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Task 2’s Fit Within PPM h .
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FY14 Focus Areas and Successes ).

= Microstructural Variability

= Multiscale Simulation Arc in BCC Metals

= Single and Oligo Crystal Experiments

= Quantitative Model via Experimental Comparisons
= @Grain Rotation Measurements

= Temperature and Strain Rate Dependence

= Damage i@

Goal: To understand the nucleation and accumulation of damage in Ta
to optimize the inclusion of damage in our CP-FEM model




CP-FEM for BCC Metals =

= Crystal Plasticity Finite Element Modeling
» FEM code developed at Sandia (JAS-3D)
» For BCC: 24 {110}<111> slip systems

» Advantages:

| Non-Schmid 7

Mo single crystal

> Realistic Length and Time Scales

» Considers Microstructural Variability (e.g. Grain Morphology)
» Predicts:

» Macroscopic Stress-Strain Response

» Localized Stress/Strain Field Distributions

> Texture Evolution

_HR-DIC measurements
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Including Damage in CP-FEM ) .
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Without including damage:

* No softening occurs other than necking

« The material does not “degrade” (e.g. voids, crack,
tearing)

« Stress-strain response does not match experiments




Getting the Damage “Right”
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Metrics for Microstructurally Small Fatigue Crack (MSFC)*
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What controls the initiation of damage in Ta?
How can we better understand how damage nucleates and accumulates?




Void-Dominated Ductile Fracture h) S,

= |nitiation of voids through
decohesion at second-phase
particles or inclusions

= Voids continue to grow in

-
L

of

response to high stresses

= Eventual coalescence of voids,
leading to failure

= |n this study, 99.9% Ta used
showed no evidence of second-phases
or inclusions via SEM or TEM

How do voids initiate
in a pure metal?
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Void Formation in 99.9%Ta ).

3021°SS

= Ta exhibits significant ductility, but
with valley/ridge fracture surface e L7+
‘ 7 . . . . o #%N99.9% Ta
— no ‘classic’ hemispherical dimpling K

= Mating surfaces are mirrored
— with no evidence of cup-cone
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What role does local microstructure play in
void initiation and growth?




Void Formation in 99.9%Ta ) .

Interrupted Ta Tensile Tests
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Deformed Ta samples polished to
mid-plane to investigate local

. . : ) Ta tensile bar deformed at 5x103to
microstructure in voided regions | 40% remaining strength and polished

to mid-plane for void analysis




Void Formation in 99.9%Ta ).

Sample has begun to neck
No large voids observed

EBSD shows scattered small voids (30-
100 nm) near bands of [122] / [110]
aligned with tensile axis




Void Formation in 99.9%Ta ).

160%Remaining Strength

| = Arrays of voids aligned along tensile axis

= EBSD shows elongated, inclined [001]
' subgrains associated with each void

- |= Alternating regions of [122] indicates high
' angle GBs

)
|~

Tensile axis €>

Ta failure is void-driven, with deformation-induced microstructural
changes and stress state controlling the initiation/growth of voids




Sandia

Conclusions )

= 99.9% pure Ta is ductile, but does not exhibit a ‘classic’ ductile
fracture surface (i.e. hemispherical dimples)
- but, fracture surface still indicates void-driven failure

= Voids in interrupted tensile test specimens were analyzed by SEM
and EBSD

—> voids prevalent in regions of high misorientation

= No inclusions or second-phases observed via SEM or TEM
—> void initiation likely at dislocation junctions / sub-boundaries

Failure mechanism of Ta is void-driven, with
deformation-induced microstructural changes and
stress state controlling the initiation and growth of voids




