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Geometric controls on fracture propagation through the lens
of linear softening cohesive fracture model.

Method for automatic picking of P- and S-wave arrivals in
acoustic emissions.

Mechanical heterogeneity of the Lower Tuscaloosa Formation,
in support of SECARB CO2 injection pilot program, Cranfield
DAS site.



Method for automatic picking of P- and S-wave arrivals in
acoustic emissions.

Mechanical heterogeneity of the Lower Tuscaloosa Formation,
in support of SECARB CO2 injection pilot program, Cranfield
DAS site.



A Method for Automatic Picking of P- and
S-wave Arrivals in Acoustic Emissions
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« Changes in covariance structure across wavelet scales
allow consistent arrival time estimates in P- and S-wave in
acoustic emissions.

* Requires multiple filtering and data assurance steps.
e Initial identification of onset.
« CWT transform and filtering.
« Covariance and f-metric calculation.
* Filtering of f-metric.
* |dentifying plateaus with multiple thresholds.

« Difficulty with
e Long rumbly’ events.
« Complicated eletrical noise.

» Will allow passive source estimates of both elastic moduli
changes during testing.
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Geometric controls on fracture propagation through the lens
of linear softening cohesive fracture model.

Method for automatic picking of P- and S-wave arrivals in
acoustic emissions.

Mechanical heterogeneity of the Lower Tuscaloosa Formation,
in support of SECARB CO2 injection pilot program, Cranfield
DAS site.



Mechanical Variability at Reservoir
Conditions of Lower Tuscaloosa
Formation in Support of SECARB

Injection Pilot Program at DAS, Cranfield
Site
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Leverage EOR operations of
Cranfield oilfield for COZ2 injection
and storage.

Injection horizon is D-E member
of Lower Tuscaloosa Formation.

Trap is shallow anticline above
salt dome with Middle Tuscaloosa
sealing.

Injected 3.54 million tons of CO2
between 2009 and Feb 2012.

Performed geophysical,
geochemical, surface and tracer
monitoring.

From Hossieni et al., 2013. International Journal of Greenhouse Gas Control.

A [njection well
® Sample well
* Other well




« Some fine tight sandstones act as seal, while flow directed
In preserved conglomeratic channels.

e CO2 did not change brine chemistry significantly, due to
high concentrations in brine.

 Permeability changed inconsistently in pathways to closely
spaced monitoring wells. (Between Dec. 2009 and March
2010)

» Hypothesized to be from changes in wettability.

We hypothesize that CO2 may have altered mechanical
properties of injection horizon, leading to compaction and
decreases in permeability.



* What is the heterogeneity of the injection
horizon?

* Does CO2 weaken some parts of the rock?

* What are the geologic controls on chemically
activated deformation?

 How may flow be affected by the chemical-
mechanical coupling?
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Cranfield DAS in inset
valley fill from mostly
braided river system.

Sourced from
Ouachitas Mountains.

Lithic rich — Chlorite
cements and
secondary porosity.
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Quartz cements in fine sandstones.
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From Hossieni et al., 2013. International Journal of Greenhouse Gas Control.



* What is the heterogeneity of the injection
horizon?

* Does CO2 weaken some parts of the rock?

* What are the geologic controls on chemically
activated deformation?

 How may flow be affected by the chemical-
mechanical coupling?



Driving Questions

 What is the hydrologic, chemical and
mechanical heterogeneity of the injection
horizon? Grainsize and type of cement?

* Does CO2 weaken some parts of the rock?
Prevelance of chlorite vs. quartz cements?

 What are the geologic controls on chemically
activated deformation? Source terrain, depo.
env.?

 How may flow be affected by the chemical-
mechanical coupling? Differential compaction
leading to changing permeability, but only in some
facies?



Simulate reservoir conditions.

» Temperature at 100°C temperature.
 Pore fluid is reservoir brine simulant.
* 130 ppt TDS, used Na-Ca-NOa3 brine.
« Equilibrated with supercritical CO2.
* Pore pressure is 30 MPa.
* Depth of 3,000 m (lithostatic pressure is ~70 MPa).

Generate enough stress paths to estimate elastic
properties, and yield and failure envelopes. When
possible, include acoustic emission monitoring.
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Confining Pressure
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 Test suite for each of the 3 lithofacies.
* Hydrostatic crush-out.
 Effective unconfined compressive strength.
« 1-2 constant confining pressure triaxial strength tests.

« Monitor stress, strain and acoustic emissions.
 All tests in quasistatic strain rates.
e Monitor for deformation during chemical and thermal

equilibration periods, and during pauses in quasistatic
loading.
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In-situ stress estimate from Kim and Hosseini, personal communication, 2014.
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* The three different sandy lithofacies of the D-E member of
the Lower Tuscaloosa have dramatically mechanical
strengths at near-wellbore conditions in the presence of
CO2.

 Elastic degradation greatest in Facies A, then Facies B,
then weak in Facies C.

* Rapid (hours) creep accumulation in Facies A, negligible
creep strain in B and C.

« For 70 MPa-tests, Facies B and C fail in shear, Facies A
fails as compaction band.
» Facies A decreases in permeability from both
quasistatic failure and creep deformation.



» Facies C/Tabular (strongest) — Facies B/X-bedded —
Facies A/Conglomerate (weakest).

 Plastic strain (yield) very early relative to in-situ stress.
* Rocks “remember’” maximum depth of burial/stress
state.

 Elastic moduli degradation separate from onset of plastic
strain. Argues for different mechanisms.

* Facies B and C have in-situ stress away from initial yield,
near onset of moduli degradation.

* Facies A failure envelope lower than in-situ stress.
« Compaction from failure during injection.
« Possibly decreasing permeability.



« CO2 impacts strength and 'creep' of siliceous rocks through
Interaction with cements.

« Evolution of permeability (and how to manage well field)
can be controlled by CO2-enhanced compaction through
chlorite cementation.

» Facies A (main injection horizon) hydraulically
sensitive to CO2 injection b/c of CO2-chlorite
iInteractions.

 Different mechanisms for plastic strain (deformation in
chlorite cements) and elastic moduli degradation (grain
fracture).

» Coupling of regional geology, mechanics, hydrogeology and
fluid-solid chemistry need all to be accounted for with
reservoir rocks, not analogs.
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Ancillary Slides



X-bedded Sandstone, Lam. Sandstone, and Congl.

* Initial pore fluid is a high ionic strength brine with close to reservoir
cation chemistry equilibrated with super-critical CO2.
 [NaNO3] = 2.1 M, [CaNO3] = 0.4 M, and [MgCO3] = 0.06 M.

» Equilibrate sample with brine-CO2 fluid at 32 MPa confining pressure
and ~32 MPa pore pressure overnight.

» Heat sample to 100 C and equilibrate at this temperature for a least 3
hours.

Siltstone
 Perm too low to saturate with brine in time needed.

» Use constant relative humidity (77%) in sample to make consistent
measurements between siltstones.

* RH controlled by equilibrating sample with 2.4 [NaNO3] brine at ~100 C
overnight.
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