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FY14 Focus Areas and Successes
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 Microstructural Variability

 Multiscale Simulation Arc in BCC Metals

 Single and Oligo Crystal Experiments

 Quantitative Model via Experimental Comparisons

 Grain Rotation Measurements

 Temperature and Strain Rate Dependence

 Damage in TaDamage in Ta

Goal: To understand the nucleation and accumulation of damage in Ta 
to optimize the inclusion of damage in our CP-FEM model



CP-FEM for BCC Metals

 Crystal Plasticity Finite Element Modeling

 FEM code developed at Sandia (JAS-3D)

 For BCC: 24 {110}<111> slip systems

 Advantages:

 Realistic Length and Time Scales

 Considers Microstructural Variability (e.g. Grain Morphology)

 Predicts: 

 Macroscopic Stress-Strain Response

 Localized Stress/Strain Field Distributions

 Texture Evolution

110 
slip

112 
slip

Mo single crystal

 xx  xx

HR-DIC measurements CP-FEM predictions

7%

0%

 xx

5



Including Damage in CP-FEM
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Without including damage:
• No softening occurs other than necking
• The material does not “degrade” (e.g. voids, crack, 

tearing)
• Stress-strain response does not match experiments

Experimental DataExperimental Data



Getting the Damage “Right”

7*J. D. Hochhalter et al., Modelling Simul. Mater. Sci. Eng., 2010. v.18, 045004
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ExperimentsExperiments

Metrics for Microstructurally Small Fatigue Crack (MSFC)*
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What controls the initiation of damage in Ta?
How can we better understand how damage nucleates and accumulates?



Void-Dominated Ductile Fracture

8http://en.wikipedia.org/wiki/Fracture; http://www.weck.ca

 Initiation of voids through 
decohesion at second-phase 
particles or inclusions 

 Voids continue to grow in 
response to high stresses

 Eventual coalescence of voids, 
leading to failure

 In this study, 99.9% Ta used 
showed no evidence of second-phases 
or inclusions via SEM or TEM

How do voids initiate 
in a pure metal?



Void Formation in 99.9%Ta

 Ta exhibits significant ductility, but 
with valley/ridge fracture surface
 no ‘classic’ hemispherical dimpling

 Mating surfaces are mirrored
 with no evidence of cup-cone

What role does local microstructure play in 
void initiation and growth?

304L SS

99.9% Ta

Boyce, Clark, et al., Met Trans, 2013. 9



Interrupted Ta Tensile Tests

100% of UTS
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Ta tensile bar deformed at 5x10-3 to 
40% remaining strength and polished 

to mid-plane for void analysis

Deformed Ta samples polished to 
mid-plane to investigate local 

microstructure in voided regions

Boyce, Clark, et al., Met Trans, 2013.

Void Formation in 99.9%Ta
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80% Remaining Strength  Sample has begun to neck

 No large voids observed

 EBSD shows scattered small voids (30-
100 nm) near bands of [122] / [110] 
aligned with tensile axis

Tensile axis 

Void Formation in 99.9%Ta
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 Arrays of voids aligned along tensile axis

 EBSD shows elongated, inclined [001] 
subgrains associated with each void

 Alternating regions of [122] indicates high 
angle GBs

Boyce, Clark, et al., Met Trans, 2013.

Tensile axis 

Ta failure is void-driven, with deformation-induced microstructural 
changes and stress state controlling the initiation/growth of voids

60% Remaining Strength

Void Formation in 99.9%Ta
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Conclusions
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 99.9% pure Ta is ductile, but does not exhibit a ‘classic’ ductile 
fracture surface (i.e. hemispherical dimples)
 but, fracture surface still indicates void-driven failure

 Voids in interrupted tensile test specimens were analyzed by SEM 
and EBSD
 voids prevalent in regions of high misorientation

 No inclusions or second-phases observed via SEM or TEM
 void initiation likely at dislocation junctions / sub-boundaries

Failure mechanism of Ta is void-driven, with 
deformation-induced microstructural changes and 

stress state controlling the initiation and growth of voids


