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Big Question—Small to Big and Back

Lu et al. (2013)

How do petrographic and geologic observations 
to to how (and why and how much) they are 
damaged?

i.e., Use logic to interpret test results in terms of 
geologic observations.



Why Care?

Subsurface CO2 storage leakage pathway.



Why Care?

Natural Gas Release in Shales
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Studies

Geometric controls on fracture propagation through the lens 
of linear softening cohesive fracture model.

Method for automatic picking of P- and S-wave arrivals in 
acoustic emissions.

Mechanical heterogeneity of the Lower Tuscaloosa Formation, 
in support of SECARB CO2 injection pilot program, Cranfield 
DAS site.
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A Method for Automatic Picking of P- and 
S-wave Arrivals in Acoustic Emissions



The Problem



A Tool to Help Link Grain-Scale and Continuum

Lu et al. (2013)

P-wave velocities include both bulk 
and shear elastic moduli.

Decoupling requires S-wave 
information, which only included 
shear moduli.



Justification and Method
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The Final Picks
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Example in Siltstone

Rumbles

Complicated Noise

Clean Event



Summary
● Changes in covariance structure across wavelet scales 

allow consistent arrival time estimates in P- and S-wave in 
acoustic emissions.

● Requires multiple filtering and data assurance steps.
● Initial identification of onset.
● CWT transform and filtering.
● Covariance and f-metric calculation.
● Filtering of f-metric.
● Identifying plateaus with multiple thresholds.

● Difficulty with
● Long 'rumbly' events.
● Complicated eletrical noise.

● Will allow passive source estimates of both elastic moduli 
changes during testing.
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Mechanical Variability at Reservoir 
Conditions of Lower Tuscaloosa 
Formation in Support of SECARB 

Injection Pilot Program at DAS, Cranfield 
Site



  

CO2 sequestration

What information 
is needed for site 
selection and 
operations?

Are there 
hydromechanical 
complications 
from CO2 
injection?



  

Cranfield  'Early Test' Pilot Injection Program

● Leverage EOR operations of 
Cranfield oilfield for CO2 injection 
and storage.

● Injection horizon is D-E member 
of Lower Tuscaloosa Formation.

●  Trap is shallow anticline above 
salt dome with Middle Tuscaloosa 
sealing.

● Injected 3.54 million tons of CO2 
between 2009 and Feb 2012.

● Performed geophysical, 
geochemical, surface and tracer 
monitoring.

From Hossieni et al., 2013. International Journal of Greenhouse Gas Control.



  

Prelim. Results of Injection

● Some fine tight sandstones act as seal, while flow directed 
in preserved conglomeratic channels.

● CO2 did not change brine chemistry significantly, due to 
high concentrations in brine.

● Permeability changed inconsistently in pathways to closely 
spaced monitoring wells. (Between Dec. 2009 and March 
2010)

● Hypothesized to be from changes in wettability.

We hypothesize that CO2 may have altered mechanical 
properties of injection horizon, leading to compaction and 

decreases in permeability.



  

Driving Questions

● What is the heterogeneity of the injection 
horizon?

● Does CO2 weaken some parts of the rock?

● What are the geologic controls on chemically 
activated deformation?

● How may flow be affected by the chemical-
mechanical coupling?



  

Lower Tuscaloosa Fm. (Regional)

Woolf dissertation (2012)

Deposited during 
transgression ~85 Ma.

Transition from alluvial 
to fluvial to deltaic to 
gravity-flows and 
turbidites.



  

Lower Tuscaloosa Fm. (Regional)

Woolf dissertation (2012)

Cranfield DAS in inset 
valley fill from mostly 
braided river system.

Sourced from 
Ouachitas Mountains.

Lithic rich → Chlorite 
cements and 
secondary porosity.



  

Core Description from Cranfield

From Lu et al., 2013. International Journal of Greenhouse Gas Control.

Red terrestrial siltstone

Tabular, very fine grained qtz 
cemented sandstone

X-bedded, coarse fine 
grained qtz/chlorite 

cemented sandstone

Coarsely x-bedded coarse 
pebbly chlorite-cemented 

sandstone 

Conglomerate



  

Core Description from Cranfield

From Lu et al., 2013. International Journal of Greenhouse Gas Control.

Red terrestrial Siltstone

Tabular, very fine grained qtz 
cemented sandstone

X-bedded, coarse fine 
grained qtz/chlorite 

cemented sandstone

Coarsely x-bedded coarse 
pebbly chlorite-cemented 

sandstone 

Conglomerate

A

B

A

C



  

Core Images

Slabbed core from Well CFU 31-F3 at Texas BEG Core Repository, Austin, TX.

Siltstone Tabular Sandstone

X-Bedded Sandstone
Congl. Sandstone

A
B

C



  

Petrography and Cements

From Hossieni et al., 2013. International Journal of Greenhouse Gas Control.

Chlorite cements in cong. sandstone. Quartz cements in fine sandstones.

Calcite cements in concretion. Dissolved lithic grains throughout.



  

Driving Questions
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● Does CO2 weaken some parts of the rock?
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mechanical coupling?



  

Driving Questions
● What is the hydrologic, chemical and 

mechanical heterogeneity of the injection 
horizon? Grainsize and type of cement?

● Does CO2 weaken some parts of the rock? 
Prevelance of chlorite vs. quartz cements?

● What are the geologic controls on chemically 
activated deformation? Source terrain, depo. 
env.?

● How may flow be affected by the chemical-
mechanical coupling? Differential compaction 
leading to changing permeability, but only in some 
facies?



  

Testing Requirements

Simulate reservoir conditions.

● Temperature at 100°C temperature.
● Pore fluid is reservoir brine simulant.

● 130 ppt TDS, used Na-Ca-NO3 brine.
● Equilibrated with supercritical CO2.

● Pore pressure is 30 MPa.
● Depth of 3,000 m (lithostatic pressure is ~70 MPa).

Generate enough stress paths to estimate elastic 
properties, and yield and failure envelopes. When 
possible, include acoustic emission monitoring.



  

Definitions

Axial Stress

Confining Pressure

Pore Pressure



  

Test Plan – Mechanical

● Test suite for each of the 3 lithofacies.
● Hydrostatic crush-out.
● Effective unconfined compressive strength.
● 1-2 constant confining pressure triaxial strength tests.

● Monitor stress, strain and acoustic emissions.

● All tests in quasistatic strain rates.

● Monitor for deformation during chemical and thermal 
equilibration periods, and during pauses in quasistatic 
loading.



  

Experimental Setup



  

Experimental Setup



  

How to Interpret Results

Yield

Peak

Yield 
Beginning of inelastic 
deformation (damage).

Peak Stress
Highest differential stress 
material can withstand.

Elastic moduli degradation
Elastic 'stiffness' becomes 
smaller with increasing 
Damage.

Time independent (assumes no 
creep/subsidence)



  

How to Interpret Results

Undeformed
Sample

Compaction 
Band

Initial plane of 
weakness, then 
grain crushing and 
porosity loss.

Shear failure

Some dilatancy 
common, med. 
angle fractures.

Dilantant failure

Volume increase 
from lateral crack 
opening, high 
angle fractures 
from crack 
coalescence.

Perm.



  

Strain Partitioning

εtot = εelastic + εplastic + εviscous

εtot = εelast,degr(εplastic) 
+ εplastic + εviscous

Total 
Strain

Elastic Strain 
(with Degradation)

Elastic Strain 
(No 

Degradation)

Plastic 
Strain

Neglect Viscous Strain
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Failure Envelopes
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Failure Envelopes
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70-MPa Triax Stress Strain Data



  

70-MPa Triax Stress Strain Data

Pore Pressure (32 MPa)

Lithostatic Pressure (70 MPa)

Axial L
oading

Hydro
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Loading



  

70-MPa Triax Stress Strain Data

C: 210 Mpa
Shear Band

Peak Axial Stress 
and Failure Style



  

70-MPa Triax Stress Strain Data

C: 210 MPa
Shear Band

B: 163 MPa
Shear Band

Peak Axial Stress 
and Failure Style



  

70-MPa Triax Stress Strain Data

C: 210 MPa
Shear Band

B: 163 MPa
Shear Band

A: 97 MPa
Compaction

Peak Axial Stress 
and Failure Style



  

70-MPa Triax Facies A Creep



  

70-MPa Facies A Strain Partition



  

Failure Envelopes
A

B C

In-situ stress estimate from Kim and Hosseini,  personal communication, 2014.



  

Results (Stress-Strain)

● The three different sandy lithofacies of the D-E member of 
the Lower Tuscaloosa have dramatically mechanical 
strengths at near-wellbore conditions in the presence of 
CO2.

● Elastic degradation greatest in Facies A, then Facies B, 
then weak in Facies C.

● Rapid (hours) creep accumulation in Facies A, negligible 
creep strain in B and C.

● For 70 MPa-tests, Facies B and C fail in shear, Facies A 
fails as compaction band.

● Facies A decreases in permeability from both 
quasistatic failure and creep deformation.



  

Results (Envelopes)

● Facies C/Tabular (strongest) → Facies B/X-bedded → 
Facies A/Conglomerate (weakest).

● Plastic strain (yield) very early relative to in-situ stress.
● Rocks “remember” maximum depth of burial/stress 

state. 

● Elastic moduli degradation separate from onset of plastic 
strain. Argues for different mechanisms.

● Facies B and C have in-situ stress away from initial yield, 
near onset of moduli degradation.

● Facies A failure envelope lower than in-situ stress.
● Compaction from failure during injection.
● Possibly decreasing permeability.



  

Conclusions and Implications
● CO2 impacts strength and 'creep' of siliceous rocks through 

interaction with cements.

● Evolution of permeability (and how to manage well field) 
can be controlled by CO2-enhanced compaction through 
chlorite cementation.

● Facies A (main injection horizon) hydraulically 
sensitive to CO2 injection b/c of CO2-chlorite 
interactions.

● Different mechanisms for plastic strain (deformation in 
chlorite cements) and elastic moduli degradation (grain 
fracture).

● Coupling of regional geology, mechanics, hydrogeology and 
fluid-solid chemistry need all to be accounted for with 
reservoir rocks, not analogs.
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Ancillary Slides



  

Test Plan – Chemical

● Initial pore fluid is a high ionic strength brine with close to reservoir 
cation chemistry equilibrated with super-critical CO2.
● [NaNO3] = 2.1 M, [CaNO3] = 0.4 M, and [MgCO3] = 0.06 M.

● Equilibrate sample with brine-CO2 fluid at 32 MPa confining pressure 
and ~32 MPa pore pressure overnight.

● Heat sample to 100 C and equilibrate at this temperature for a least 3 
hours.

X-bedded Sandstone, Lam. Sandstone, and Congl.

● Perm too low to saturate with brine in time needed.

● Use constant relative humidity (77%) in sample to make consistent 
measurements between siltstones.

● RH controlled by equilibrating sample with 2.4 [NaNO3] brine at ~100 C 
overnight.

Siltstone
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