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Turbulent Condensation

e Turbulent condensation 1s a
relatively common phenomenon

* Jetis quite inhomogeneous in the
Instantaneous sense

* Non-linear eftects at the
turbulent/non-turbulent interface

* Results in complex droplet
diameter distributions that are
relevant to additional dynamics

* Goal 1s to bridge the gap between
simple models and DNS




PDF Method

* Probability density function (PDF) methods
were developed as an alternative method to
model turbulence

* Theory for determining velocities 1s not

widely adopted

* Composition PDF i1s used because it allows
scalars/reactions to be treated explicitly

— Use traditional CFD for velocity field, but PDF
tor scalar advection




Computational Algorithm

* Stochastic particle * Cell balancing
advection . — Particles must be split
d; = widt + iy Grdt + (ﬁr) S AW, combined to maintain

appropriate count

* Stochastic particle ,
P  Particle tflux at the

mixing (modified Curl’s

d :
method) oriattt |
— Number of particles to * Thermodynamics
mix — Supersaturation-driven
C(P Nodt growth or shrinkage of

droplet
— Degree of mixing 1s FOpIEs

random




Thermodynamics

e Particles are assumed to have constant
enthalpy between mixing events

* Total enthalpy consists of three components:

h,=(0-x)c,T+(x-x)c,I+h,)+xc,T

air water vapor liquid

* Temperature 1s function of the fraction ot
condensed water
hp o ('x—‘xl)hwe

(I-x)c,, +(x—x)c,, +x0c,

T




Diameter Growth/Shrinkage

* Supersaturation is computed

B
_ 1 = A~
Water vapor pressure 080 Psus CiT
— Supersaturation 5= ]f ]
* Droplet growth 1s computed dr_s
via multi-step Runge-Kutta dt ' r

* Droplets are redistributed such that water
droplet volume 1s conserved

l_—l 1 5




Computation with GPU

* Problems well-suited to being solved with
Graphical Processing Units (GPUs)’

— Computational requirements are large
— Parallelism 1s substantial

— Throughput 1s more important than latency

* Lagrangian Monte Carlo particle code hits all
three points

1 Owens, et al (2008), GPU Computing.




OpenFOAM Results
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Scalar Transport Validation
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Strum & Toor Experiments

* Emerging jet had
100% humidity

I ‘
\
\

. Free — 85 °C

lee?:zﬁ/er Jet — 62 °C
> H * Measurements taken
Transmitter at various radial and

axial locations

— Development region as

t well as near-field

from Strum & Toor, 1992




D,, Comparison
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62 °C Turbulent Jet
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85 °C Turbulent Jet
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85 °C Turbulent Jet (z/d=15)
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Conclusions & Future Work

* PDF composition method used to model
turbulent condensation
— Monte Carlo approach 1s implemented

— Particle thermodynamics tracked with enthalpy
* Speed-up with GPU 1s considerable (~30x)

* Possibilities for tuture code improvements
- 3-D
— Flexible meshing/discretization
— Coupling with flow solver

— Different evolving quantities
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Monte Carlo Treatment

* Continuous PDF's are represented as an
computational particles

— Stochastic particles are advected through the
domain

— Each particle 1s a difterent realization ot the tlow

* Each particle tracks a diameter-discretized
distribution of water droplets

* Domain 1s subdivided into particle-containing
cells
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