mn for the
approximation in (9) to be accurate. A line search in the direction
mn+1 − mn to minimize W (Nocedal & Wright 2006) can avoid this,
but at the expense of multiple forward problems. One could use
the Levenberg–Marquardt algorithm (Levenberg 1944) to keep the
update mn+1 close to mn by adding a term α‖m − mn‖2 to W. This
may be interpreted as choosing mn+1 that minimizes W for a trust
region (Nocedal & Wright 2006) of models {m: ‖m − mn‖2 ≤ δ}
for some δ > 0 than depends on α. The regularization term in W
has a similar stabilizing effect, yet with a trust region defined as
{m : ‖m − m0‖Bm ≤ δ} for some δ > 0 dependent on λ.

Apart from minimizing W, one also should select a value of λ to
minimize the norm ‖m − m0‖Bm among models having a specific
data misfit of X2 (Parker 1994). A well-known method for this is
Occam’s inversion (Constable et al. 1987; deGroot-Hedlin & Con-
stable 1990). As Occam also involves multiple forward calculations
per iteration, we simply begin with a large value of λ and decrease it
for subsequent iterations during the minimization. More precisely,
λ that is used to obtain model mn+1 is set as:

λ = nRMS(m j ) · κ (16)

From an initial value κ0 > 0, parameter κ will be decreased by a
factor of two if the normalized root mean square (nRMS) at an iter-
ation does not fall by more than a user-specified amount (e.g. 10%).
As a result in our inversions, the parameter λ steadily decreases
and the model acquires increasing amounts of structure. This may
be considered a form of cooling strategy (cf. Haber et al. 2007).
The scaling with respect to nRMS is consistent with experience
of Constable et al. (1987) where the optimal λ decreased as itera-
tions proceeded and misfit improved. Procedures for determining λ

warrant further investigation.

3.2 Computational considerations

In the data-space method, one has to invert Bm and apply it to JT

in order to calculate J B−1
m J T . In Siripunvaraporn & Egbert (2000),

matrix B−1
m was denoted Cm and called the model covariance matrix.

It was not defined explicitly as a result of inverting a norm matrix
Bm, but was treated as a natural matrix to consider for regularization.

The choice of a proper regularization functional ‖.‖Bm is impor-
tant, as minimizing the functional W in (8) is equivalent to mini-
mizing the data misfit

(F(m) − d)T Bd (F(m) − d) (17)
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3-D MT FEM inversion with direct solvers 97

subject to a condition on the model norm

‖m − m0‖Bm ≤ δ (18)

where δ > 0 depends on the choice of λ. The regularization func-
tional we consider is L2 norm of the gradient of the model,

‖m − m0‖Bm = ‖∇(m − m0)‖L2 . (19)

In order to use this functional in data-space method, matrix Bm must
be inverted. However if (19) is used, Bm is non-negative definite and
thus singular. To make it positive definite, we add a small number
ε > 0 to its diagonal before inverting. The functional is negligibly
modified as then

‖v‖Bm =
√√√√‖∇v‖2

L2
+ ε

Nm∑
i=1

v2
i (20)

The nonzero value of ε tends to keep the inversion model slightly
closer to the a priori model, which we do not view as a drawback.
For very small values of ε, this effect is negligible.

To estimate the cost of calculation of B−1
m J T , we exploit the

fact that matrix Bm has a nonzero pattern of a matrix coming from
finite-difference approximation of a scalar Poisson equation over
the inversion cell grid. Even if each inversion cell consists of only
one element, the number of inversion cells will be no more than the
number of vertices in the earth’s subsurface. Thus Bm has less non-
zero entries and less variables than the matrix used for the divergence
correction described in Part I and the number of variables should
be less. Even though the number of linear systems to be solved
is 12 × Nrec, and for the divergence correction it was 5 × Nrec,
here all variables are real valued. Thus if the solution library MKL
PARDISO is used, the time of factorization of Bm and applying
B−1

m to JT is expected to be less than the cost of applying the
divergence correction, which takes a fraction of time of the forward
problem. One concludes that the calculation of B−1

m J T will not add
a significant execution time to the inversion process no matter how
large the grid is, as long as the direct solver is used for forward
modeling.

For matrix multiplications like JTBdJ and the Cholesky factor-
ization needed to solve eqs (11) and (15), we use the PLASMA
library (Buttari et al. 2009; Baboulin et al. 2011). PLASMA is a
linear algebra library for dense matrices, parallelized for shared
memory machines (such as the SMP unit we use). It employs a
matrix tiling approach (cf. Baboulin et al. 2005; Maris & Wan-
namaker 2010; Kordy et al. 2013), which reduces the time of
transporting the matrix entries from RAM to CPU. The scala-
bility of Cholesky factorization and matrix multiplication using
PLASMA is presented in Fig. 1. The speedup using 24 cores is
∼17 and ∼19 for Cholesky factorization and matrix multiplication,
respectively.

To assemble the model-space Gauss–Newton matrix (11), one
has to evaluate JTBdJ, which has numerical complexity O(N 2

m Nd ).
Solving the matrix as noted previously has complexity O(N 3

m).
For the data-space method on the other hand, to assemble the
matrix in eq. (15) one has to evaluate (B−1

m J T ). By analysing the
run-times for models 2–5 of Table 1, we estimate the numerical
complexity to be O(N 1.13

m ), O(N 1.5
m ) and O(Nd N 1.18

m ) for the re-
ordering, factorization and the solution phases, respectively. Most
of the time (over 98%) for the considered test cases is spent in
the solution phase. With the direct solver approach, the time to
calculate (B−1

m J T ) is always a small fraction of the cost of the
forward problem. Further, (B−1

m J T ) is used to evaluate J (B−1
m J T ),

which has numerical complexity O(Nm N 2
d ). Solving the equation

Figure 1. Speedup of PLASMA library for Cholesky factorization (dpotrf)
and matrix multiplication (dgemm).

using Cholesky decomposition has complexity O(N 3
d ). As typically

Nd < Nm, the computational cost associated with data-space method
is less. The difference becomes more pronounced for larger MT sur-
veys.

Example computation times for models listed in Table 1(a) are
presented in Table 1(b). The time to solve the model-space Gauss–
Newton eq. (11) increases rapidly with the model size and quickly
gets impractical, reaching over 27 hr for the largest grid consid-
ered. On the other hand, the time to solve the data-space eq. (15)
remains short, less than one minute for all the grids considered.
In the case of the data-space method, more time consuming than
solving eq. (15) is evaluating J (B−1

m J T ), which takes 1 hr for the
largest mesh considered. Nevertheless, the corresponding evalua-
tion of JTBdJ for model-space Gauss–Newton takes longer, more
than seven times longer for mesh 5. Comparable to the time of
calculation of J (B−1

m J T ) is the time of evaluation of B−1
m J T .

However, as we expected, this time is less than that of apply-
ing the divergence correction (more than two times less), which
in turn is almost 10 times less than the total time spent solving
forward problem. Thus the advantage of the data-space Gauss–
Newton approach over the model-space version for this application
is clear.

Concerning RAM requirements, for model-space GN one needs
to store the matrix J, which is Nd × Nm as well as the matrix in the
eq. (11), which is a symmetric Nm × Nm matrix. In the data-space
version, one needs to store matrix J and the matrix B−1

m J T of the
same size, but depending on implementation those may be saved on
hard disk and parts of them may be read into RAM memory when
needed. Also, one needs to store the matrix of eq. (15), which is a
symmetric Nd × Nd matrix. One can see that as typically Nd < Nm

the memory requirements are smaller for data-space Gauss–Newton
than for its model-space cousin.

In Table 1(c) we present the RAM memory requirements for the
grids considered. The matrix J is Nd × Nm in size, but largely can
be stored on hard disk and parts accessed as needed. For the largest
mesh considered, the model-space GN update requires 413 GB,
whereas the data-space update requires as little as 7.9 GB of RAM
memory depending upon treatment of J.

3.3 Regularization norm weight

Up to this point, we have not specified details of the entries of
matrix Bm, other than that it is a finite-difference representation of
spatial gradients in the model parameter vector m. Several investi-
gators have explored whether entries of Bm should also be weighted
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Table 1. Run-times and memory use for forward modeling, model-space Gauss–Newton iteration and data-space
Gauss–Newton iteration.

according to influence (Jacobian) of their corresponding parameter
(e.g. Zhdanov 2002; Yi et al. 2003). Here we present three differ-
ent regularization functionals, the performance of which will be
compared in numerical tests.

Consider the infinite-dimensional problem and its response F(m)
given a spatially varying log10 resistivity model m = m(r). Also
consider the derivative S(r) of F with respect to m satisfying:

F(m + δm) ≈ F(m) +
∫

�

S(r)δm(r)dr (21)

for a small change in model δm. The quantity ‖S(r)‖2 measures the
sensitivity of the response F to the change of the conductivity at the
point r.

As the regularization functional (m − m0)TBm(m − m0), we will
consider L2 norms of the gradient of m with a weight ν(r) > 0
defined as follows:

‖∇(m − m0)‖2
L2(ν) =

∫
�

|∇(m − m0)|2ν(r)dr (22)

Further, we consider three possible values for ν:

ν(r) = ‖S(r)‖2

ν(r) = 1

ν(r) = 1

‖S(r)‖2
(23)

Norm ‖∇(m − m0)‖L2(1) uses no information about the influence
of the inversion cell on the data. If norm ‖∇(m − m0)‖L2(‖S‖2) is used
for regularization, smoothing is suppressed for parameter regions
with low sensitivity allowing them to show additional structure (cf.
Zhdanov 2002). Norm ‖∇(m − m0)‖L2( 1

‖S‖2
) will smooth the model

in regions with low sensitivity, using the reasoning that if we cannot
detect the properties of a region well, we will make it similar to its
surroundings. This is similar to the approach of Yi et al. (2003),
although they make a rigorous evaluation of the parameter resolution
matrix which is computationally intractible for the larger problems
we consider here.
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3-D MT FEM inversion with direct solvers 99

Figure 2. Central part of the inversion grid together with the receiver locations in three quadrants. Conductive brick is shown below the hill.

If the norms ‖m − m0‖L2(ν) and ‖∇(m − m0)‖L2(ν) are properly
approximated on a discrete level, they will be mesh independent. An
explanation of this claim and the details of the way we approximate
the norms are provided in Appendix A.

4 S Y N T H E T I C I N V E R S I O N E X A M P L E S

In this section, we present results of the inversion of synthetic MT
data to evaluate algorithm performance under controlled conditions.
As a measurement error we will use the value

e(Zi j ) = max
{

3.5% |Zxy−Z yx |
2

}
, i, j = x, y

e(Kzj ) = 0.03, j = x, y
(24)

We use Zxy − Zyx because it is a rotational invariant and shows
relative stability to data noise (see Groom & Bahr 1992). As the
measurement error sj (noted in (6)) for real or imaginary part of Z
and K, we take the above value e. The data used in the inversion are
calculated by the forward problem for the true conductivity model,
with Gaussian noise having zero mean and standard deviation s
added to the real and imaginary parts of Z and K.

To assess goodness of fit of a model response to the data, we use
the nRMS, defined as:

nRMS(m) =
√√√√ 1

Nd

Nd∑
j=1

(
d j − Fj (m)

s j

)2

(25)

where d is the vector of our synthetic data, F is a vector of response
of the model m and s is the measurement error vector.

4.1 Brick under a hill

Our first model is a brick under a hill in 100 �m background. The hill
has dimensions 2000 and 4000 m in x- and y-directions at the bottom
and 500 and 1000 m at the top. The hill is 450 m high. The object
is placed below the hill with the top and the bottom of the object at
650 and 1600 m, respectively, below the top of the hill and its XY

cross-section is a rectangle [−328 m, 328 m] × [−700 m, 700 m].
We consider a conductive (5 �m) and resistive (2000 �m) object
as well as no object at all. We compare the inversion that has the
mesh conforming to the topography as in Fig. 2 to the mesh without
topography (flat surface). Both meshes have the same location of
cells in x- and y-directions and the same x and y coordinates of
receivers. The only difference is the elevation of layers close to the
earth surface.

We generated the data using a different grid than the one used for
inversion. The forward code grid was 95x, 95y, 50z and extended
to 18 km from the grid centre in x- and y-directions, 5.6 km above
the earth’s surface (air layer) and 12.5 km below the surface. The
inversion grid was 41x, 41y and 30z. It extended 14 and 15 km from
the centre of the grid in x- and y-directions, respectively. There were
106 receivers. The location of a receiver is always at the centre of
the face of an element lying on the earth’s surface, thus the location
of the forward code receivers is slightly different than the inversion
receivers. The inversion grid, together with the location of the brick
and receivers in three of the four quadrants is presented in cutaway
view in Fig. 2.

The data consisted of the impedance Z and the tipper K for 13
frequencies between 1 and 1000 Hz distributed evenly in log10

space. We added Gaussian error with standard deviation (24) to the
forward data. The initial value of κ0 started at the same value for
all inversions. The starting and reference (a priori) models were
set to 50 �m uniformly. The regularization functional used was
‖∇m‖L2(1).

Iteration history is presented in Fig. 3. The regularization norm
‖∇m‖L2(1) increases as the inversion proceeds and λ decreases in the
effort to decrease nRMS. One can see that inversion with topography
is able to achieve nRMS close to 1 in less than 3 iterations, whereas
the inversion without topography is struggling to decrease nRMS
below 1.6 even though the model norm is larger than in the case of
inversion with topography.

We have plotted cross-sections of selected models for six inver-
sions in Figs 4 and 5 for comparison. In all cases, the inversion with
topography is able to recover a smoothed version of the original
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Figure 3. Inversion iteration history for model of bricks under a hill. nRMS(mj), λ used to obtain model mj, ‖∇m‖L2(1) as a function of iteration number j are
plotted. The models plotted in Figs 4 and 5 are denoted by bold symbols.

Figure 4. Inversion results for bricks under a hill along XZ cross-section at y = 0 km. Top row shows inversion with topography, bottom row the inversion
without topography.
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3-D MT FEM inversion with direct solvers 101

Figure 5. Inversion results for bricks under a hill along YZ cross-section at x = 0 km. Top row shows inversion with topography, bottom row the inversion
without topography.

Figure 6. Sketch of two bricks model.

object (or no object in the no brick case). Inversion without topog-
raphy puts a more conductive object below the ground to make-up
for the absence of a hill. This occurs because the electric field is re-
duced by the hill as background electric current only partially flows
upward into that volume (see TM mode results in Wannamaker
et al. 1986). Even for the resistive brick forward data, the inversion
without topography returns a (somewhat) conductive object. The
inversion also creates an oscillatory region above the object (more
apparent on XZ cross-section) that resembles the shape of a hill.
These results emphasize the importance of including the topogra-
phy in the inversion of MT data.

4.2 Simple two brick model

Our next synthetic model consists simply of two buried and sepa-
rated bricks, one conductive (2 �m) and one resistive (1000 �m),
in a 40 �m half-space (Fig. 6). With this model we examine the
effect of inversion regularization weights on model characteristics.

The forward mesh consists of 58x 58y 45z elements. In the XY
plane, the central 33 × 33 elements are square with sides equal to
0.333 km. Further from the centre, the element sizes grow gradually
and extend 130 km from the centre of the grid. In the Z-direction,
there were 34 elements below the surface and 11 elements in the air.
The mesh extends to 100 km above the surface and 140 km below
the surface. There are 10 × 10 receivers evenly distributed in XY
plane, separated by 10 km. The forward response (impedance Z and
tipper K) was generated for 31 frequencies evenly distributed in log
space between 0.01 and 1000 Hz, which gives six frequencies per
decade. We added Gaussian error with standard deviation (24) to
the forward data.

The inversion mesh consists of 41x 41y 41z elements. In the XY
plane, the central 24-by-24 elements are square with sides equal to
0.5 km. Further from the centre, the element sizes grow gradually
and extend 135 km from the centre of the grid. In the Z-direction,
there were 31 elements below the surface and 10 elements in the
air. The mesh extends to 110 km above the surface and 140 km
below the surface. Thus the forward and inversion meshes differ in
discretization but have the same locations for the receivers, which
are at the centre of elements faces in both cases. The inversion mesh
is presented in Fig. 7.

For this model, we conducted inversions using different regu-
larization functionals. We used (A5), (A2) and (A7) that give reg-
ularization functionals resembling ‖∇m‖2

L2(‖S‖2), ‖∇m‖2
L2(1), and

‖∇m‖2
L2(1/‖S‖2), respectively. The value of ‖S‖2 was confined to

change within a factor of 104. More precisely, two values were
found S1 and S2, such that S2

S1
= 104 and the value of ‖S‖2 was trun-

cated if it lies outside the interval [S1, S2]. Additionally, weights ν

have been multiplied by a normalization constant, so that the aver-
age ν over the central part of the domain is the same in all cases.
This allows us to use the same initial value of λ. The nRMS, λ

and the regularization norm as a function of the iteration number
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Figure 7. Cross-sections of the inversion grid for the two bricks model.
Central part of the grid is shown.

are presented in Fig. 8. One can see that the nRMS values as a
function of iteration number are almost the same for the different
regularization schemes, and thus the amount of regularization is
similar for all weightings.

The models calculated by the different inversion schemes at it-
eration 6 are presented in Fig. 9, with weights ν of L2(ν) norms
used for regularization to obtain those models plotted in Fig. 10.
Generally speaking, the weight ν = ‖S‖2 decreases with depth and
the weight ν = 1

‖S‖2
increases with depth. Thus, the effect of us-

ing L2(‖S‖2) is to prolong the depth extent of the formed image

to minimize the value of the regularization norm. For L2

(
1

‖S‖2

)
,

the recovered objects tend to be compressed toward the surface for

comparable reasons. In the case of L2

(
1

‖S‖2

)
, significant resistivity

oscillations are apparent at shallow depths; one of their effects is
to drive the background resistivity toward 25 �m rather than the
true 40 �m because of the cell-scale heterogeneity formed under
the receivers. Nevertheless, the nRMS values are all very close, un-
derscoring the non-uniqueness inherent in this ill-posed inversion
problem. We observed no systematic difference in the fit of the fi-
nal models across the frequency range for the three regularizations.
Results for other models might differ, however. Further challenges
in establishing appropriate regularization may be expected for more
complex settings.

4.3 DSM2 model

The Dublin MT Modeling and Inversion workshops have provided
model results for the EM community to test newly developed

simulation and imaging codes (see Miensopust et al. 2013). Here we
consider inversion of the MT responses of the Dublin secret model
2 (DSM2) presented in Fig. 11. It is a flat-earth model with two
contacting, shallow bricks in a four-layer earth. There are 144 MT
receivers arranged in a uniform grid 12 × 12 with 7 km spacing.

The forward data, supplied by the workshop organizers, consist
of the impedance tensor Z values only (no tipper) for 30 frequencies
between 0.016 and 10 000 s evenly distributed in log10. Random
galvanic distortion was applied to the responses by the organizers
as described in Miensopust et al. (2013). Gaussian noise of 5% of the
maximal impedance value also had been added to the distorted data
set. This supplied error bound was treated as a standard deviation
and was used for both real and imaginary parts of Z. The data from
all sites and frequencies were used in our inversion.

The applied static distortion provides an opportunity for us to
implement and test recent distortion removal procedures (Avdeeva
et al. 2015), summarized in Appendix B. Initially, an inversion
model is sought without distortion correction. This model is used
as an initial guess to estimate a new, more stable model plus the
static distortion matrices of the impedance Z. We invert the data
using the L2(1) regularization functional.

We considered coarse and fine inversion meshes. The coarse mesh
has two columns of parameters between sites in the central portion
of the model whereas the fine mesh has five columns of parameters
between sites. The purpose of the latter mesh is to test whether a
fine discretization allows formation of small-scale shallow structure
which can simulate the impedance galvanic distortion without hav-
ing to solve explicitly for correction factors (cf. e.g. Meqbel et al.
2014).

Specifically, the coarse(fine) mesh consisted of 45x 45y 41z(78x
78y 50z) elements. In the XY plane, the central 23-by-23(58-by-58)
elements are squares with sides = 3.5 km (1.4 km). Further from the
centre, the element sizes grow gradually and extend 600 km from
the centre of the grid. In the Z-direction, there were 31(38) elements
below the surface and 10(12) elements in the air. The mesh extends
to 300 km above the surface and 700 km below the surface. The
central part of the coarse mesh is presented in Fig. 12.

The inverted models are presented in Fig. 13. Inverting only for
log10 resistivity on the coarse mesh with no distortion correction
yields a model with nRMS of 4.2, with little further improvement
by relaxing the regularization factor (see Fig. 14). Subsequently, in-
verting also for the distortion matrices obtains a model with nRMS
of 1.1. The latter model achieves generally smoother resistivity
structure with values closer to the true values, especially in the
deeper structure, than does the former model. For the coarse model,

Figure 8. Two bricks model iteration history. nRMS(mj), λ used to obtain model mj as well as ‖m j − m0‖Bm as a function of iteration number j are plotted.
The model number 6, plotted on Fig. 9 is denoted by a bold symbol.
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Figure 9. Models calculated by inversions of synthetic responses of two bricks using regularization functionals ‖∇m‖2
L2(‖S‖2), ‖∇m‖2

L2(1) and ‖∇m‖2

L2

(
1

‖S‖2

).

In each case, the model obtained at iteration 6 is plotted.

Figure 10. Weight ν of L2(ν) norm used to obtain model number 6 for regularization schemes used for two bricks model. For L2(1) regularization, the weight
is constant so is not plotted.

there is some scatter in the norm of distortion matrices versus itera-
tion. This presumably is a result of small regularization (τ = 0.01).
Further investigation is warranted as to when and to what degree of
regularization, distortion should be estimated through the iteration
history.

When the fine mesh inversion for log10 resistivity only is consid-
ered, the resulting model has nRMS of 2.2, significantly less than the

similar model obtained on a coarse mesh. The fine mesh inversion
is able to represent some of the distortion by small-scale variability
of log10 resistivity in the vicinity of the receivers, at shallow depths.
Nevertheless, the fine mesh inversion for log10 resistivity including
the distortion estimation provides a smoother model with a smaller
nRMS of 1.1 (see Fig. 14). Here we see smoother behaviour in the
estimated distortion versus iteration. From this result we suggest
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Figure 11. Sketch of DSM2 model.

Figure 12. Cross-sections of the central part of the coarse inversion grid for
DSM2 model.

that distortion matrices should be considered in tensor impedance
inversion even for fine discretizations. However, we also advocate
that fine discretization be used to the extent practical to ensure that
non-galvanic variations at the highest frequencies are accommo-
dated by the smallest scale mesh structure.

5 F I E L D I N V E R S I O N E X A M P L E S

5.1 Mount St Helens

Finally, we examine the MT field data set collected by Hill et al.
(2009) from the north-central Cascade volcanic environment in
Washington State, USA, to demonstrate the ability of our solu-
tion to handle moderately large models with topography. There are
82 soundings primarily clustered over the recently active Mount St
Helens volcano, but with 14 of the sites extending in a nearly E-W
profile past the north side of Mount Adams (Fig. 15). This gives us
the opportunity also to compare 3-D inversion of profile data (e.g.
Siripunvaraporn et al. 2005b) with 2-D inversion results. We invert
the complex tensor impedance Z and tipper K for 20 frequencies
log-uniformly distributed from 100 through 0.0018 Hz.

The mesh consists of 111x 167y 62z elements in total (see
Fig. 16). This requires storage of 500 GB which fills the capacity of
our particular workstation. Over the large central section including
the two volcanoes, horizontal dimensions of the elements were in
the 500 × 600 to 500 ×1000 m range typically. Around this region
the element sizes grew gradually, covering a total area of 375 km ×
425 km. In the z-direction, there are 50 elements below the ground
and 12 elements in the air. The elements at the earth’s surface have a
thickness of 80 m (at mesh edge) and grow gradually to reach an ele-
vation of 250 km above the surface and a depth of 220 km below the
ground. Topography for the area was obtained from ASTER GDEM

data (downloaded from http://gdex.cr.usgs.gov/gdex/), a product of
METI and NASA. We did not attempt to include the Pacific Ocean
nearly 200 km to the west, as that distance is significantly larger
than the depth range of interest here (<100 km). A rim of one ele-
ment around the side edges and bottom of the mesh was excluded
from the inversion and fixed to be a 1-D (flat) initial model. Thus,
there are 109 × 165 × 49 = 881 265 inversion parameters in the
Mount St Helens model. However, in data-space formulation, the
rank of the model update matrix is only 19 680. This may seem like
a large model to handle 82 MT sites, but that is a result of particular
site distribution. In principle, many more MT sites could be placed
in this model mesh with additional computational cost only being
more Jacobian source reductions and a larger (though still modest)
data-space model update matrix.

The inversion was run without distortion matrix estimation for
11 iterations, with iteration history shown in Fig. 17. Data er-
ror floors as given in eq. (23) were adopted. The starting model
was a 100 �m half-space, the same as considered by Hill et al.
(2009), and the starting nRMS was ∼11.5. Run-time on the 24-core
workstation was ∼13 hr per iteration, which was by far dominated
by the forward and Jacobian calculations over the 20 frequencies.
Model 11 has nRMS of 1.2, which is considered a good fit so that
distortion correction should yield little improvement and was not
carried out.

Model cross-section and plan views are presented in Figs 18
and 19, and can be compared to the original results of Hill et al.
(2009). The cross-section overall bears a close resemblance to the
2-D inversion of Hill et al, which emphasized the nominal TM mode
(relative to profile orientation) of data. Steep low resistivity is seen
in the middle crust directly under Mount St Helens, presumably re-
lated to recent eruptive processes, of which more will be discussed
shortly. This gives way at depths >20 km to broad, quasi-horizontal
low resistivity between the two volcanoes, which we attribute to
lower crustal magmatic underplating and high-temperature fluid
release. Shallow, very low resistivity overlies the deep crustal con-
ductor approaching Mount Adams which may reflect in part the
presence of graphitic metasediments associated with a suture be-
tween the Siletz terrane and former North American margin (the
southern Washington Cascades conductor or SWCC of Stanley et al.
1996), although this interpretation is non-unique and not without
controversy (Egbert & Booker 1993; Hill et al. 2009). A large re-
sistive body extending to >15 km depth lies between the Mount
St Helens and Mount Adams and could be correlated with earlier
Western Cascades intrusive rocks (see Wannamaker et al. 2014).

The steep low resistivity directly under Mount St Helens in Fig. 18
is similar to that in the flat-earth 3-D inversion model of Hill et al.
(2009) although the most anomalous portion does not extend to quite
as shallow a depth as that in Hill’s. This may in part be explained
by the conical edifice of the volcano inducing additional depression
of the electric field as discussed with Fig. 4. A second, somewhat
lesser conductor in the 4–9 km depth range appears just west of
the first one, which is more subtly expressed in the model of Hill
et al. These two conductors correspond reasonably well to the two
high-scattering bodies displayed in east–west section by DeSiena
et al. (2014, their fig. 6e). In plan view at 7 km depth (Fig. 19),
we see that this steep conductor is strongly linear in a nearly N-S
direction and is associated with the Mount St Helens shear zone
(MSZ) passing through the volcanic edifice (Weaver et al. 1987;
Lagmay et al. 2000). Clear representation of this structure in our
model we believe may be due to inclusion of the tipper elements in
the inversion, as the tipper shows a subtle reversal on the west flank
of the volcano (Hill et al. 2009, also see our Supplemental Material
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Figure 13. Comparison of inversion models obtained for DSM2 model. The second and the third rows contain the result of inversions on a coarse mesh.
The fourth and the fifth rows show results of inversions on a fine mesh. The third and the fifth rows, denoted by ‘statics’, show results of inversions for log10

resistivity and the static distortion matrices. The top row shows the true model.

Figure 14. Iteration history for DSM2 model, for coarse and fine meshes. Initial inversion without static distortion is shown in black. Subsequent inversion
with distortion matrix estimation is plotted in red. Bold symbols denote models shown in Fig. 13.

section). The second, subsidiary conductor flanks the shear zone
nearby to the west.

The large resistor east of Mount St Helens confines the large
conductor further east to be in the Mount Adams area, providing

better resolution than prior 3-D images based just on regional tipper
data (Egbert & Booker 1993). The NNW-SSE limits of the resistor
cannot be considered as well-resolved, however, without site cov-
erage. At lower crustal depths (27 km in Fig. 19), resistivity under
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Figure 15. Mount St Helens inversion model. Contour plot of topography
of the central part of the domain is presented. Coordinate (0, 0) corresponds
to the location of Mount St Helens peak, marked by a red cross. Blue
cross denotes Mount Adams. Blue line denotes profile A–B used in Fig. 18.
MT receiver locations are marked by black and red dots. Red dots denote
receivers used in the 2-D inversion of Hill et al. (2009). Mount St Helens
shear zone (MSZ) after Lagmay et al. (2000).

Mount St Helens decreases from west to east as in Hill et al. (2009)
and the low is somewhat elongate toward the south–southeast. On
the other hand, low deep crustal resistivity under Mount Adams
expands to the north. It is tempting to assign this geometry to an
offset in lower crustal magmatic underplating associated with the
E-W offset in the Cascade volcanic chain at this latitude. However,
such conjecture should await better resistivity structural constraints
from further 3-D MT coverage both north and south of the current
data set.

Finally, in Fig. 20, we show a 3 �m isosurface within the Mount
St Helens model viewed from the east with conductive material

Figure 16. Central part of the mesh for the Mount St Helens inversion
model. Blue and red crosses denote Mount Adams and Mount St Helens
peaks, respectively.

around Mount Adams excluded. It represents the conductive upper
reaches of the MSZ. The top of the main surface is only slightly
undulatory along its north–south extent. A few steep, narrow con-
ductors projecting upward mainly to the north of the mount itself
could represent local fluidized damage zones but do not obviously
correspond to a central volcanic conduit (e.g. Musumeci et al. 2002).

6 C O N C LU S I O N S

As other researchers are finding as well, direct solutions to vari-
ous aspects of the diffusive EM inversion problem are becoming

Figure 17. Values of nRMS, λ and model norm as a function of iteration number for the Mount St Helens inversion.

Figure 18. Cross-section of Mount St Helens inversion at iteration 11 along profile A–B marked on Fig. 15. Black ticks at the top denote the locations of
receivers plotted in red on Fig. 15 that were used in the 2-D inversion of Hill et al. (2009).
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Figure 19. Plan views of Mount St Helens inversion model 11. Receivers’ locations marked by black dots, Mount St Helens peak by red cross and Mount
Adams peak by blue cross.

Figure 20. 3-D view from the East onto the 3 �m isosurface below Mount
St Helens. A region (−25 km, 25 km) × (−24 km, 19 km) around St Helens
only is shown, so the conductors below Mount Adams are not seen. Only
structures deeper than 2 km are shown. Red circle denotes Mount St Helens
peak, black circles denote locations of the receivers around the mountain.

increasingly practical. Here we have shown that direct solvers can
effectively handle the Gauss–Newton update for inverse problems
approaching one million parameters with parallelization on mul-
ticore SMP workstations and large RAM if the model update is
formulated in data space. In this case, the limiting computational
cost both in run-time and memory is the forward problem (including
Jacobians), which can be computed effectively using MKL PAR-
DISO. Finite-element models of order 176 × 176 × 70 elements
fill half the memory of a workstation with 0.5 TB RAM but such
meshes can, for example, fit large MT data sets of 400 sites with six
columns of parameters between sites in both x- and y-directions with
padding of nearly 30 expanding element columns around the mesh
edges. We have not experienced system conditioning problems due
to high element aspect ratios with our direct solutions.

Single-box SMP workstation capabilities continue to progress,
with platforms holding up to 4 TB RAM available at the time of
this writing. The overall scalability of MKL PARDISO is good on
multicore shared memory systems and may be expected to do well
on machines with more cores. Another option could be to con-
struct a distributed cluster whose nodes were large-RAM multicore
machines such as we employed herein each devoted to a differ-
ent response frequency, although at considerably greater hardware
investment. Finally, we find that the deformable hexahedral mesh
framework lends a predictability to mesh design and performance

of libraries such as MKL PARDISO that should offset concerns
that the geometries of simulation with such a mesh may not be
as arbitrary as is possible with assemblies of tetrahedra. More re-
search is warranted, however, into optimal inversion regularization
functionals and methods for guaranteeing rapid convergence.
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Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure 1. Real and imaginary induction vectors for the measured
data and the prediction by the model obtained in the Mount St
Helens inversion for five frequencies between 1 Hz and 0.01 Hz.
Parkinson convention is used.
Figure 2. nRMS for each component of the MT response and for
each receiver for the final model of Mount St Helens inversion.
Table 1. Table of nRMS as a function of frequency for the starting
model and the final model for Mount St Helens inversion.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggv411/-/DC1).

Please note: Oxford University Press is not responsible for the con-
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A P P E N D I X A : A P P ROX I M AT I O N O F
R E G U L A R I Z AT I O N N O R M S

Here, we present how we approximate norms ‖∇(m −
m0)‖L2(1),‖∇(m − m0)‖L2(‖S‖2),‖∇(m − m0)‖

L2

(
1

‖S‖2

). For simplic-

ity we will write m instead of m − m0.
Assume that the discrete m is a representation of an infinite-

dimensional model, that is, a function m(r) defined for every loca-
tion r in the subsurface part of �. If the discrete norms ‖m‖L2(ν)

and ‖∇m‖L2(ν) are defined as the norms of the infinite-dimensional
model, they have the property that they are mesh independent.
If one considers two different meshes with two different discrete
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representations of the same infinite-dimensional model m(r), the
two norms on different meshes will be equal, as they are equal to
the norm of the infinite-dimensional model.

In the case of the norm ‖m‖L2(ν) one can think of the
infinite-dimensional model m(r) being piecewise constant, that is,
m(r) = m j whenever r is inside an inversion cell Vj. In such a
case, if a mesh is refined and the value of the model at an inver-
sion cell is passed on to the subcells that the cell is split to, then
the infinite-dimensional model remains the same. In the case of
the norm ‖∇(m)‖L2(ν) one cannot think of the infinite-dimensional
model being piecewise constant as the gradient of such a model
does not exist (the gradient is not a square integrable vector field).
The infinite-dimensional model should be continuous. In 1-D one
could think of a model that is piecewise linear between the centres
of inversion cells.

First we will consider norms ‖m‖L2(1), ‖m‖L2(‖S‖2), ‖m‖
L2

(
1

‖S‖2

).

To approximate them, we will take norm of the form:

‖m‖2
Bm

= mT Bmm (A1)

with appropriate matrix Bm, where m = (m)Nm
j=1 is a vector of log10

resistivities of inversion cells.
If one takes Bm to be a diagonal matrix with entries wj equal to

volumes of inversion cells:

w j = #Vj =
∫

Vj

dr (A2)

then one obtains a model norm ‖m‖Bm that is equal to the L2(1)
norm of the piecewise constant model m(r):

‖m‖2
Bm

=
Nm∑
j=1

m2
j Bm( j, j) =

Nm∑
j=1

m2
j #Vj

=
Nm∑
j=1

∫
Vj

m(r)2dr =
∫

�

m(r)2dr

= ‖m‖2
L2(1) (A3)

Consider the derivative S of infinite-dimensional problem defined
at (21). Assuming that the discretization of the domain is fine enough
so that the finite-dimensional approximation of the problem is close
to the infinite-dimensional problem, using F for finite-dimensional
response, one could write that the jth column of Jacobian matrix J
is:

J. j = ∂ F

∂m j
=

∫
Vj

S(r)dr (A4)

where Vj is a j-th inversion cell. If we assume that the inversion
cell Vj is small enough that S(r) ≈ Sj = const for r ∈ Vj , then a
sensitivity of inversion cell Vj is obtained:

w j =
√√√√ Nd∑

i=1

J 2
i j =

√
J T
. j J. j = ‖J. j‖2 =

∣∣∣∣∣
∣∣∣∣∣
∫

Vj

S(r)dr

∣∣∣∣∣
∣∣∣∣∣
2

≈ ‖#Vj Sj‖2 = #Vj‖Sj‖2 =
∫

Vj

‖Sj‖2dr

≈
∫

Vj

‖S(r)‖2dr (A5)

If we define Bm to be a diagonal matrix with wj as entries, then

‖m‖2
Bm

=
Nm∑
j=1

m2
jw j ≈

Nm∑
j=1

m2
j

∫
Vj

‖S(r)‖2dr

=
∫

�

‖m(r)‖2
2‖S(r)‖2dr

= ‖m‖2
L2(‖S‖2). (A6)

The regularization norm is approximately equal to the weighted
L2 norm with ‖S‖2 as a weight. Note also that to calculate
wj = ‖J.j‖2 one does not need to know the cell volume, only Jaco-
bian matrix J is used. This regularization was considered in Zhdanov
(2002) (see eq. 3.89).

The third weight we consider is defined as

w j = (#Vj )2√
J T
. j J. j

≈ (#Vj )2

#Vj‖Sj‖2
= #Vj

1

‖Sj‖2
(A7)

The corresponding norm of the model is approximately

‖m‖2
Bm

=
Nm∑
j=1

m2
jw j ≈

Nm∑
j=1

m2
j #Vj

1

‖Sj‖2

≈
Nm∑
j=1

m2
j

∫
Vj

1

‖S(r)‖2
dr

=
∫

�

‖m(r)‖2
2

1

‖S(r)‖2
dr

= ‖m‖2

L2

(
1

‖S‖2

) (A8)

The norm is approximately equal to the weighted L2 norm with
1

‖S‖2
as a weight. This norm will suppress model change in regions

with low sensitivity, using the reasoning that if we cannot detect the
properties of a region well, we will make it similar to its surround-
ings. This is similar to the approach of Yi et al. (2003).

To get an approximation of a norm of the model gradient, rather
than of the model, so a norm that resembles ‖∇m‖L2(ν) rather than
‖m‖L2(ν) in essence one should think of an infinite-dimensional
continuous model m(r) that is represented by the discrete model m
and calculate the L2(ν) norm of its gradient. For simplicity though,
we do not pursue this approach and we use a simple finite-difference
approximation calculated as if the topography was not present and
the element layers were horizontal. Assume that each inversion cell
consists of one finite element. Air layers as well as one layer of
elements close to the boundary ∂� are not used in the inversion.
One layer close to the boundary has a fixed conductivity equal to the
conductivity of the 1-D layered Earth primary model. This is done
to prevent us from having a non-zero source term Jimp very close to
the boundary. As a result the inversion cells can be addressed using
three indices ix = 1, . . . , nx, iy = 1, . . . , ny, iz = 1, . . . , nz , where the
total number of inversion cells is Nm = nxnynz . Matrix Bm is such
that

‖m‖2
Bm

=
nx∑

ix =2

ny∑
iy=1

nz∑
iz=1

w̃x
ix ,iy ,iz

(
mix ,iy ,iz − mix −1,iy ,iz

xix ,iy ,iz − xix −1,iy ,iz

)2

+
nx∑

ix =1

ny∑
iy=2

nz∑
iz=1

w̃
y
ix ,iy ,iz

(
mix ,iy ,iz − mix ,iy−1,iz

yix ,iy ,iz − yix ,iy−1,iz

)2

+
nx∑

ix =1

ny∑
iy=1

nz∑
iz=2

w̃z
ix ,iy ,iz

(
mix ,iy ,iz − mix ,iy ,iz−1

zix ,iy ,iz − zix ,iy ,iz−1

)2
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where

w̃x
ix ,iy ,iz

= wix −1,iy ,iz + wix ,iy ,iz

2

w̃
y
ix ,iy ,iz

= wix ,iy−1,iz + wix ,iy ,iz

2

w̃z
ix ,iy ,iz

= wix ,iy ,iz−1 j + wix ,iy ,iz

2
(A9)

and

[
xix ,iy ,iz , yix ,iy ,iz , zix ,iy ,iz

]
is the location of the centre of mass of the inversion cell denoted by
ix, iy, iz .

Using the procedure described above with w given by (A5),
(A2) or (A7) one gets norms of model m resembling ‖∇m‖L2(‖S‖2),
‖∇m‖L2(1) and ‖∇m‖

L2

(
1

‖S‖2

), respectively. Those norms are used

for regularization and the inversion results are compared.

A P P E N D I X B : I N V E R S I O N F O R S TAT I C
D I S T O RT I O N M AT R I C E S

We present the inversion for the impedance static distortion ma-
trices similar to the approach of Avdeeva et al. (2015). Shallow
conductivity structure causes a static distortion of the impedance
such that

Z obs
k (ω) = Ck Zk(ω) (B1)

where Zk is the impedance without the shallow conductivity struc-
ture and Z obs

k is the impedance with the shallow conductivity struc-
ture. Matrix Ck ∈ R

2×2 is real valued and not dependent on fre-
quency, yet different for each receiver k = 1, . . . , Nrec (see Avdeeva
et al. 2015).

In the inversion procedure, apart from calculating the unknown
model m = (m j )

Nm
j=1 of log10 resistivities, we invert also for real

valued matrices C = (Ck)Nrec
k=1 , one for each receiver location.

The forward problem response F(m), defined by (5), is modified
by applying (B1) to obtain F(m, C). The regularized functional to be

minimized changes from (8) by adding squares of Frobenius norms
‖.‖F of the difference between distortion matrices Ck and identity
matrix I, yielding:

W̃ (m, C) = (F(m, C) − d)T Bd (F(m, C) − d)

+ λ(m − m0)T Bm(m − m0) + τ

Nrec∑
k=1

‖Ck − I‖2
F (B2)

Note that if we define Ñm = Nm + 4Nrec,

m̃ = (m̃k)Ñm
k=1 = (m1, . . . , mNm ,

C1,xx , C1,yx , C1,yx , C1,yy, . . . ,

CNrec,xx , CNrec,yx , CNrec,yx , CNrec,yy)

m̃0 = (m̃k,0)Ñm
k=1 = (m1,0, . . . , mNm ,0,

1, 0, 0, 1, . . . ,

1, 0, 0, 1)

B̃m =
[

Bm 0

0 τ

λ
I

]

Then (B2) may be written in the form similar to (8):

W̃ (m̃) = (F(m̃) − d)T Bd (F(m̃) − d) + λ(m̃ − m̃0)T B̃m(m̃ − m̃0)

Jacobian J̃ of the forward response F(m̃) may be easily obtained
from J using chain rule. As a result one can apply Gauss–Newton
and data-space Gauss–Newton procedure similarly to the case of
inversion for m only.

Similarly to Avdeeva et al. (2015), we use τ = 0.01. Note
that this value of τ is very small, giving almost no regulariza-
tion for distortion matrices term in (B2). Yet it is enough to obtain
good models, if only the starting model is not far from the true
model. It is our experience so far that using the starting model that
was obtained in the inversion without the distortion matrix yields
good results. On the other hand, if one starts from a half-space
that is far from the true model, the iteration may not converge
to a plausible model. In this case, we have seen the matrices C
converge to 0.
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S U M M A R Y
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion
of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit
incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP),
single-chassis workstations with large RAM are used throughout, including the forward solu-
tion, parameter Jacobians and model parameter update. In Part I, the forward simulator and
Jacobian calculations are presented. We use first-order edge elements to represent the sec-
ondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very
low frequencies or small material admittivities, the E-field requires divergence correction.
With the help of Hodge decomposition, the correction may be applied in one step after the
forward solution is calculated. This allows accurate E-field solutions in dielectric air. The sys-
tem matrix factorization and source vector solutions are computed using the MKL PARDISO
library, which shows good scalability through 24 processor cores. The factorized matrix is
used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field
and MT responses using the reciprocity theorem. Comparison with other codes demonstrates
accuracy of our forward calculations. We consider a popular conductive/resistive double brick
structure, several synthetic topographic models and the natural topography of Mount Erebus
in Antarctica. In particular, the ability of finite elements to represent smooth topographic
slopes permits accurate simulation of refraction of EM waves normal to the slopes at high
frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as
176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ∼1.5 hr
per frequency. Together with an efficient inversion parameter step described in Part II, MT
inversion problems of 200–300 stations are computable with total run times of several days on
such workstations.

Key words: Numerical approximations and analysis; Electrical properties; Magnetotelluric;
Geomagnetic induction; Physics of magma and magma bodies; Antarctica.

1 I N T RO D U C T I O N

Impressive progress has been made over the past several years in the
simulation and inversion of three-dimensional (3-D) diffusive elec-
tromagnetic (EM) responses for earth electrical resistivity structure.
Most approaches have adopted finite difference or finite element
(FE) numerical methods although the integral equations technique
also has been utilized (see reviews by Börner 2010; Everett 2012).
An effective simulation and inversion algorithm needs to handle
a large range of structural scales due to possibly complex resis-
tivity distributions and the wide frequency bandwidth of survey
techniques (e.g. potentially seven or more orders of magnitude in

magnetotellurics (MTs); Chave & Jones 2012). Furthermore, in
many orogenic or resource settings, the earth’s surface can show
considerable topographic variation which will have its own EM re-
sponse and introduces vertical variation of receiver placement with
respect to subsurface structure.

To include topography in earth resistivity models, we pursue the
FE method. FEs allow for a relatively smooth representation of
topography. Although it is possible to consider finite difference or
finite volume discretization on unstructured (i.e. non stair-stepped)
meshes (Hyman & Shashkov 1999; Liu et al. 2009; Jahandari &
Farquharson 2014), it may lead to spurious modes in the solution
(see a discussion in Hyman & Shashkov 1999), late time instability

74 C© The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society.

 by guest on N
ovem

ber 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

mailto:kordy@math.utah.edu
http://gji.oxfordjournals.org/
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(see a discussion in Liu et al. 2009) or geometric restrictions on
the grid (Liu et al. 2009). Proper discretization of the operators ∇,
∇ × and ∇ · that are important in Maxwell’s equations (Hyman
& Shashkov 1999) is a challenge for unstructured meshes. Edge
elements, considered in this paper, respect the relationship between
those operators, expressed by an algebraic topology structure called
de Rham diagram (Gunzburger & Bochev 2009), which allows us
to apply the divergence correction in a natural way.

Several authors have considered the choice between tetrahedral
and hexahedral elements for including topography (e.g. daSilva
et al. 2012; Lelièvre & Farquharson 2013; Schwarzbach & Haber
2013), with tetrahedra argued by some to allow a more arbitrary
discretization of structure. However, we will show that much can be
accomplished using hexahedra, and their simpler implementation
in both the forward and inverse modules helps to keep computer re-
sources manageable and may facilitate wider transfer of technique
within the EM community. We solve for the electric field through
the governing Helmholtz equation, so edge FEs are used (lowest
order type) (Nédélec 1986). These conforming elements allow field
discontinuities normal to conductivity interfaces to be represented
but preserve continuity of the tangential field component. FEs do
not invoke material averaging procedures across cell boundaries as
is done in staggered grid finite difference schemes (daSilva et al.
2012) so there is no question about the placement of sharp interfaces.

The design factors cited above can put high demands upon mesh
discretization and computing resources for larger data sets. Be-
cause of such demands, especially memory, iterative solutions have
dominated the literature heretofore (Haber et al. 2007; Börner et al.
2008; Commer & Newman 2008; Um et al. 2012, and many others).
Since at least the work of Pridmore et al. (1981), however, iterative
forward solvers are known to become ill-conditioned and slow to
converge if grid cell aspect ratios grow to be extreme. Moreover,
iterative solutions for the Helmholtz equation require careful pre-
conditioning and even so may sometimes fail to converge (also see
Grayver et al. 2013). They become expensive when many right-hand
source vectors are needed, such as in controlled-source applications
or the inversion approach we describe, as each source requires the
work of a full simulation. Conditioning issues may apply as well to
iteratively solving normal equations in the inversion parameter step
(op. cit.).

Recent advances in computing power, especially emergence of
less expensive many-core, symmetric multiprocessor (SMP) work-
stations with substantial RAM, have motivated us to implement
direct solvers both for the forward model responses and for Gauss–
Newton inversion parameter steps. This is intended to produce a
practical 3-D inversion code incorporating topography that can han-
dle moderately large data sets on an affordable, single-box computer
format. We find that accurate solutions for meshes with large ele-
ment aspect ratios having run times nearly independent of frequency
are possible. The solution of hundreds of source vectors at the cost
of factoring the forward system matrix allows explicit calculation of
parameter Jacobians accurately and efficiently, as has been applied
for some time with the 2-D problem (e.g. deGroot-Hedlin & Consta-
ble 1990; deLugao & Wannamaker 1996; Key & Constable 2011).

We certainly are not the first to examine direct solutions for
3-D problems. Streich (2009) created a staggered-grid finite differ-
ence algorithm with a direct solver for simulating marine controlled
source electromagnetic (CSEM) responses. Oldenburg et al. (2008,
2013) used a direct solver in their finite difference H-field simu-
lator for time domain electromagnetic (TDEM) inversion and Um
et al. (2015) used a mixed direct-iterative solution to model well
casing effects with FEs. daSilva et al. (2012) utilized rectilinear

edge FEs in forward modelling of seafloor CSEM models while
Ren et al. (2013) considered a direct solver for tetrahedral meshes.
Grayver et al. (2013) incorporated Streich’s solver to compute for-
ward responses and parameter Jacobians explicitly and create an
inversion algorithm where the parameter step was estimated using a
pre-conditioned conjugate gradient (PCG) scheme. Schwarzbach &
Haber (2013) developed an unstructured mesh of tetrahedra with the
forward problem solved directly and the parameter step computed
via PCG or iterative quasi-Newton method. Usui (2015) solved MT
responses directly using a tetrahedral mesh and developed an inver-
sion code with direct solution of the parameter step in model space.

In Part I of our contribution, we apply a direct solver to edge FE
equations of a deformed hexahedral mesh and verify that accurate
responses are achieved for subsurface and topographic structure.
Good responses are obtained also in the dielectric air portion of the
model after applying a divergence correction. Parameter Jacobians
are computed accurately and efficiently in the direct framework ex-
ploiting reciprocity. Moderately large meshes can be computed in
what we believe are practical run times. In Part II, forward simula-
tions are used together with MT data to form normal equations for
a regularized inversion step. We investigate the data space (Siripun-
varaporn et al. 2005) formulations of the step and confirm that it
can handle significant parameter sets. We invert a well-known field
data set to demonstrate algorithm performance in real-world set-
tings. The HexMT algorithm, is parallelized for widely available,
server-class SMP workstations.

2 F I N I T E E L E M E N T F O R M U L AT I O N

For representing structure with topography, we use an FE mesh
such as in Fig. 1. Corners of elements at the air-earth interface
(surface) are adjusted vertically to represent elevation changes. This
is similar to the fashion of Nam et al. (2007). Sub- and superajacent
element layers are moved similarly but with steadily diminishing
magnitude away from the surface until upper and lower datum planes
are reached. Beyond those planes, the element layers remain flat.
The height and depth of these planes from the background air-earth
interface typically is several times the maximal topographic model
relief to allow the elements to be close to parallelepipeds in shape.
If there are elements that are not close to parallelepipeds, the order
of convergence versus discretization may be reduced (see Falk et al.
2011).

Formally, the spatial domain of Fig. 1 is a cuboid �, whose top
portion is air (σ = 0) and whose lower portion is earth’s subsur-
face (σ > 0) which may exhibit topography in its central portion.
We assume that the conductivity of the earth’s subsurface may be
an arbitrary 3-D isotropic function in the middle of the domain,
while towards the distant domain boundaries the conductivity be-
comes 1-D with flat topography, that is, changing only vertically.
In the frequency domain with eiωt time dependence, where ω is the
angular frequency, the physical property variables are admittivity
σ̂ = σ + iωε with electrical conductivity σ ≥ 0, dielectric permit-
tivity ε > 0, and magnetic permeability μ > 0.

Similar to numerous other authors (e.g. following Hohmann
1988), we define (Ep, Hp) as primary fields, which would be those
within and over the 1-D host, for use as an impressed source Jimp.
Thus we denote

J imp = −(σ̂ − σ̂ p)E p (1)

Secondary and primary fields are added to obtain total fields as:

Et = E + E p, H t = H + H p (2)
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Figure 1. 3-D view of an example hexahedral mesh with topography. Only the underground part of the mesh is shown. One sees increasingly high aspect ratio
of elements approaching the boundary ∂�. This view is from the southwest of mesh number 3 for Mount Erebus model analysed later.

One assumes that far from conductivity inhomogeneity, that is,
near ∂�,

Et ≈ E p, H t ≈ H p (3)

and thus the secondary electric field satisfies E ≈ 0 near the domain
boundary.

The secondary field E obeys the vector Helmholtz equation in
the open spatial domain � ⊂ R

3:

∇ ×
(

1

μ
∇ × E

)
+ iωσ̂ E = −iω(σ̂ − σ̂ p)E p (4)

(Hohmann 1988). As a basis for FE formulation, we will consider
a weak form of eq. (4) (cf. Monk 1992):∫

�

1

μ
∇ × E · ∇ × M + iω

∫
�

σ̂ E · M = iω
∫

�

J imp · M (5)

satisfied for all M ∈ H0(∇×, �). The solution E should be a mem-
ber of the same Sobolev spaceH0(∇×, �) which is formally defined
as

H0(∇×,�) =
{

M :� → C
3 :

∫
�

(|M |2 + |∇ × M |2) < ∞,

n × M |∂� = 0

}
(6)

It is a space of complex valued vector fields that are square inte-
grable with square integrable curl. Heuristically, one can think of
the members of this space as having continuous tangential compo-
nents across any surface going through �. H0(∇×, �) is a natural
space for the electric field E. The boundary condition n × E = 0 is
a natural consequence of eqs (2) and (3).

For numerical approximation, we choose first-order edge ele-
ments Hh

0 (∇×, �) on a hexahedral mesh (see Nédélec 1986). By
construction Hh

0 (∇×,�) ⊂ H0(∇×,�) and as the mesh element
size h → 0, Hh

0 (∇×, �) approaches H0(∇×,�). The tangential
components of the members of Hh

0 (∇×,�) are continuous across
elements while the normal component may experience a jump. De-
grees of freedom of the first-order edge elements are related to the
integral of the E-field along an edge. Through Stokes’ theorem, an
integration of E along the edges, around the face yields the flux of
∇ × E through the face. This shows that edge element discretization
is compatible with the curl operator.

The electric field over � is represented as a linear combination
of the edge shape functions Ni with coefficients ξ i:

E =
ne∑

i=1

ξi Ni (7)

where i = 1, . . . , ne are indices of the edges that do not lie on
the boundary. By excluding the edges lying on the boundary one
imposes the boundary condition of n × E = 0 on ∂�. It is equivalent
to setting the coefficients related to the edges lying on the boundary
to zero. By substituting eq. (7) into eq. (5) and using Nj as test
functions, one obtains a linear system (cf. Monk 1992)

Aξ = b (8)

Ai, j =
[∫

�

1

μ
∇ × Ni · ∇ × N j + iω

∫
�

σ̂ Ni · N j

]
(9)

bi = iω
∫

�

J imp · Ni . (10)

The secondary magnetic field is calculated as

H = −∇ × E

iωμ
. (11)

This justifies the choice of first-order edge elements which have the
same accuracy O(h) for both the field and the curl.

Note that 1-D host layer interfaces may project through individual
deformed elements and as a result Jimp is discontinuous within an
element. The integration of terms in eqs (9) and (10) is done using
a quadrature integration of the form

n∑
i=1

f (ui )vi , (12)

where ui are points in the reference element, which is a unit cube
in our case and vi are weights. If the integrand f is smooth in the
element, which is true for eq. (9) and for eq. (10) if the 1-D host
layer interface does not project through an element, positions ui and
weights vi are set according to Gaussian quadrature. Yet for eq. (10),
if a 1-D conductivity layer interface splits the element, the integrated
function is discontinuous and the integration is done by distributing
ui uniformly in the unit cube and setting all vi = 1

n . For accuracy of
integration, n should have larger values than in the case of a smooth
function. As will be seen, with sufficiently fine integration of the
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primary field over the element conductivity differences, we are able
to achieve accurate responses. For the numerical integration, we
use 10 points in each direction, which results in 1000 points in each
element. To limit the additional computational effort due to the
evaluation of the source term at so many points, such an integration
is done only if the layer boundary crosses the element.

In this paper we consider the MT source, namely that of a verti-
cally propagating, planar EM wave. The total field components at
specified surface locations and frequencies are interrelated through
the tensor impedance Z and tipper K as⎡
⎢⎣

Et
x

Et
y

H t
z

⎤
⎥⎦ =

⎡
⎢⎣

Zxx Zxy

Z yz Z yy

Kzx Kzy

⎤
⎥⎦

[
H t

x

H t
y

]
, (13)

where subscripts x, y, z denote components of a vector field. Eq.
(8) is solved twice for two polarizations (k = 1, 2) of the source
field Ep, typically in the x- and then the y-directions, to generate
two equations in two unknowns for each row of the tensor (13).
The equations expressing the impedance in terms of the electric and
magnetic fields are listed in, for example, Newman & Alumbaugh
(2000) and can be written analogously for the tipper.

A receiver can be positioned at an arbitrary location r with respect
to element edges via appropriate interpolation. In general, let r be
inside an element with edges e1, . . . , e12. Then field Ek at location
r is given by

Ek(r) =
12∑

l=1

Nel (r)ξel =

⎡
⎢⎢⎣

(wE
x )T ξ k

(wE
y )T ξ k

(wE
z )T ξ k

⎤
⎥⎥⎦ . (14)

Here wE
x , wE

y , wE
z contain interpolation vectors with at most 12

non-zero values corresponding to x, y and z components of edge
shape functions Ne1 (r), . . . , Ne12 (r).

Similarly, the secondary magnetic field H k(r) for polarization k,
calculated using eq. (11) at location r, is given by

H k(r) =
12∑

l=1

∇ × Nel (r)

−iωμ
ξel =

⎡
⎢⎣

(wH
x )T ξ k

(wH
y )T ξ k

(wH
z )T ξ k

⎤
⎥⎦ . (15)

This time the only non-zero values of wH
x , wH

y , wH
z are x, y and z

components of(∇ × Ne1 (r)

−iωμ
, . . . ,

∇ × Ne12 (r)

−iωμ

)
.

Total fields are obtained as in eq. (2).
The locations of the MT receivers are on the Earth’s surface,

which is always at an element’s face. The along-face (tangential)
components of the discretized electric field experience a jump at
the face edges, thus it is best to use the values of the field cal-
culated at the face centre. One could evaluate the field elsewhere
by interpolation of the fields from the neighbouring face centres,
yet for simplicity we assume that the receiver’s location r is at the
face centre. This requires MT receiver relocations in practice. In
our inversions (see our companion paper, Kordy et al. 2015b) we
consider the element size to be several times smaller than the dis-
tance between the receivers, thus the relocation is not very large and
does not appear to lead to a significant inversion error (see subse-
quent Mount Erebus simulation and the brick-under-hill synthetic
inversion of Kordy et al. 2015b).

Because the tangential electric field is continuous across the sur-
face, it is immaterial whether we approach the surface from within

an element below or above the air-earth interface. E-fields normal
to a surface are discontinuous and must be evaluated on the side
of interest, or interpolated using the values of the total electric cur-
rent at the element centres. If magnetic permeability μ is the same
above and below the surface, the magnetic field should be continu-
ous as well. However, because the H-field obtained through curl E
is piecewise constant from element face to face, we use an average
of the H-field from the elements on either side of a receiver. As a
result interpolation vectors w corresponding to the magnetic field
may have up to 20 non-zero entries. The interpolation vectors w

depend neither on the primary source fields nor on the conductivity
model σ .

To calculate the MT response apart from solving eq. (8) one
needs to evaluate the entries of matrix A as well as calculate the
source vectors b (eq. 10). In our implementation using OpenMP,
for a model with a mesh with 101, 101 and 50 cells in the x, y and
z directions, respectively (101x 101y 50z) and 256 MT receivers,
the calculation of the system matrix takes about 1.7 per cent of
the time of the forward modelling (response F and Jacobian J).
We have parallelized the calculation of the source vectors (10) also
using OpenMP. If 9-point quadrature is used for all elements, the
time of the calculation of the right hand side (rhs) vectors, for the
same model, is about 0.15 per cent of the total forward modelling
time. In practice, if the background conductivity layer crosses an
element, we use a quadrature with 1000 points, which increases the
computational time. Yet even if the quadrature with 1000 points
is used for all of the elements, the time of computation is around
0.8 per cent of the total forward modelling time.

3 D I V E RG E N C E C O R R E C T I O N

Smith (1996) recognized that matrices formed from the numerical
approximation of eq. (4) suffer from a particular ill-conditioning.
This is why researchers considered solving for vector and scalar
potentials (Haber et al. 2000; Mitsuhata & Uchida 2004; Roy 2007;
Kordy et al. 2015a). The second term on the left side of eq. (4) be-
comes very small at either low frequencies or small admittivities, so
the solution becomes vulnerable to parasitic curl-free fields. These
are manifest as erroneous divergences of current density within the
earth model that require corrective steps. For example, consider
linear system (8) whose true solution is ξ , approximated by eq. (7).
Let the gradient of a potential field be added to the solution such
that

Ê = E + ∇ϕ̃ =
ne∑

i=1

ξ̂ Ni (16)

and let the values of ∇ϕ̃ be of order 1. The residual r of eq. (7) is
defined by:

r = Aξ̂ − b = Aξ − b + A(ξ̂ − ξ ) = A(ξ̂ − ξ ). (17)

The ith component of the residual vector r is

ri =
ne∑
j=1

Ai, j (ξ̂ j − ξ j ),

which for the air (σ̂ = iωε0) reduces to

ri = −ω2ε0

∫
�

Ni · ∇ϕ̃.

Thus, the residual will be nonzero, but very small—of the order
ω2ε0 for air. Even if we modify the field substantially by adding
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∇ϕ̃, there may be hardly any difference in the residual value. An
eigenvalue analysis of ill-conditioning of eq. (8) is presented in
Appendix A.

For iterative solutions to eq. (8), the typical procedure for re-
moving spurious curl-free fields, called divergence correction, is
to compute several solution iterations, estimate current divergences
over the discretized model domain, calculate the curl-free fields
arising from such divergences and remove these fields from the full
iterative solution at that stage (e.g. Smith 1996; Newman & Alum-
baugh 2000; Sasaki 2001; Siripunvaraporn et al. 2002; Farquharson
& Miensopust 2011). This is repeated numerous times until final
convergence. One can also add the divergence condition to the sys-
tem of equations (Vardapetyan & Demkowicz 1999; Schwarzbach
2009; Grayver et al. 2013) although that increases the number of
unknowns in the linear system. For example, Grayver et al. (2013)
in their approach increase the number of unknowns by one-third.

We present an alternative technique that achieves an efficient
and accurate divergence correction for our FE method. Consider
any domain �, with spatially changing conductivity σ̂ , which in-
cludes both air and the subsurface. The space H0(∇×, �), defined
in eq. (6), may be decomposed into the null space of the curl and the
space orthogonal to it (Gunzburger & Bochev 2009). Specifically:

H0(∇×,�) = R(∇) ⊕ R(∇)⊥σ̂ (18)

For every M ∈ H0(∇×, �), there is a unique decomposition:

M = ∇ϕM + M⊥, ϕM ∈ H 1
0 (�), M⊥ ∈ R(∇)⊥σ̂ (19)

where

H1
0(�) =

{
ϕ : � → C :

∫
�

(|ϕ|2+|∇ϕ|2) < ∞, ϕ|∂�=0

}

R(∇) = {∇ϕ : ϕ ∈ H1
0(�)}

R(∇)⊥σ̂ =
{

M ∈ H0(∇×, �) :
∫

�

σ̂ M · ∇ϕ = 0 ∀ϕ ∈ H1
0(�)

}

Space H1
0(�) is a space of complex valued scalar potentials, the

square integrable scalar fields which have a gradient that is square
integrable. One can think of the members of this space as of scalar
functions that are continuous across any surface inside the domain.
The ‘0’ subscript corresponds to the assumption of zero value on
the boundary �. Once the gradient ∇ is applied to those functions
one obtains the space R(∇). Because ∇ × ∇ϕ = 0, R(∇) is in the
null space of the curl. Moreover, the range of the gradient on H1

0 is
exactly equal to the null space of the curl in the space H0(∇×, �)
(Gunzburger & Bochev 2009). For more thorough discussion of
Sobolev spacesH0(∇×, �) andH1

0(�) see Girault & Raviart (1986)
and Adams & Fournier (2003). The decomposition in eq. (18) allows
us to represent a field from H0(∇×, �) as a sum of two fields, one
in the null space and the other orthogonal to it. This decomposition
is called the Helmholtz decomposition or the Hodge decomposition
of H0(∇×, �). The proof of its existence for the case of a constant
σ̂ may be found in Amrouche et al. (1998). For a proof given our
case of non-constant σ̂ when � includes both air and the earth’s
subsurface, one should consider a Poisson equation for ϕM:∫

�

σ̂∇ϕM · ∇φ =
∫

�

σ̂ M · ∇φ

for ϕM , φ ∈ H1
0, which has a unique solution.

In the case of a constant σ̂ , it is a decomposition into a curl-free
part ∇ϕM and a divergence-free part M⊥, which is orthogonal to
R(∇). In the constant σ̂ case it is the same as representing the original

Figure 2. Hodge decomposition of the solution E, together with the added
error of the form ∇ϕ̃.

field using a vector and a scalar potential with a Coulomb gauge,
in which case the vector potential is divergence free (Mitsuhata &
Uchida 2004).

In our context, when σ̂ �= constant, we have ∇ · (σ̂ M⊥) = 0,
which may be seen through integration by parts of the condition
defining R(∇)⊥σ̂ . Also, if σ̂ ∈ R and σ̂ > 0 one may interpret the
space R(∇)⊥σ̂ as the space orthogonal to R(∇) with an inner product
having σ̂ as the weight.

To visualize the subsequent derivations consider Fig. 2. Let the
solution E to eq. (5) be represented using the Hodge decomposition
(19), namely

E = ∇ϕE + E⊥, ϕE ∈ H 1
0 (�), E⊥ ∈ R(∇)⊥σ̂ . (20)

By setting M = M⊥ ∈ R(∇)⊥σ̂ and then M = ∇ϕ, one can show
that eq. (5) is equivalent to two uncoupled equations on R(∇)⊥σ̂ and
R(∇) respectively:∫

�

1

μ
∇ × E⊥·∇ × M⊥ + iω

∫
�

σ̂ E⊥·M⊥ = iω
∫

�

J imp·M⊥

iω
∫

�

σ̂∇ϕE · ∇ϕ = iω
∫

�

J imp·∇ϕ.

(21)

The first equation is satisfied ∀M⊥ ∈ R(∇)⊥σ̂ , the second
∀ϕ ∈ H1

0(�). The second equation ensures that the component ∇ϕE

is proper, so if we impose this equation, we may remove the error
of the form ∇ϕ̃. In a discrete case, we are dealing with Hh

0 (∇×, �),
which is the space of first-order edge elements. An important prop-
erty of this space is that a Hodge decomposition similar to eq. (18)
exists (see Gunzburger & Bochev 2009). The space H1

0(�) has to
be replaced with H1,h

0 (�)—the space spanned by first-order nodal
shape functions on the same mesh.

The correction is applied as follows. Let E, be an approximation
of the electric field given by eq. (7). Solve Poisson equation for
∇ϕcorr ∈ H1,h

0 (�), ∀ϕ ∈ H1,h
0 (�):

iω
∫

�

σ̂∇ϕcorr · ∇ϕ = iω
∫

�

(σ̂ E − J imp)·∇ϕ. (22)
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The corrected electric field Ecorr is

Ecorr = E − ∇ϕcorr. (23)

Note that the corrected field satisfies the original eq. (5) in a
discrete setting for E, M ∈ Hh

0 (∇×, �). In fact, if infinite precision
was used to solve eq. (5) numerically, there would be no need for
the correction. The correction considers the original equation on
a subspace and removes a numerical error introduced by a direct
solver that uses finite precision.

The correction may be given further justification by con-
sidering the second equation in eq. (21). Using the fact that
E⊥ = E − ∇ϕE ∈ R(∇)⊥σ̂ and integrating by parts, we obtain:

iω
∫

�

(∇ · (σ̂ E))ϕ = iω
∫

�

(∇ · J imp)ϕ. (24)

Thus, we ensure that the divergence of electric current is proper
weakly, on average, with ϕ ∈ H1,h

0 (�) as a weight. The right-hand
side of eq. (22) may be viewed as excessive divergence of the electric
current, which is removed when eq. (23) is applied.

Divergence correction requires solving the Poisson eq. (22),
which we do using nodal-based FEs. The divergence correction sys-
tem matrix has three times less variables than the original system
matrix, and at least four times less non-zeroes. In our experience,
the divergence correction requires much less run time than solving
the original system (8); factorization phase is at least eight times
faster and solve phase is at least five times faster.

Although the main computational cost is related to the solution
of the linear system (22), it is not the only cost of the divergence
correction. One needs to calculate the system matrix of eq. (22),
evaluate the right-hand side of eq. (22), and once ϕcorr is obtained
one needs to apply the correction using eq. (23). We have paral-
lelized those calculations using MKL SparseBLAS library as well
as using OpenMP. After parallelization, all of those additional calcu-
lations for a model with a mesh 101x 101y 50z and 256 MT receivers
are more than 2.5 times faster than the solution of eq. (22) using
MKL PARDISO and constitute about 3.4 per cent of the forward
modelling time. The divergence correction sparse solve with MKL
PARDISO takes about 9 per cent of the forward modelling time.

4 F I E L D A N D M T R E S P O N S E
JA C O B I A N S

A primary goal in developing the FE simulator is to apply it to
non-linear inversion of MT field data. As described more fully in
our companion paper, we examine both model and data space ap-
proaches to parameter updates under the Gauss–Newton framework
(Siripunvaraporn et al. 2005). For defining terms as related to FE
simulation, the model space update equation is (e.g. Tarantola 2005;
Mackie et al. 1988):

[J T Bd J + λBm](mn+1 − m0)

= J T Bd [d − F(mn) + J (mn − m0)], (25)

where F(mn) is the MT response at iteration n using our FE code, d is
the vector of Nd observed MT data weighted against their estimated
covariance matrix B−1

d , B−1
m is a model covariance matrix which

stabilizes or regularizes the Nm model parameter variations, m0 is a
reference model, and λ is a constant controlling trade-off between
data fit and model parameter stabilization.

Term J is the Nd by Nm matrix of parameter Jacobians or deriva-
tives (Tarantola 2005) which specify the incremental change in the
value of an MT response datum (in Z or K) to an incremental change

in the value of a subsurface electrical conductivity parameter. First,
we focus on the derivatives of the secondary fields. There have been
numerous ways to express this in the literature (e.g. McGillivray
et al. 1994); here we basically generalize from the 2-D approach of
deLugao & Wannamaker (1996). Recalling the interpolation vectors
w, consider an entry σ j of the FE mesh conductivity vector σ . The
entry may correspond to a single element or a group of them. The
derivative of a field value wTξ k with respect to σ j may be evaluated
as:

∂(wT ξ k)

∂σ j
= wT ∂ξ k

∂σ j
= wT ∂(A−1bk)

∂σ j
= wT

[
∂ A−1

∂σ j
bk + A−1 ∂bk

∂σ j

]

= wT

[(
−A−1 ∂ A

∂σ j
A−1

)
bk + A−1 ∂bk

∂σ j

]

= wT

[
−A−1 ∂ A

∂σ j
(A−1bk) + A−1 ∂bk

∂σ j

]

= wT

[
−A−1 ∂ A

∂σ j
ξ k + A−1 ∂bk

∂σ j

]

for source polarization k. This reduces to

∂(wT ξ k)

∂σ j
= wT

(
A−1

[
− ∂ A

∂σ j
ξ k + ∂bk

∂σ j

])
. (26)

As written, in order to calculate the derivatives of the field values
with respect to all (σ j )

Nm
j=1, one would have to solve one linear equa-

tion for each polarization and for each σ j, and then multiply by
the proper w, to obtain the desired derivatives. That yields 2 · Nm

linear systems to solve, where Nm is the number of inversion cells.
However, exploiting interchangeability of sources and receivers in
reciprocity, or using the adjoint method, or simply using the as-
sociativity of the matrix multiplication, eq. (26) may be rewritten
as

∂(wT ξ k)

∂σ j
= (

wT A−1
) [

− ∂ A

∂σ j
ξ k + ∂bk

∂σ j

]

= (
A−T w

)T
[
− ∂ A

∂σ j
ξ k + ∂bk

∂σ j

]
. (27)

In this form we solve one linear system for each field component.
The method yields 5 · Nrec linear systems to solve, where Nrec

denotes the number of receivers. The matrix A, defined at (9), is
symmetric, so A−T = A−1. To calculate A−1w, we are solving a
linear system where the source w, defined in eqs (14) and (15),
is distributed on the edges surrounding the receiver location (cf.
deLugao & Wannamaker 1996).

Jacobians for impedance Z and tipper K at each receiver follow
by applying the chain rule to the equations for the impedance and
tipper elements of eq. (13) defined from applying the two source
polarizations k = 1, 2. The individual impedance element deriva-
tives are listed in Newman & Alumbaugh (2000) and the tipper
element derivatives follow by analogy. For inversion implementa-
tion, derivatives are converted to be with respect to log10 resistivity
(Hohmann & Raiche 1988).

The main computational cost of the calculation of the Jacobian is
the factorization of A and application of its inverse to w, for which
example run times are given further in the paper. Yet one also needs
to use the result of this calculation in eq. (27). And as for large
models the Jacobian matrix is large, it might take a notable time to
fill its entries in the memory. In our implementation with OpenMP
the time of evaluation of eq. (27), once (A−Tw) is obtained, and the
successive evaluation of the derivative of Z and K with respect to
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80 M. Kordy et al.

Figure 3. Speedup of MKL PARDISO and MUMPS for a fixed problem with mesh with 85x 85y 50z cells on a single workstation with 24 cores. For PARDISO,
runs with different number of OpenMP threads are compared. For MUMPS, we present runs with different number of MPI processes, each using a single
OpenMP thread, which is the configuration with the smallest total time (factorization + solution of 500 rhs). We show the speedup of the factorization phase,
the solution phase with 500 rhs, and of both of the phases together.

the model, takes about 4 per cent of the forward modelling time for
a model with a mesh 101x 101y 50z and 256 MT receivers.

5 D I R E C T S O LV E R

Several attractive features of direct solutions were listed in Intro-
duction. Here we investigate the viability of 3-D FE modelling and
inversion performed on single-chassis, multicore, SMP computers
typically used in server applications and which are relatively afford-
able. We were attracted to this platform at first for direct solution
of the model-space, Gauss–Newton parameter step equation, which
was parallelized using a matrix tiling approach under OpenMP
compiler directives and showed good scalability across an 8-core
workstation with 32 GB RAM (Maris & Wannamaker 2010). Ini-
tially this tiling solution was applied also to the banded (daSilva
et al. 2012) FE matrix and showed good scalability across a newer
24-core workstation with 512 GB RAM (Kordy et al. 2013). How-
ever, solution time overall was slower than desired, for example
taking over 1 hr per frequency for a mesh 85x 88y 50z and two
source vectors (i.e. no Jacobians).

Thus, in an effort to improve speed, we have investigated two
popular computational libraries for directly factorizing A = LDLT

and reducing source vectors. One is MUMPS (Amestoy et al. 2001,
2006), utilized by others (e.g. Oldenburg et al. 2008; Streich 2009;
daSilva et al. 2012; Oldenburg et al. 2013). The other is PARDISO
(Intel MKL implementation) (Schenk & Gärtner 2004). PARDISO
has turned out to be faster in a shared memory setting.

The matrix A in eq. (9) is complex valued and symmetric (but not
Hermitian). Both solvers initially find a permutation of variables, P,
and the matrix is replaced with PAPT (permutation of both columns
and rows of the matrix, so that the matrix remains symmetric). Then
a lower triangular matrix L and a diagonal matrix D are found such
that PAPT = LDLT. The last step is the solve phase, that is, solving
the system (8), which may be written as

P APT (Pξ ) = Pb or L DLT ξ̃ = Pb, where ξ̃ = Pξ

Permutation P is chosen to minimize the number of nonzero values
in L matrix, and to allow for parallelization of the factorization and
solve phases.

Both MUMPS and MKL PARDISO use third party ordering li-
braries to find P. For a comparison of the two solvers, we used
the METIS (Karypis 2003) ordering library and thus both MUMPS

Figure 4. Outcropping double brick resistivity model, together with the
mesh used. Element boundaries are drawn as solid green lines.

and PARDISO calculate L having the same number of non-zeros.
For a mesh with 85x 85y 90z cells, on a 24-core workstation (four
Intel E5-4610 Sandy Bridge hex-core processors at 2.4 GHz), the
factorization time of matrix (9) with MKL PARDISO was typically
∼40 per cent of that of MUMPS. The solution phase of MKL PAR-
DISO took about 80 per cent of that of MUMPS. This may reflect
the fact that PARDISO is written for the shared memory architec-
ture (although there is an option to use it on a cluster), whereas
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3-D MT FEM simulation with direct solvers 81

Figure 5. Forward MT response of a double brick model for profile at y = 16 km for comparison with Integral Equation code response. Frequencies are
0.001 and 0.1 Hz.

MUMPS is written for a distributed memory system. Additionally
MUMPS uses more memory if many MPI processes are used, as
the data are copied between the processes. MUMPS with 24 MPI
processes uses more than twice the memory than that when run with
one MPI process, which is about the amount of memory that MKL
PARDISO needs.

The scalability of MKL PARDISO (version 11.2 of MKL library)
and MUMPS (version 4.10.0) libraries is presented in Fig. 3. With
24 cores, the speedup of the factorization and solution phases is 18

and 13, respectively for PARDISO. For comparison, the speedup of
MUMPS with 24 MPI processes, for the same problem, is 9 and 7
for the factorization and solution phases respectively. Furthermore
we found that MUMPS scalability nearly plateaued between 12 and
24 cores. The times of computation for 24 cores were 81 and 111 s
for factorization and solution phases in the case of PARDISO, and
190 and 153 s for factorization and solution phases in the case of
MUMPS. Performance improvements may be expected in future
versions of either library.
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Figure 6. Real component of electric field Ex at a height of 2 km for the double brick model calculated before and after divergence correction for a frequency
of 0.001 Hz. Y-axis scales are different for figure on the right and on the left; the field before correction is 100 × larger overall in magnitude. Tick marks along
top plot border show calculation point locations.

6 E X A M P L E F O RWA R D C A L C U L AT I O N S

The accuracy of our 3-D FE forward code is tested against inde-
pendent algorithms. These include a standard test of conductive
and resistive heterogeneity under a flat surface, but we also focus
on topography as a principal rationale for this work. Tests high-
light the strength of the FE method in defining smooth, non-jagged
topographic slopes.

6.1 Outcropping double brick Model

First we consider the popular, outcropping double brick 3-D model
originally proposed in 2-D by Weaver et al. (1985, 1986) and in-
cluded in the Commemi collection of trial models by Zhdanov et al.
(1997). The central portion of its FE mesh appears in Fig. 4. The
mesh has 52x 53y 31z elements, out of which the two bodies consist
of 20x 21y 8z elements. We used 10 layers for the air and 21 layers
for the earth. Element sizes grow steadily away from the centre of
the domain to a total distance of 555 km from the centre. The 1-D
background model is the true 3-D model without the two outcrop-
ping bricks. All calculations are done in double precision.

Complex tensor impedance Z and tipper K elements were cal-
culated at the surface, over the cells’ centres, along a profile at
y = 16 km for frequencies of 0.001 Hz and 0.1 Hz. They are com-
pared in Fig. 5 with those computed using the Integral Equations
code of Wannamaker (1991), for which the body discretization co-
incides with that of the FE mesh. The agreement between the two
codes clearly is very good, and compares favourably with the check
against a finite difference approach in Mackie et al. (1993). Com-
parison was similarly good for the profile at y = 0 km (not shown)
although Zxx, Zyy, Kzy are zero there.

The requirement for, and effectiveness of, the divergence correc-
tion described previously, is demonstrated for a profile 2km in the
air over the centre of the double brick model in Fig. 6. On the left is
the electric field in the x-direction across the sides of the body at the
low frequency of 0.001 Hz. It consists mainly of numerical noise
due to spurious curl-free electric fields. Nevertheless, as seen on
the right side, the divergence correction is able to remove the error
leaving a response which is a smooth, upward-continued version of
a surface response (cf. Zxy in Fig. 5). Thus we are able to model
accurate E-fields in the air with our FE method as would be desired
under efforts to create airborne MT platforms (e.g. Macnae 2010).

Figure 7. YZ cross-section of a 2-D valley, together with the central part of
the 3-D FEM mesh. Element boundaries are drawn as solid green lines.

Figure 8. XZ cross-section of the 2-D valley, together with the 3-D FEM
mesh. 5× vertical exaggeration.

6.2 2-D valley and hill

Because topographic simulation and inversion is a principal moti-
vation for this work, we present several accuracy checks here. First,
we compare fields over an elongate 3-D valley with those of the
2-D valley model of Wannamaker et al. (1986) computed with their
nodal FE code. The valley is 450 m deep, 500 m wide at the bottom
and 3 km wide at the top in a host of resistivity ρ = 100 �m (3-D
cross-section in Fig. 7). In 3-D, infinite strike is approximated with a
30 km length (Fig. 8). The entire 3-D mesh consisted of 39x 41y 30z
elements while the valley portion was covered by 21 elements across
the y-direction. The mesh extended to 6 km above the ground, 11 km
below the ground and laterally 26 km and 14 km from the valley
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Figure 9. Normalized EM fields along the profile across the 2-D valley, for x = 0 km.

Figure 10. YZ cross-section of a 2-D hill, together with the central part of
3-D FEM mesh.

in x- and y-directions respectively. The 1-D background model is a
100 �m half space.

A coarse and a finer 2-D discretization are considered. The coarse
valley is made up of 20 layers of elements each 22.5 m thick. The
finer valley is made up of 40 layers of elements each 11.25 m thick.
Element dimensions grow steadily away from the centre to a total
distance of over 20 km to the sides and depth. Note that the 2-D
mesh is rectilinear such that slopes must be made up of triangles
rather than deformed quadrilaterals (Wannamaker et al. 1986). The
E- and H-fields across the valley centre normalized by the primary
fields are plotted in Fig. 9. The responses of the 3-D and 2-D codes
are in close agreement.

For the hill model, we consider the high frequency of 1000 Hz to
test whether the 3-D code can accurately simulate refraction of the
EM fields normal to the slope, as was done in 2-D by Wannamaker
et al. (1986). The small skin depth (∼160 m) requires a finer mesh

Figure 11. The ρa and phase responses from the 2-D code and 3-D codes for the 2-D hill at 1000 Hz. TE denotes the values derived from Zxy, TM denotes the
values derived from Zyz.
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Figure 12. Central part of the finer mesh for the 3-D hill model.

closer to the hill surface, although the lateral limits do not have
to be so far (Fig. 10). The mesh extends 3 km above the highest
point, 1.3 km below the base and laterally 5 and 4 km from the hill
in x- and y-directions. The 2-D hill has the same dimensions and
discretization as the valley for both coarse and fine versions. We
compute the E- and H- fields parallel to the slope of the hill, and
use those values to calculate apparent resistivity ρa.

The ρa should approach the true resistivity of the ground
(100 �m) at high frequency because the total EM fields ideally
become purely parallel to the slope. We present ρa and phase for
TE and TM modes in Fig. 11. Note that for both fine mesh 2-D
code and 3-D code results, away from breaks in slope, ρa is close
to 100 �m and phase is close to 45◦. In fact, the 3-D phase results
look the most accurate, which may reflect a greater ease for lay-
ers of hexahedral elements to simulate essentially 1-D fields than
for triangles, although the 2-D results are converging with finer
discretization.

6.3 3-D trapezoidal hill

The next test model is the 3-D hill model considered by Nam et al.
(2007). It has the same dimensions as the previous 2-D hill, but is
square in horizontal cross-section (see Fig. 12). It is 0.45 km high,
0.5 km wide at the hilltop, 2 km wide at the base with resistivity of
100 m. It is calculated for 2 Hz, and the MT response is compared
to that of Nam et al. (2007) and Ren et al. (2013). The background
1-D model is a 100 �m half space. Two grids were considered, the
finer grid being 97x, 97y, and 50z while the coarser grid is 27x, 27y,
24z. The ρa, phase and the tipper along a profile across the centre of
the hill are presented in Figs 13 and 14. The MT response calculated
in Nam et al. (2007), Ren et al. (2013) and the field calculated by
our FE code appear very similar.

6.4 Mount Erebus volcanic edifice, Antarctica

The prior topographic models involve relatively simple shapes and
slopes. To test our algorithm’s ability to accurately simulate topo-
graphic response of a complex natural structure, we consider Mount
Erebus on Ross Island, Antarctica. Rising from sea level to 3794 m
elevation, it may be the best example of an active phonolitic volcano
(Moussallam et al. 2013). Our group has begun a comprehensive

Figure 13. Apparent resistivities and phases for the 3-D hill model along
a profile across the hill compared with the result of Nam et al. (2007). The
results of Nam have been discretized from their plots.

Figure 14. Tipper (x-component) for the 3-D hill model along a profile
across the hill compared with the result of Ren et al. (2013) calculated on
their seventh mesh. The results of Ren et al. have been discretized from their
plots and converted to eiωt time dependence.

3-D MT field survey to verify petrological models for magma gen-
esis and transport (Hill et al. 2015). One season of fieldwork has
been completed in 2014–2015, with two more consecutive seasons
mobilizing at the time of this writing. Final responses are to be avail-
able for modelling in mid-2017. All sites are placed by helicopter
assist, enabling relatively uniform coverage even in steep terrain.
The digital elevation model (DEM) for Ross Island and surrounding
bathymetry was provided by the New Zealand GNS Science organi-
zation at 40 m lateral spacing and ±6 m vertical accuracy from the
resource described in Csatho et al. (2008) and the Ross Sea map of
Davey (2004).

The main test is one of convergence with discretization, which
involves three aspects. The first is convergence of MT response with
mesh discretization for a fixed topographic geometry. The second is
convergence of the subsampled topography towards the true surface
with finer meshing. The third is convergence of computed response
as mesh receiver location approaches true receiver location with
discretization. As noted previously, mesh receivers are placed over
element centres consistent with the fact that a single magnetic flux
is estimated from ∇ × E around cell edges; this is standard both
for first order Nédélec elements and for staggered grid finite differ-
ence methods (e.g. Madden & Mackie 1989; Mackie et al. 1993;
Siripunvaraporn et al. 2002).

We consider five meshes, where mesh 1 is the coarsest (35x
52y 26z) and mesh 5 is the finest (127x 193y 101z) (Fig. 15; the
intermediate mesh 3 is shown in Fig. 1). At each step, the mesh is
refined by a factor of

√
2, so that in two steps the mesh is refined by

a factor of 2. The location of the receiver on each mesh is the face

 by guest on N
ovem

ber 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


3-D MT FEM simulation with direct solvers 85

Figure 15. Meshes 1 and 5 for Mount Erebus model. Black dots show the locations of MT data collected to date, while grey dots are planned locations. Three
light red dots show the true location of receivers for which MT responses are considered here. Dark red dots are the location of the closest surface face centre,
where the fields are calculated.

centre closest to the true receiver location. The steep cone of Mount
Erebus has the elements with the smallest x and y extent, the rest
of Ross Island has its elements up to two times larger, and around
the island the elements grow at a constant geometrical rate to reach
the boundary of the domain which is 500 km away. The bottom
and the top of the domain are at ±500 km distance from sea level.
Bathymetry around the island is included to a distance of ∼200 km
whereupon it is terminated, although seawater depths are only a
few hundred meters until several kilometres from the shoreline.
Additionally for each mesh, the elevation of the surface vertices
was calculated as an average of the DEM on an area comparable
to the horizontal extent of the element. As a result, the topography
represented on a mesh converges towards the true topography as the
mesh gets finer.

The Mount Erebus model is given a uniform resistivity of 100 �m
in order to illustrate the effects of topography and meshing. Al-
though it is difficult to isolate the three prior issues, if responses from
all five meshes are reasonably close and converge with discretiza-
tion, then our approach to modelling natural topography should be
robust. We consider three MT receivers in Fig. 15 whose local slope
is 7–8◦, 28–25◦ and 32–40◦ respectively from meshes 1–5. Sites 1
and 2 are actual survey locations; 2 in particular required picketed
roped travel from the landing spot and is the steepest of the project.
Site 3 is hypothetical and considered inaccessible, and so should
be a limiting test. The complex impedance and tipper elements are
plotted in Fig. 16. For plotting, the impedance Zk is normalized
relative to that at mesh 5 according to

Z̃k(i, j, l, m) = Zk(i, j, l, m)
1
2 |Z5(1, 2, l, m) − Z5(2, 1, l, m)| (28)

for i = 1, 2 j = 1, 2 for mesh k, receiver l and frequency m. The
denominator in eq. (28) is the impedance invariant for mesh 5.

Fig. 16 shows good agreement across meshes and good conver-
gence of the MT responses with mesh refinement. As a measure of
error, a relative difference (RD) between the responses from mesh k
and mesh 5 is computed in a normalized root-mean-square fashion:

RD(k, 5) =

√√√√ 1

12Nrec Nfreq

Nrec∑
l=1

Nfreq∑
m=1

R2
l,m (29)

where

R2
l,m =

2∑
i=1

2∑
j=1

∣∣Z̃k(i, j, l, m) − Z̃5(i, j, l, m)
∣∣2

+
2∑

j=1

|Kk( j, l, m) − K5( j, l, m)|2

Values of RD are listed in Table 1. With mesh refinement, the
topography changes and the receivers shift modestly. This may be
degrading the order of convergence slightly, which shows a value of
about 0.8 instead of the ideal 1. Nevertheless, the relative differences
are small compared to typical error floors adopted in 3-D inversion,
for example 5 per cent on the impedance elements by Meqbel et al.
(2014). This is achieved even for the receiver where local slope
reaches 40 degrees.

As a second test, in Appendix B we present the results of a high
frequency test similar to the one of Fig. 11 for the 2-D hill. For each
receiver, we rotate the coordinate system such that the X and Y axes
are parallel to the slope and the Z axis is perpendicular to the slope
and calculate the MT response in those coordinates. We observe that
as frequency increases, the apparent resistivity approaches 100 �m,
the phase approaches 45◦, and the tipper components approach 0
as should be expected. Note that the on-diagonal impedance ele-
ments in Fig. 16 also approach zero towards high frequency. The
asymptotes occur near 100 Hz, above which results begin to diverge,
although this is near the highest frequency usefully interpreted for a
survey of this scale. We might expect further modest mesh changes
as the project progresses, but these results demonstrate the efficacy
of our approach to topographic modelling.

6.5 Jacobians test calculations

Next, we test the calculation of MT response Jacobians as they
are essential for inversion purposes. We consider derivatives with
respect to log10 resistivity model m = (m j )

Nm
j=1, where in principle

each mj could be parsed as finely as a single FE. We consider
the coarse 3-D hill mesh with receivers over the centres of surface
element faces at y = 0 km. For the test parameter we use two adjacent
FEs on the facing hill slope (Fig. 17). Jacobians are calculated using

 by guest on N
ovem

ber 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


86 M. Kordy et al.

Figure 16. Normalized impedance Z̃ (eq. 28) and tipper K as a function of frequency for three receivers of the Mount Erebus model. The denominator in eq.
(28) is abbreviated here as |Z_5|.

Table 1. Comparison of the response of mesh k with the response of the
finest mesh 5 for the three receivers together and separately using eq. (29).

RD(1,5) RD(2,5) RD(3,5) RD(4,5)

All 3 recs 2.36% 1.89% 1.69% 0.79%
rec 1 2.62% 2.28% 1.69% 0.88%
rec 2 1.5% 1.17% 0.7% 0.63%
rec 3 2.75% 2.04% 2.29% 0.85%

reciprocity as described previously and they are compared with a
symmetric difference approximation of the derivative, that is,

∂(Z , K )

∂m j
(m) ≈ (Z , K )(m + e j h) − (Z , K )(m − e j h)

2h

where ej is a vector with only one nonzero entry at the jth position,
which is equal to 1. In Fig. 18, we present the result of calculation for
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Figure 17. Central part of the coarse mesh of 3-D hill, together with the location of receivers and the chosen inversion cell mj.

frequencies of 100 Hz and 0.001 Hz for all components of Z, K and
for the inversion cell marked in the model figure. We used h = 0.05.
A wide range of frequencies and various locations of the inversion
cell have been tried, including the location under the receiver line. In
all cases the values of the Jacobians showed very close agreement,
with the relative difference no more than 0.2 per cent for non-zero
components of the Jacobian.

7 E X A M P L E RU N T I M E S

In Tables 2 and 3, we present run times related to solving eq. (8) with
the MKL PARDISO library. Those run times constitute the main
computational time of the forward modelling. For a model with a
mesh 101x 101y 50z and 256 MT receivers other calculations (the
calculation of the system matrix A and the source vectors b, sparse
calculations related to divergence correction and the evaluation of
the Jacobian, once the solutions A−1w are obtained) take about
13 per cent of the forward modelling time. The calculations were
done on a 24 core workstation (four Intel Xeon E5-4607 v2 Hexa-
core 2.60 GHz processors). Recall that MKL PARDISO finds a
permutation matrix P (reordering phase), then calculates matrices
L, D such that PTAP = LDLT (factorization phase). Then L and D
are used to solve linear system (8) for numerous rhs vectors b.

Times in the tables correspond to work done for a single fre-
quency. In order to calculate full MT Jacobians, for each receiver
location one needs to solve five linear systems (8). For example,
500 rhs in Table 3 would correspond to a survey with 100 receivers.
As expected, run-time increase is geometric with respect to number
of unknowns. In Table 2 we present the reordering time, which is
about 10 times less than the factorization time with 24 cores. Here it
is calculated using the sequential library METIS, which we found to
be stable. METIS uses only one core; thus on a machine with more
cores, the reordering time will become more significant. However,
since reordering depends only on the non-zero pattern of the matrix
and not on entry values, reordering is the same for every frequency
so it may be reused for all frequencies following the first.

With a data-space parameter step formulation, as discussed in Part
II, the inversion run time will be dominated by the forward problem
and Jacobians. For the largest test mesh of Table 2 and assuming
each element can be a parameter, a regular 400 site survey (20 × 20)
could be inverted using a mesh with six columns of parameters per
site in both x- and y-directions leaving nearly 30 columns of padding
to far distances outside the survey domain.

8 C O N C LU S I O N S

FEs provide a flexible and accurate means of simulating EM re-
sponses of 3-D resistivity structure beneath topographic variations.
Hexahedral elements provide a straightforward means of repre-
senting earth surface slopes, are compatible with the Helmholtz
governing equation as discretization increases, and generate FE
system matrices of simple structure. In particular, discretization
requirements for topography at high frequencies are modest com-
pared to those for traditional rectilinear meshes because layers of
elements can lie parallel to the earth’s surface. Further research is
warranted into element discretization and geometry, applications for
bathymetry and seafloor responses, and more complex background
structures. By invoking an efficient current divergence correction,
accurate E-field results may be obtained at very low frequencies and
small admittivities, even those of dielectric air. Because we utilize a
secondary field approach, it should be straightforward to generalize
to finite source problems. As will be shown in Part II, hexahedral
elements also provide a simple path to regularized inversion, for ex-
ample by direct mapping of triaxial parameter roughness damping
into deformed coordinates.

Efficient and affordable parallel computing solutions have
emerged that are putting direct solutions to fairly large 3-D EM
simulation problems within reach of an increasing number of users.
These include a powerful public-domain library for direct solutions
(MUMPS) that is seeing increased community use or a commer-
cial library MKL PARDISO as exploited in this paper. Because the
factorization provided by direct solvers allows economical solution
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Figure 18. Comparison of a Jacobian of Z, K calculated using reciprocity and symmetric difference. The relative difference between the plotted values is less
than 0.1 per cent.

of large numbers of source vectors, explicit and accurate values of
parameter Jacobians can be obtained. Technological advances also
include single-box, server-class workstations with numerous cores
and substantial RAM that provide relatively affordable computing.

Parallelization of the direct solver MKL PARDISO on multicore
SMP computers is good, reaching an overall speedup of 15 on a 24
core machine for the forward problem calculations. Parallelization
also could be increased with distributed computing using multiple
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Table 2. MKL PARDISO analysis and factorization phase times (in min:sec) for factoring matrix A in eq. (8) for various meshes.

Number of Number of Number of Reordering Factorization RAM memory
Mesh unknowns A non-zeroes in A non-zeroes in L time time used (GB)

30x 30y 25z 62 785 1 008 965 24 225 432 00:01 00:01 0.68
50x 50y 35z 250 635 4 111 215 180 177 821 00:05 00:13 4.17
75x 75y 45z 734 820 12 179 490 770 644 591 00:17 01:00 14.55
100x 100y 50z 1 460 250 24 316 190 1 981 092 177 00:37 03:48 35.09
125x 125y 55z 2 519 680 42 085 390 4 135 494 960 01:08 10:55 70.41
150x 150y 60z 3 969 360 66 443 340 7 022 172 676 01:53 21:03 117.10
176x 176y 70z 6 394 150 107 274 730 14 344 449 730 03:18 64:10 233.80

Table 3. MKL PARDISO solution phase time (in min:sec) for the linear system (8), for various
meshes and numbers of rhs vectors b.

Mesh 100 rhs 500 rhs 1000 rhs 1500 rhs 2000 rhs

30x 30y 25z 00:01 00:03 00:07 00:10 00:13
50x 50y 35z 00:02 00:11 00:23 00:34 00:45
75x 75y 45z 00:11 00:54 01:48 02:42 03:36
100x 100y 50y 00:05 00:23 00:46 01:10 01:33
125x 125y 55z 01:24 06:58 13:57 20:55 27:53
150x 150y 60z 02:09 10:47 21:34 32:22 43:09
176x 176y 70z 03:41 18:23 36:47 55:10 73:34

SMP. Nevertheless, direct simulations including Jacobians can be
done on a single workstation for meshes with one million elements
in less than 1 hr per frequency.

A C K N OW L E D G E M E N T S

We acknowledge the support for this work from the U.S. Department
of Energy under contract DE-EE0002750 and the U.S. National
Science Foundation under grant AES-1443522 to PW. EC acknowl-
edges the partial support of the U.S. National Science Foundation
through grants ARC-0934721 and DMS-1413454. GH acknowl-
edges the support of the Royal Society of New Zealand through
grant ASL-1301. The University of Utah/EGI funded acquisition of
the 24-core workstations. Drs. Rita Streich and Martin Čuma are
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A P P E N D I X A

To explain the ill-conditioning related to spurious curl-free E-fields,
let us analyse eigenvalues of the system matrix A. A good approxi-
mation of those eigenvalues are eigenvalues of the operator

L(M) = ∇ ×
(

1

μ
∇ × M

)
+ iωσ̂ M. (A1)

L should be defined on some suitable finite dimensional space,
dependent on the mesh size h. First, let us consider infinite dimen-
sional space of vector fields M ∈ H0(∇×, �), with the additional
assumption that ∇ × 1

μ
∇ × M exists and is square integrable. Let

the domain be a cube � = [0, M]3 with σ̂ , μ = const. It is straight-
forward to verify that the eigenvectors of L are of the form

v =

⎡
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(A2)

for kx , ky, kz ∈ N where

C =
⎡
⎣ Cx

Cy

Cz

⎤
⎦ =

⎡
⎢⎣ kx

ky

kz

⎤
⎥⎦ ,

⎡
⎢⎣ −kz

0
kx

⎤
⎥⎦ or

⎡
⎢⎣

0

kz

−ky

⎤
⎥⎦ . (A3)

Defining |k|2 = k2
x + k2

y + k2
z one can write the corresponding

eigenvalues as:

λ = iωσ̂ ,
π 2|k|2
μM2

+ iωσ̂ ,
π 2|k|2
μM2

+ iωσ̂ . (A4)

By checking that L(v) = λv, one can verify that v and λ are the
eigenvectors and eigenvalues of L. For an infinite dimensional
space, we have 3 < |k|2 < ∞, yet for a discretization, with spa-
tial mesh parameter h, it would be:

3 ≤ |k|2 ≤ O

(
3

(
M

h

)2
)

. (A5)

The upper bound above would be correct if we used a finite differ-
ence discretization of the Laplacian (Trottenberg et al. 2000). We
use it for the curl as it is also a second-order differential operator.
One could consider also that in a discretized version of L, roughly
speaking, the natural numbers kx, ky, kz would be allowed to vary
from 1 to M/h.

Let us look at those eigenvalues for some practical setting for

magnetotellurics. Let M = 10 km, M
h = 50. The quantity π2|k|2

μM2 is

in the interval [2 × 10−1, 6 × 10+2]. The values of the first eigen-
value iωσ̂ for conductivity corresponding to the Earth’s subsurface
(σ̂ = 0.01 Sm−1) and air (σ̂ = iωε0) are presented in Table A1. The

Table A1. Values of |ωσ̂ | for different σ and ω. Unit of |ωσ̂ | is S Hz m−1.

ω 2π 100 Hz 2π 1 Hz 2π 0.01 Hz

Earth: σ̂ = 0.01 S m−1 6.3 6.3 × 10−2 6.3 × 10−4

Air: σ̂ = iωε0 3.5 × 10−6 3.5 × 10−10 3.5 × 10−14

Table A2. Condition number of the system matrix A as a function of fre-
quency ω and σ̂ .

ω 2π 100 Hz 2π 1 Hz 2π 0.01 Hz

Earth: σ̂ = 0.01 S m−1 9.3 × 10+1 9.3 × 10+3 9.3 × 10+5

Air: σ̂ = iω2ε0 1.7 × 10+8 1.7 × 10+12 1.7 × 10+16

corresponding condition numbers of the system matrix, defined as
cond(A) = max(|λ|)

min(|λ|) are presented in Table A2. One can see that if
a conductivity corresponding to the ground is used, the condition
number increases as the frequency decreases, yet remains at a rea-
sonable level of 10+5 even for frequency as small as 0.01 Hz. If
conductivity of the air is used, the situation is different. As the fre-
quency decreases, the condition number increases quadratically and
reaches very large value of 10+16 for the frequency 0.01 Hz.

In MTs, the domain contains both earth and air. Because of the
presence of the air, the matrix is ill-conditioned. Nevertheless, the
calculated electric field, approximated by solving eq. (8) using a
direct solver, and using eq. (7) has improper values only in the air.
The electric field below the Earth’s surface does not suffer from
numerical instability. It is also worth mentioning, that the magnetic
field, calculated using the curl of electric field as in eq. (11) has
proper values in all of the domain. It shows, that the error added to
the electric field in the air is curl-free.

The condition number of the matrix gets this large because of
the smallness of the eigenvalue λ = iωσ̂ , corresponding to the first
C in eq. (A3). Note that the corresponding eigenvector is curl-free,
whereas the other two are not. Moreover the first eigenvector is
equal to ∇ϕ, where

ϕ = M

π
sin

(
π

kx

M
x

)
sin

(
π

ky

M
y

)
sin

(
π

kz

M
z

)
(A6)

and ϕ|∂� = 0. This is not a coincidence. In fact, in this case the
conductivity σ̂ is constant in the domain, and the Hodge decompo-
sition discussed in ‘Divergence correction’ section is the standard
Helmholtz decomposition. The eigenvectors of L span the space
H0(∇ ×, �) respecting the decomposition. The eigenvectors with
the first C of eq. (A3) span the space R(∇), the eigenvectors with the
second and the third C of eq. (A3) span R(∇)⊥σ̂ . The eigenvectors
form an orthogonal basis of H0(∇×, �) and the spaces R(∇) and
R(∇)⊥σ̂ are orthogonal.

A P P E N D I X B

Here we present a 3-D high frequency test similar to the one of Fig.
11 for the 2-D hill. Again, if skin depth in the subsurface is much
less than the scale of topographic variation, the incident EM wave
should refract normal to the slope and behave as if the surface is lo-
cally flat and horizontal (Wannamaker et al. 1986). For each receiver
considered in the Mount Erebus model, we rotate the coordinate sys-
tem such that X and Y axes are parallel to the slope and Z axis is
perpendicular to the slope. The MT response is calculated in those
coordinates. The apparent resistivity and impedance phase calcu-
lated using Zxy, −Zyx, and 1

2 (Zxy − Z yx ) as a function of frequency
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Figure B1. Apparent resistivity and impedance phase as a function of frequency for three receivers of the Mount Erebus model. The coordinate system in
which the impedance is calculated has X and Y axes parallel to the slope and the Z axis perpendicular to it.

are presented in Fig. B1. We observe that as frequency becomes
high, towards 100 Hz, the apparent resistivity approaches 100 �m
and impedance phase approaches 45◦, which is the response of
the 100 �m half-space. Similarly, the tipper elements (see Fig. B2)
approach 0 at high frequencies. The best results are obtained for

meshes 4 and 5 where cell thicknesses become a smaller fraction of
skin depth. The elements next to the Earth’s surface have thickness
of 100 m for mesh 1 and 25 m for mesh 5. Results begin to degrade
much above 100 Hz even for mesh 5, and would require even finer
discretization.

 by guest on N
ovem

ber 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


3-D MT FEM simulation with direct solvers 93

Figure B2. Complex tipper elements as a function of frequency for three receivers of the Mount Erebus model. The coordinate system in which the tipper is
calculated has X and Y axes parallel to the slope and the Z axis perpendicular to it.
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