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Benefits & Limitations of in situ TEM

Benefits
1. Real-time nanoscale resolution observations of microstructural dynamics

Limitations
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1. Predominantly limited to microstructural characterization
- Some work in thermal, optical, and mechanical properties
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2. Limited to electron transparent films P i (]
- Can often prefer surface mechanisms to bulk mechanisms :Jﬁcz‘»_f_:érf&wwm
tw,m%.hﬁ?

- Local stresses state in the sample is difficult to predict
3.  Electron beam effects
- Radiolysis and Knock-on Damage
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- 107 Torr limits gas and liquid experlments feasibility ¥ i —L]
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Fig. 6: Wing surfacs of the house fly. Fig. 2: Sketch by the author (9 March 1931) of the cathode ray tube for testing one-stage and two-
(First internal photography, U = 60 EV, M, = 2200) o X . i . . .
(Driest, E., and Mlles, H.O: Z. Wiss. Mikao askopie 52, 5357 (1933) stage electron-optical imaging by means of two magnetic electron lenses (slectron microscope) [5]




History of In situ lon Irradiation TEM

Courtesy of: J. Hinks
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“The direct observation of ion damage in the electron microscope thus
represents a powerful means of studying radiation damage”

D.W. Pashley and A.E.B. Presland Phil Mag. 6(68) 1961 p. 1003 '11
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- WA In situ lon Irradiation TEM (IF'TEM) Facility

Collaborators: J.A. Scott

Proposed Capabilities
= 200 kV LaB, TEM

Schematic of the In situ TEM Beamline
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IBIL from a quartz stage inside the TEM

Direct real time observation
of ion irradiation,

ion implantation, or both
with nanometer resolution

lon species & energy introduced into the TEM
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Radiation Tolerance is Needed in Advanced Scintillators
for Non-proliferation Applications

Contributors: S.M. Hoppe, B.A. Hernandez-Sanchez, T. Boyle

In situ lon Irradiation TEM (ISTEM)
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Cumulative Effects of lon Irradiation as a Function of

lon Energy and Au Particle Size
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Particle and ion
energy dictate
the ratio of
Sputtering,
particle motion,
particle
agglomeration,
and other active
mechanisms




Single lon Effects with 46 keV Autl-ions: 20 nm




Single lon Effects with 46 keV Autl-ions: 5 nm




Advanced Microscopy Techniques Applied to

Nanoparticles in Radiation Environments

Collaborators: S.M. Hoppe & T.J. Boyle

In situ lon Irradiation TEM (ISTEM) Aligned Au NP. tilt series - Unirradiated Au NP model
unirradiated

g oot

Irradiated Au NP model

Aligned Au NP tilt series -
irradiated

Hummingbird
tomography stage
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The application of advanced
microscopy techniques to

extreme environments provides
exciting new research directions




Single lon Strikes

Collaborators: C. Chisholm & A. Minor

7.9 x 10%ions/cm?/s 6.7 X 107 ions/cm?/s

Improved vibrational and ion beam stability permits us to work at 400 kx
or higher permitting imaging of single cascade events




In situ Implantation

Collaborators: C. Chisholm & A. Minor

Gold thin-film implanted
with 10keV He?*

Result: porous
microstructure
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H, He, and Displacement Damage Synergy

Cavity Size (nm)

He+H

Void Swelling (%)

T. Tanaka et al. “Synergistic effect of helium and hydrogen for defect
evolution under milt-ion irradiation of Fe-Cr ferritic alloys”

J. of Nuclear Materials 329-333 (2004) 294-298

Coupling Effect

H and He are produced as
decay products

The relationship between
the point defects present, the
interstitial hydrogen, and the
He bubbles in the system
that results in the increased
void swelling has only been
theorized.

The mechanisms which
governs the increased void
swelling under the presence
of He and H have never been
experimental determined

Difficulty of performing
triple-beam irradiation
has resulted in a limited
number of facilities
world wide




(u-MeV/q?)

Required Tandem Mass-Energy Product

TEM
Obj. Lens

Bending
Magnet

Tandem beam MEP too high to be bent toward TEM

0.02

2.8 MeV Au*

Tandem beam MEP too low and deflected
too much by Bending Magnet

0.04 0.06 0.08 0.10 0.12

Colutron Mass-Energy Product (u-MeVIqa)

/ 10 keV He*/ D}

Steering Magnet

2.8 MeVAuU**

Must compensate for deflection of Tandem beam by bending magnet

C

olutron beams deflected by the TEM objective lens

Insignificant deflection of Tandem beams
With 10 keV He/D, we can use Tandem beams £13 MeV/qg?

A

u, He, and D, ions all reach the sample concurrently

ri1| Sandia National Laboratories




Aligned Individual Beams




Concurrent 10 keV He, 10 keV D,, and 3 MeV Au

In-situ triple beam He, D,, and Au beam irradiation has been demonstrated on Sandia’s I*'TEM!

Extensive work is still needed to understand the defect strucutre evolution that has been observed.




«Next Steps: In situ TEM Quantitative Mechanical Testing

Contributors: J. Sharon, B. L. Boyce, C. Chisholm, H. Bei, E.P. George, P. Hosemann, A.M. Minor, & Hysitron Inc.
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«Next Steps: In situ TEM Quantitative Mechanical Testing

Contributors: C. Chisholm, H. Bei, E.P. George, P. Hosemann, & A.M. Minor
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\ Next steps: In situ TEM Corrosion

Contributors: D. Gross, J. Kacher, & .M. Robertson

Electron Beam

SiN Membrane

Flowing Liquid

Scattered Electrons

Metal Film

SiN Membrane

Microfluidic Stage

= Mixing of two or more channels
= Continuous observation of the reaction channel
= Chamber dimensions are controllable

=Films can be directly deposited on the electron transparent
SiN membrane

Pitting mechanisms during dilute flow of acetic
acid over 99.95% nc-PLD Fe involves many grains.

(1) Sandia National Laboratories




Can In situ TEM Address Hydrogen Storage

‘ Concerns in Extreme Environments?
Contributors: B.G. Clark, P.J. Cappillino, B.W. Jacobs, M.A. Hekmaty, D.B. Robinson, L.R. Parent, I. Arslan. & Protochips, Inc.
—o Op" 2 Vapor-Phase Heating TEM Stage
1 . ;'K'-._ = Compatible with a range of gases
\ @ H lll kil Hatd o = In situ resistive heating
—0—50 0 EB_IT ; J_H_H,,ﬁr.”--q+w-+' = Continuous observation of the reaction channel
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R. Delmelle, J., Phys. Chem. Chen Cowgill, D., Fusion Sci. & Tech., 28 (2005) p. 539
Phys. (2011) p.11412 Trinkaus, H. et al., JINM (2003) p. 229

Thiebaut, S. et al. JNM (2000) p. 217

- : = 1 atm H, after several pulses to specified temp.
‘ Harmful effects may be mitigated in nanoporous Pd

300° C

New in situ atmospheric heating
experiments provide great insight into
nanoporous Pd stability




Future Directions Under Pursuit:
Increased Data and Combinations of Enviroments

In-situ TEM CL, IBIL (currently capable)
In situ ion irradiation TEM in liquid or gas (currently capable)
PED: Local texture characterization (recently installed)

Quantitative in-situ tensile/creep experiments (Sample in development
DTEM: Nanosecond resolution (laser optics needed)
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Summary

The lon Beam Lab at Sandia National
Laboratories applies a variety of
nanoscale tools to a wealth of problems
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@ world
\(\6‘0’ *  In situ irradiation from H to Au
< ®  In situ gas implantation
: =  Combinations of in-situ techniques
SelUE I3STEM can provide fundamental
understanding to key mechanisms u:‘{ﬁ
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