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Motivation: Thermoelectrics @E:.

Motivation

>Efficient Thermoelectrics:
» Cooling

» Power generation

>Applications:
» Sensors in space applications
» Industrial waste heat recovery
» Energy scavenging =» solar thermophotovoltaics

» Integrated microprocessor cooling for high-
performance computing
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Objective: High-zT 9@ @=
ZT — Thermoelectric Figure-of-Merit & @

The ZT-Problem: TE Genérator

ZT=S26/k T need S T, T, k4 _

> The S-o Problem:

» Sisrelated to the electronic entropy (disorder/scattering) in the ? N P ?
system

» ois a measure of how fast we can propagate a current=>» l > > |

decreases with increasing disorder 14 _ v
» Mott Equation:
dIn(oc(¢)) e 0

| So
S=— y ZT="
e) & _ . .
E=EF S = Seebeck coefficient
>sTeol o = electrical conductivity
> The k-0 Problem: K = thermal conductivity
» In semiconductors, “x " is dominated by the phonon contribution T = temperature
» K reduced by increasing phonon scattering - Ty - To V1+ZT -1
» At the limit, this leads to an increase in electron scattering " Te VI4+ZT + ;—ﬁ

D>l od
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Phononic Crystals ),

Decoupling k and ¢

What is a phononic crystal (PnC)?

» Periodic arrangement of elastic scattering centers in a matrix
material that exhibits both incoherent and Mie and Bragg
resonant scattering

» Requires sufficient mechanical impedance mismatch
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Phononic Crystals ),

Coherent Phonon Scattering

Thermal transport in phononic crystals
» Coherent (lattice) scattering in addition to material removal and incoherent (boundary) scattering
» Periodicity =>» Real (as oppose to artificial) zone folding
» Flat Bands =>» Reduced group velocity, modified density of states
» Negative Bands =» Backward propagation (backward scattering)
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De-Coupling k and o in PhCs @z

Si-Air PnCs

Si-W PnC

How do phononic crystals affect k?
» Modification of phonon dispersion “w(k)”, which is related to the
phonon group velocity and influences the phonon scattering lifetime
» Incoherent scattering due to the interface at each inclusion 1a8 8. oy 8865 "Saat
» Redistribution of the phonon density of states as compared with bulk
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PnC Thermal Conductivity ),
Callaway-Holland Model

How do phononic crystals affect k?
» Modification of phonon dispersion “w(k)”, which
is related to the phonon group velocity and
influences the phonon scattering lifetime

» Incoherent scattering due to the interface at s the phonon dispersion
each inclusion v(k) = ‘@ Ok 1s the phonon group velocity
» Redistribution of the phonon density of states as 7(k) 1s the phonon scattering lifetime
compared with bulk k 1s the wavevector

Thermal conductivity given by Callaway-Holland model: J - 1,2, 3 Q 'longl.tudlna.l and 2 transverse modes)
L is the limiting dimension (smallest feature size)

LI
[‘”‘MH ;:D

1 1 N 1 N 1 Timpurizy, Jj
— 1 L
T j (k) TUmklapp, / Timpurily, U Tboundary ] = I
Tboundarjy,j Uj ( )

To modify x, we need to change:
a. Dispersion “w(k)” where B, C, D, and E are constants

b. Minimum feature size “L” determined by fitting k to experimental data
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PnC Thermal Conductivity ),

Hybrid LD + PWE Approach

o o o o O o

=== =]
o o = =
o ¢ o o o

Plane-wave expansion (PWE) combined
with lattice dynamics

e ==

» Continuum mechanics-based PWE theory breaks
down at nanometer length scales z S O O
» Lattice dynamics/molecular dynamics modeling ’ 5 O O (
becomes computationally intensive at the same L. X2 ‘E"a_ﬂ D

» Simulation tool developed for calculating k that
supplements continuum mechanics with

corrections from lattice dynamics Optical
PWE dispersion: Phonons

» Quantitatively valid in the Debye-limit portion of
the dispersion

» Qualitatively valid in the linear/slow portion of LA Debye Limit
the material dispersion Acoustic

» Must calculate >45000 bands for room- Phonons
temperature k in Si T4 Bebye Limit

Normalized Wavevector (ga/m)
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PnC Thermal Conductivity ),

Threshold Mean Free Path

Prediction of k using our hybrid model
» Dispersion data of PnCs performed up to ~2THz using plane-wave expansion (PWE) used
directly to calculate «
» Threshold MFP (TMFP) uses phonon MPF data to distinguish the phonon population as
coherent or incoherent
» Phonons with a MFP of 2um and longer experience coherent PnC scattering

=» Si MFPs span from 1nm to 100um at T
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PnC Thermal Conductivity

Verification of Hybrid Model

Si-W PnC

Coherent vs. Incoherent Phonon Scattering in Si/Air PnCs:
» Theoretical predictions of k reduction match well with measured data
» Fabricated parameters varied slightly from what was specified

» TMFP = 2um was assumed for all PnCs
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ZT Prediction i

Laboratories
Overall System Performance

» Enhancement in ZT by a factor of 2x versus bulk Si
» 1.4x Enhancement as compared to an unpatterned slab
» Applicable to any material system
» ZT must be limited by high k, and have a k that is dominated by phonon transport (i.e.
most semiconductors)
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Concurrent Engineering of o and «

Si-Metal PnCs
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Si-W PnC

Concurrent o Enhancement and x Reduction:
» Si-metal PnCs to reduce x with simultaneous o enhancement

e

» Is o actually enhanced, and is « still reduced without . p—y . aaM
. = TAS 2. 8KV K75 .008 J
the porosity factor? £

=» Measure thermal and electrical conductivity of existing Si-W SC Metal SC
samples Tior

e Effectono:
> Increased doping:

» Decreases the interface potential width =» electron tunneling

Depletion Layer

» Ohmic contact at interface:

1 ff \") EBarrier Interface Potential
+ |
— SC . Metal

O ppcsw ¥ Oy —f
w

e [Effectonk: ®'~\, RS Tunneling

> Solid-solid PnC rather than solid-air: A €

» Mechanical impedance mismatch is still very high
» Scatterer thermal conductivity is no longer negligible

» Boundary thermal resistance must now be considered Er.sc

Increased Doping “n”

i, S o px Ky

PnC+w = ™Si
C+ ffy K

Increased Interface Curvature

CE-Metal

| E:F-SC ;
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Concurrent Engineering of o and ¥ @

Concurrent o Enhancement and k Reduction:
» Compared with Si-air, Si-W PnCs are predicted to have:
» ~15% less thermal conductivity reduction, but
» 1.7x — 3.8x enhancement in electrical conductivity
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Theoretical Prediction

Laboratories

Si-W PnC

—— 1886nm F1 LB1

TAS 2. 08KV K7rS.0088 7 mm

=
EN]
T

0.65

=
[=r}
T

0.55

=
ch
T

5

— 4 = Si-Alr, a=900nm
1 = g= = 3I-Alr, a=800nm
-— e = 3-8, a=700nm
- = = Si-8iF, a=600nm
| = & - Si-air, a=500nm
—4— 3i-W, a=800nm
| —— Si-W, a=700nm
e 3i-W, a=600nm

260 280 300 _320 340 360 380 400
Limiting Dimension (nm)

x and o in Si-metal PnC

12/12/2014




ZT Prediction i

Laboratories
Si-W PnC Performance

Concurrent o Enhancement and xk Reduction:

» Assuming Seebeck coefficient remains constant = 3.5x ZT enhancement
compared to an unpatterned slab (~5x compared to bulk)

» Si-metal-air PnC may enhance ZT even more by reducing k further
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Conclusions ) i,

> We have shown the first experimental observation of decoupling of electrical and
thermal conductivity in PnCs, and theoretical concurrent engineering of the
conductivities in a Si-metal PnC for a factor of 5 enhancement of ZT.

> We also introduced the concept of a threshold mean free path in conjunction with
a hybrid model, representing one of the most accurate models for thermal
transport in periodic micro-scale devices.

> Our approach enables us to use the thermal conductivity as a macroscopic metric
for inferring the average phonon coherence length in our PnC samples.

> This work may hold the key to unprecedented thermoelectric performance; using
PnC topologies to further suppress phonon transport of microscale porous
samples while enhancing electron transport.

-
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