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Experimental Methods:
Conducted true triaxial tests to investigate influence of 2 on failure
• Used smaller true triaxial apparatus at Sandia (Wawersik et al. 1997)
• Performed tests at constant mean stress, , and constant Lode angle, .

• Mean stresses: 30, 60, 90, 120, and 150 MPa
• Assessed J3 dependence of failure 
• Enabled extraction of bulk and shear moduli from unload loops

• Lode angles: 30° (ASC), 14.5°, 0°(PS), -14.5°, -30°(ASE)
• Ranged from axisymmetric compression (ASC) to axisymmetric 

extension (ASE); determines the stress path in the Pi plane
• Constant Lode angle, , is equivalent to constant NII

• Evaluated strain localization predictions (Rudnicki & Rice 1975)
• Recorded acoustic emissions (AE); located AE within specimen

• Plane fit through AE to locate band spatially and temporally (Fig. 3)
• Onset of localization corresponds to drop in fitting error
• AE band angle, , agrees with angle measured on jacket (Table 1)

Bulk Specimen Response:
• Typical mechanical responses (1 vs. 1 ) are shown in Fig. 1 : 

• 60 MPa constant mean stress tests at five Lode angles (Fig. 1A)
• 0° (PS) Lode angle tests at five mean stresses (Fig. 1B)

• Mean stress dependence (Fig. 1B):
• Low mean stress: stress peak and drop; shear band forms
• High mean stress: stress plateau; compaction band or no band

• Lode angle dependence (Fig 1A): moving from ASC to ASE:
• Sharper stress peak 
• Lower stress required to initiate failure 

• Failure depends on 2 (see Fig. 2; octahedral plane)
• Low mean stress: failure surface is a rounded triangle
• High mean stress: failure surface is circle
• Failure depends on third invariant of deviatoric stress, J3=σ’1σ’2σ’3

Localization Conditions:
Predicted band angle, , Rudnicki & Rice (1975) (see 
Eqn. 4) depends on:
• Lode angle, through parameter NII

• Friction factor, , which is yield surface slope
• Dilation coefficient, 
• Poisson’s ratio, , for elastic unloading

Strain Separation: 
• Elastic bulk and shear moduli, K and G, are

• Stress dependent (Fig 8A)
• Plastic strain dependent (Fig. 8B)

• Total strain and strain increment (Eqn. 5)
• Strain separates into four parts (Eqn. 6):

A: elastic strain at constant modulus
B: strain due to stress dependent moduli
C: strain due to plastic strain dependent moduli
D: plastic strain

• Plot four strain components (Fig. 7)

Localization Predictions:
• Calculate increment of inelastic strain : C + D
• Plot yield surface; determine friction factor, 
• Determine  from plot of dp vs. dp
• Calculate predicted band angle,  (Table 1)

Conclusions:
• Mechanical response and failure (band 

orientation and failure surface) depend 
on 2

• Elastic moduli evolve with stress and 
plastic strain

• Strain separation was used to 
determine onset of yield and yield 
surfaces

• Reasonable agreement between 
localization predictions using strain 
separation and experimental results for 
Castlegate sandstone
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μ – Friction Factor, β – Dilation Coefficient, ν – Poisson’s Ratio
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