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[ Outline
1. Nuclear non-proliferation applications

» Detection principles & physics
»How MCP-based detectors fit in

» Specific example: Single-Volume Neutron Scatter Camera

» Other 1deas for MCP-based detectors

 NB: Acknowledged
bias toward
— Neutrons
— Imaging
— Arms control
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g Nuclear security Venn diagram

Horizontal proliferation:
new actors acquiring
nuclear capabilities
Vertical proliferation:
existing NWS increasing
nuclear capabilities
Special nuclear material
(SNM) is the common
clement.

o Detect

o Locate

o Characterize

Radiation detection can
help!



() i Special Nuclear Material

Laboratories

. . o
What 1s it EW GPuj EHEUj
— Plutonium, or

— Uranium enriched in U-233 or U-235.

— Sine qua non of a nuclear explosive.

* What does 1t look like?

— Many different forms & colors.

* Special nuclear material emits 10onizing radiation.
— Sensitive and specific signature

— Only neutral particles (n,y) useful in most cases
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() & SNM radiation signatures

Laboratories

These physical processes... ... produce these signatures
* Spontaneous fission * Gamma spectrum reflects
* Induced fission 1sotopics

— Self-interrogation * Neutron fission spectrum

— External interrogation e Time correlations
* Other radioactive decays (multiplicity analysis)

— Gamma

- (an) *o 200 MeV !

B g @t Vs
(n) (Z,A) 2X~Z2AM)2) ~2-3n's  ~T-8y's
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() Gamma signatures

Laboratories

The Passive Gamma-Ray Signatures

e Energy Activity Mean Free Path (mm)
(keV) (v/g-s) (High-Z, ) (Low-Z, p)
234y 1209 9.35x 104 0.23 69
235 143 8 8.40 x 102 0.36 73
1857 432 x 104 0.69 80
2381 766.4 2.57 x 101 10.0 139
1001.0 7.34 x 10° 133 159
28py 1527 5.90 x 10¢ 0.40 75
766.4 1.387 x 10° 95 139
29py 1293 1.436 x 10° 027 71
4137 3416 x 10# 37 106
452 3.80 x 108 0.07 25
240Py 160.3 3.37 x 104 0.45 76
642.5 1.044 x 107 74 127
241py 1486 7.15 % 108 0.37 74
208.0 2.041 x 107 0.86 83
241Am 59.5 4.54 x 1010 0.14 38
125.3 5.16 x 10° 0.26 70

. . . Ref- "Panda Book™
Slide courtesy of David Chichester, INL = ranaa se
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Neutron signatures

The Passive Neutron Signatures

Ref: “Panda Book", values with £ have significant uncertainty

Spontaneous Spontaneous Induced Thermal
Isotope Half Life Fission Yield | Fission Multiplicity | Fission Multiplicity
(n/s-kg) v v
232) 71T yr 1,300 1.71 3.13
233y 159 x 105 yr 0.86 1.76 24
234 2.45 x 105 yr 5.02 1.81 24
25 7.04 x 108 yr 0.299 1.86 241
236 234 x 108 yr 5.49 1.91 22
238 447 x 108 yr 136 2.01 23
LTNp 214 x 108yr 0.114 2.05 270
236py 87.7 yr 2.59 x 108 2.21 29
| Cf252 Spectrum | 23%Py 241 x 104 yr 218 2.16 288
%0'165 | 240pYy 6.56 x 10°yr 1.02 x 108 2.16 28
§0.14E 7 241py 14.35yr 50 + 225 28
m% 7 242Py 376X 105yr 1.72 x 108 215 281
o1 244Cm 18.1yr 1.08 x 101 272 346
% 282Cf 2 65 yr 2.34 x 10" 3.757 4.06
0.08%
//

0.02

[=]

0

4 5 6 7 8 9
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Neutron Energy (MeV)
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Table courtesy of David Chichester, INL




M. Rad detection for detecting SNM

Laboratories

Notional scenarios: * By definition,
 Sources indicate that a interesting/difficult cases
significant quantity of have low S:B.

nuclear material 1s present
in X neighborhood. Find it
or provide all clear.

e Active interrogation can
increase signal at cost of

, , , more/different background
« Radiographic/active

interrogation of rail cargo:  Radiation detection needs:

scan rates of 8 to 24 km/h, — High etficiency
scan lengths over one — Scalability
kilometer, and a penetration — S:B discrimination
depth of 90 cm of steel
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) i Rad detection for locating SNM

Laboratories

Notional scenarios: * Radiation detection

e Nuclear material 1s needs:
present in building X. — Directional information
Determine which — Field of view depends on
floor/apartment. specific application

* Count number of nuclear
warheads on an ICBM

without visual access.

2 Dec 2014 E. Brubaker, SNL/CA 10



M= Rad detection for characterizing SNM

Laboratories

Signatures (physics) Detectors (technology)
 SNM emits vy, n * Typically optimized for
radiation SNM measuring one aspect
— {Spectrum, rate, vector of the radiation
field, correlations signature, €.g.
determined by {SNM — Gamma spectrum —
gg;ls% 15;);851158, L good energy resolution
& . —ag%s—/ — Neutron timing
* Surroyndlng correlations — Large
material attenuates, effective area for n
scatters, modifies detection
. v .
signature Ej m — SNM configuration —
. . position, direction
ISIII\?ﬁaCthIlS bgt ween Detectors resolution
, SUTOUNAINgs — Low-rate processes —
active stimulation

2 Dec 2014 E. Brubaker, SNL/CA 11



() i SNM detection/imaging

A e b AR

L)

Arms control treaty verification

We develop systems for eventual application in a range of scenarios:

Emergency
response

SNM detection applications SNM 1maging applications
* Low signal rate * High resolution required
— Need large area detectors! — Fine detector segmentation
* Low signal to background « Multiple or extended sources
— Need background
discrimination!

2 Dec 2014 E. Brubaker, SNL/CA
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() i Standoff detection

~5.5e4 n/s/kg \\ g -
IAEA sig =8 kg .

<&— WGPU | % % 3 X :-\o

VN 0

/ l \\ « Example: Large stand-off application

(100 meters)

— 8 kg WGPu=~4.4e5n/s —
4.4¢5 *exp(-R/100)/4nR? ~1.3 n/s/m?

& il“ é — Background = ~50 n/s/m? (at sea level)
v /// ~ 100% efficient, 1 m? detector —

5o detection in ~13 minutes

K

s

=_ - 10% efficient, 1 m? detector —

5o detection in ~2 hours

Background& 10% efficient, 1 m? detector, 3% bg rate
~5e-3 n/s/cm? systematic — 5c detection in never

Y
?
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(i) e Cargo screening

Laboratories

* Extremely challenging problem!
— Needle 1n a haystack

— Flow of commerce
— Potential for heavy shielding

— Background variations

* Primary screening, secondary, etc.

2 Dec 2014 E. Brubaker, SNL/CA 14



() = Emergency response

Laboratories

* Learn as much as possible, as quickly
as possible, about a package
containing SNM.

* All information is potentially useful.

2 Dec 2014 E. Brubaker, SNL/CA 15



M= Arms control treaty verification

Treaty needs:
* Warhead counting
— Verify declarations

* Warhead confirmation
— Verify it 1s a warhead
— Verify warhead type

e Chain of custody
— Monitored storage
— Spot check status

* Dismantlement/disposition
— Maintain perimeter

Sensitive
information

Detector

— Track item through process capability
Three-way tug of war!

2 Dec 2014 E. Brubaker, SNL/CA 16



() i Signatures/detectors

Laboratories

0.1 MeV — 10 MeV gammas

— High natural backgrounds, many NORM sources
— Shielded by high-Z materials

— Energy resolution key to determine 1sotopics

0.1 MeV — 10 MeV neutrons

— Low natural backgrounds, few benign sources

— Shielded by low-Z materials

— Weak spectral information

— Direct access to fission process: time correlations

* Directional information improves S:B, locates
sources, measures spatial configuration of material

* Active interrogation, radiography are wild cards

2 Dec 2014 E. Brubaker, SNL/CA 17
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0.1 MeV — 10 MeV gammas

High natural backgrounds, many
NORM sources

Shielded by high-Z materials
Energy resolution key to determine
isotopics

0.1 MeV — 10 MeV neutrons

Low natural backgrounds, few benign
sources

Shielded by low-Z materials

Weak spectral information

Direct access to fission process: time
correlations

Directional information improves S:B, locates
sources, measures spatial configuration of
material

Active interrogation, radiography are wild

cards

2 Dec 2014

Signatures/technologies

Plastic scintillator/PMT

Inorganic scintillators/PMT (Nal, CsI)
Semiconductors (HPGe, CZT)
Shaping/MCA electronics

Thermal neutron detectors (He-3 tubes)
Organic scintillators/PMT (plastic, liquid,
crystalline)

Pulse height/shape discrimination
Multiplicity analysis

More complex systems—high channel
counts, calibrations, data processing,
analysis, image reconstruction

Gamma sources
Neutron sources

E. Brubaker, SNL/CA 18



() & Where does MCP fit in?

Laboratories

 MCPs can detect/amplify
— Charged particles directly
— With PC, optical photons (e.g. from scintillator)
 MCP-based detectors have intrinsically
— Good spatial resolution (10s of um)
— Good time resolution (10s of ps)
— Decent scalability
* Not trivial to take advantage of those qualities!
— Cost/capability tradeoff

* Where 1n the nuclear security application space 1s
the tradeoff worth 1t?

2 Dec 2014 E. Brubaker, SNL/CA 19



Single-Volume Neutron Scatter
Camera

Jim Brennan, Erik Brubaker, Aaron Nowack,
John Steele, Melinda Sweany, Eli Woods

Sandia National Laboratories, Livermore, CA

John Mattingly, Kyle Weinfurther
North Carolina State University

Sandia
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Laboratories
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) \

Pinhole: High Resolution,
Low Throughput

‘- 1 —— ‘- - ———— Mask

%

TC‘oun ts

Detector

M fFilux 1
Flux 2

Coded aperture: High
Resolution, High Throughput

2 Dec 2014

Neutron camera approaches

Fast neutron directions and energies

. incomin
constrained by double scatter geometry neutmng

E,=E,+E,

scintillator
detect‘)ff

___________

*%_ /neutron direction

~ constrained to
Multimode capability includes cone surface
« Neutron energy spectrum.

+« Compton imaging.

E. Brubaker, SNL/CA 21



M)&=_ Single-Volume Neutron Scatter Camera

Laboratories

incoming
neutron

5.00E-09

scintillator
detectors
.*

14

*Only considering elastic
scattering

*Only considering elastic
scattering

12 4 D0E-DD

10

3.00E-09

Mean free path:
~3 cm @ 1 MeV

> * * e

. \ . PR EREELE N
s \¥ s >t

2.0DE-09 \ »—
o*® - * 1.00E-09 A : : :
2 79 AVE mtrascatter time:
(¥} T T T T T 1 0.00E+00 T 72 nS @ 1 Mev T

0.00E+00 SO00E+05 1.00E406 150E4+068 200E+0&8 250E+06 3.00E406 1.00E404 5.10E+05 1.01E+06 1.51FE+06 2.01E+06 2. 51E+06

MFP, cm
[= =]
Average Time Between Ineteractions, s

MNeutron Energy, eV Neutron Energy, eV
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M)&=_ Single-Volume Neutron Scatter Camera

Laboratories

Efﬁcnency comparnson

1 _a ................... \ .................. |a ................... \ .......... VOXelated Scatter camera
: : : : 5 Two scatters in SVSC

» A scatter camera built from a
highly voxelated volume can
recover more than an order of
magnitude of efficiency if nearby
interactions can be resolved.

E — Hydrogen scatters

Mln 200 keV H scatters

Current NSC . :
Front &1 rear scaﬂers

Fraction of incident neutrons

° Addltlonal advantages Of COmpaCt ....................... onhydrogen ............................................................................................................
form factorr. =~~~ & e Above 200 keV

. Resolving multiple interactions of ' F __________________ ___________________ _____________________________________ ____________________________________________________
a neutron separated by O(cm) and B T S T e T R R e T
O(ns) 1n a bulk scintillator 1s Min separation of two first interactions (cm)
difficult!

« Excellent spatial and temporal tror
resolution of photodetectors based
on microchannel plates is the key Organic
enabling technology. semtillato

2 Dec 2014 E. Brubaker, SNL/CA 23



() e, System Components

e Active material - |

— Fast organic scintillator i
— Plastic vs crystalline T

* Photodetector T
— MCP-PMT, e.g. Planacon

— Position resolution depends on
anode structure

— 35 ps transit time spread
« Equals 8 mm photon travel
* Electronic readout

— Switched capacitor array
* ¢.g. DRS4 (5 GS/s, 950 MHz, 11.5 enob)

— Need careful board design—bandwidth, noise
— Long reset time

+ Simulation PSI
+ Event reconstruction algorithm
+ Image reconstruction algorithm

2 Dec 2014 E. Brubaker, SNL/CA 24
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Simulation/Reconstruction

Probability multiplies

over all observed

photons
Extended ML for Probability to observe a photon
accurate energy >ﬁ is summed over all interactions

uncertainty \
. ﬁz*‘JP )
1

i=0 j=0
COSQjj — 1% %]
Pi(xi) = E f(t; 1,0, \
(%) [47T|>7i—>7j|2 (t:4 )]
\ Y J
Solid angle Pulse shape
Optical

attenuation

Event reconstruction via likelihood maximization.
Input is a list of photon arrival positions and times.

E. Brubaker, SNL/CA
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 GEANT4 simulation incl
optical photons

* (10 cm)? detector, PD on
all six sides

* Fixed event: 3 cm/2 ns
separation, ~1 MeVee
each recoil

» Stilbene pulse shape
(0.1 ns rise, 4.5 ns decay)

* Idealized PD
response/resolution

2 Dec 2014

Simulation/Reconstruction

First Interaction X, y, z, t

.y Resolutio

¥, Resolution

Enriee.

, Resoluti y, Resolution
nes - ernes st
Corstant Constant 729134
e a0m0= a0z wean sosesasace
Sigma Sagma 2504 2 0.021

Linl
0 8 & 4 2 0 2 4 8 & 10
Ay, [mm

]

zoR solutio

Mean Q070162002847

Seconc

ulinln
-5-54-2

g 2906 + 0.022
2
4z, [mm]
1 Resolut
rtres =01
Constant ko

Interactlon X, y, Z, t

t, Resolution

w1
Gonzaant s341:75
Mesn DOTZE £ 00001001
Sgma oposTss p.oDOOTS

G 10ps
" .J. " .k

a
T

0De D04 D02 D

t, Resolution

"~/
g =20 ps
T T TP T e )
008 004 D 0.04 D06
At,[ns]

Ideal case, NOT predictions of experimental resolutions!

E. Brubaker, SNL/CA
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() i More realistic
First Interaction x, y, z, t

 GEANT4 simulation incl - === 2 i =
optical photons - -t
* (10 cm)? detector, PD on ] +
all six sides ©6=65mm 4+ o=35ps
* Fixed event: 3 c/2 ns '-:’V’"l"’:;*; |V el bl Bt :J JJ'\’“"
separation, 1.5 MeV, 0.75 — e o L
MeV proton recoils 7
» BC-422 pulse shape (fast
plastic) <+
* Idealized PD T
response/resolution o~ “12 m m
AT

Second Intefé{étlon X'y', z ot

Ideal case, NOT predictions of experimental resolutions!

2 Dec 2014 E. Brubaker, SNL/CA 27




() i Experimental Status
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Lé i3 PAS ch3 __

Pulsed LED | P SEEEE =
Planacon XP85012 e e s
Multiplexer i3 Single
DRS4 eval board (4 ch) . ok electron
C++ DAQ R :: £ response

i

I SOOI OTNTI I gt g e

P RN RN AVAVANN IVANIN
20 40 60 80 100 120 140 160 180 -
time [ns] area [mV*200ps]
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M= Photodetector characterization

Laboratories

* Complex PD/electronics requires significant
effort to characterize and calibrate.

« Use LED with 1 mm pinhole aperture; scan
Planacon in x,y
* Determine position response of Planacon
— N, o« QE
— Pulse height oc gain
— Also see anode response, charge sharing

« Ultimately feed back to simulation for
increased realism & systematic studies.

2 Dec 2014 E. Brubaker, SNL/CA
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() s, Collimated LED scan

Pixel 55

Pixel 54

| J- - -
11 |12]13 |14 15|16 |17 |18 =8 S
21 [z2l23lz4|25]e6 |27] e f_
31 |32| 3ptaetastss |37|38 ,
a1 |42|4p | 44| a5]4p[47]48 :
51 (52| |54|55|5k |57 58 2
61 |62| datestentet |6 7| e 4
71|72l 73|74| 75|78 | 77| 78 °
81 |s2|e3|s4|85|e5 (87|08 ’

o

* QE quite flat (over
small region)

* Sharp anode pixel
boundaries

— 1 mm collimation
« Some PE scatter

Y [mm]
Y [mm]

6
4
2
0
-2
-4
-6
-8
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ME=,. Signal readout/processing
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* Not all pixels see well
separated single photons. .

=10¢
. . e F
* Reconstruction algorithm i
assumes 1t 1s handed a list of %21 -
photon arrival positions & " K
times. 5
 How to analyze signal trace? 10l
ok
i :
20—
25

06 05 110’1 20 iz a0 1as

time [ns]

-100 -50 0 50 100
photonHitY
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>

Photon Counts

L

time

L L

)

>

Photon Counts

Signal readout/processing

3x

 What if the best we can do
for overlapping photons 1s
count them?

e Check in simulation study.
* Fort, 4,n =300 ps, time 1s
shifted but reconstruction

still reasonable.

2 Dec 2014

W & m ®m H W K A"

Original
Rebinned

true
Z,—17,

E. Brubaker, SNL/CA
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Mi= SVSC MCP/readout concerns

Laboratories

e MCP-PMT lifetime

— Limited by back-propagating ion bombardment of photocathode, \propto
integrated charge through MCP.

— We want single-photon sensitivity — run at high gain — reduce lifetime.
— Need to use ALD MCPs.

* Tradeoff between anode segmentation, system cost/complexity.
— Segmentation driven by occupancy, not resolution!

— Strip readout saves channels, but disambiguation problem may be
intractable.

e Inherent dead time of SCA readout.
— Need separate trigger pathway, possibly complex trigger analysis.

« Even a (5 cm)?® prototype w/ pixelated anodes has 128384 channels.
— Need significant effort to build full readout system.

Bright scintillators, high rates

2 Dec 2014 E. Brubaker, SNL/CA 33
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M= Traditional neutron scatter camera

 MINER system: Mobile Imager
of Neutrons for Emergency
Responders
(a compact, portable, low-power
neutron scatter camera)

* Shorter distance between cells
means TOF resolution 1s more
of a limiting factor on spectral
& angular resolution.

 Interested in 3” single-anode
MCP-based photodetectors for
improved hit timing resolution.

Detect, Locate, Characterize

2 Dec 2014 E. Brubaker, SNL/CA

Fast neutron directions and energies . .
constrained by double scatter geometry neutron

E, =% m (d/TOF)? ’ N
" .d *<__eutron direction
constrained to
Multimode capability includes cone surface
* Neutron energy spectrum.
+ Compton imaging.
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» Use coded aperture technique on optical photons

Crystal Compton Imager

K.-P. Ziock, J. Braverman, ORNL

to reconstruct interaction positions.

* Time resolution not important for gamma

imaging, but need good spatial resolution, large

arca.

Locate
Characterize

MAP

2 Dec 2014

E. Brubaker, SNL/CA

T
I

RE

Crystal

Y d

|

MAP

Light Guide

36

Fig. 2. Schematic of the overall concept (left) Ehcrm.ng the scintillator crystal mounted to a light pipe with a shadow mask
between the crystal and the MAP. The darker region of the mask represents one base MUEA pattem. A close-up of the
magnification of a few mask pixels at the MAP input for two events at different depths.

Proc. SPIE 8542, 854210
(November 19, 2012);

doi:10.1117/12.979787
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« Anger logic allows 4 PMT:s to locate
an interaction in 100 optically isolated

pixels.

PSD scintillator block detector

— No sub-pixel resolution.

— Confused by multiple interactions.

* Used in
multiple
neutron
1maging
systems.

Locate, Characterize

2 Dec 2014

E. Brubaker, SNL/CA

P. Hausladen et al., ORNL

PMT PMT

37




() i Next-gen scintillator block detector

Laboratories

« With MCP-based photodetector,
determine interaction location in

continuous scintillator.

— Like SVSC, but lower coverage;
goal 1s to locate 1% interaction.

— Resolution not limited by

scintillator pixelation.

— Timing can determine/resolve

first interaction.

* Building block for position-
sensitive detector plane for
energetic neutrons, gammas.

» Pinhole imager
» Coded aperture imager

MCP-PMT

Light guide

Scintillator

imaging.

* Significant overlap with medical

E.g. Hunter et al., "Multiple-Hit Parameter
Estimation in Monolithic Detectors," Medical
Imaging, IEEFE Transactions on , vol.32, no.2,

pp.329,337, Feb. 2013

» Double-scatter imager

Locate, Characterize

2 Dec 2014

E. Brubaker, SNL/CA
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ME=, Direct position sensing for thermal n

Laboratories

» Instead of photocathode, add Nova Setentfic

Q Meutron

thermal neutron capture agent /
to MCP itself.

* Makes high efficiency, high
resolution position-sensitive
thermal neutron detector.

() Use With COded aperture for http://www.novascientific.com/neutron.html
thermal neutron 1imaging, or
with thermalized neutron

source for radiography. Characterize

2 Dec 2014 E. Brubaker, SNL/CA 39



()

s API alpha detector
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P. Hausladen et al., ORNL

Associated particle
imaging technique for 14
MeV neutron
transmission imaging.

Inspected
object

D-T neutron

YAP scintillator generator
—_ [not to MNeutron detector
D+T—>a+n ot
- DetCCt o tO thGI’Il’llIle . Cates, J.W., et al., "Timing Resolution Study of an Associated
. . Particle Detector for Fast Neutron Imaging," Nuclear Science,
neutron dlI’GCthD, tO' IEEE Transactions on , vol.59, no.4, pp.1750,1756, Aug. 2012

“... a significant improvement in reconstructed image quality is achievable if the
system timing resolution can be reduced below 500 ps, while ideal imaging
reconstruction is possible with a timing resolution of 200 ps.”

Characterize

2 Dec 2014 E. Brubaker, SNL/CA 40



) Neutrinos

Laboratories

* Non-proliferation application of neutrino detection
1s to monitor or discover nuclear reactors.
— Neutrino presence determines reactor on/off status
— Neutrino spectrum sensitive to diversion (Pu/U ratio)
— Neutrino direction improves detectability of weak sources
relative to background
* Detection concepts not different from reactor
neutrino physics experiments.
— For ease of deployment, high desire for above-ground
detection system — need exquisite background rejection.

Detect, Characterize
2 Dec 2014 E. Brubaker, SNL/CA 41



M. MCPs for non-proliferation

Laboratories

* Everything (except neutrinos) in this survey of
MCPs for non-proliferation applications relates
to y or n imaging.

— Takes advantage of good intrinsic spatial resolution.

— Timing resolution used to extract information from
detected particles; not from source 1tself.

* Primarily interested in detection of optical
photons from scintillator.

* Advantages of MCP-based detectors include
improved efficiency, resolution, and form factor.

2 Dec 2014 E. Brubaker, SNL/CA 42



() i Conclusions

Laboratories

* Overview of non-proliferation application space

— Detect, locate, characterize SNM

* Single-Volume Neutron Scatter Camera
— Motivation, goals, progress, 1ssues

* Other non-proliferation MCP-based detection
concepts

— Spatial/temporal resolution of MCP valuable for
1maging applications.

— Increased adoption will depend on price, scalability,
case of use.

2 Dec 2014 E. Brubaker, SNL/CA 43
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(i) i Pixel populations

photonHitZ:photonHitY {Entry$ == 0 && photonHitX == 100.5} photonHitZ:photonHitY {Entry$ == 0 && photonHitX == 100.5}
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* Study effect of
pulse shape on At
resolution

e Same default event
as earlier slide

* Pulse width
1mportant,
especially rise time

* Quenched plastics?

— Short decay
— But slower rise
— Low light output

2 Dec 2014

t,, Resolution
true
Entries

At - At

Active material studies

Pulse Shape

|||||||||||

“Stilbene”,
0.5 ns decay

E. Brubaker, SNL/CA

Pulse Shape

Stilbene,
4.5 ns decay
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() i, Active material studies

» Use single-photon
time-delay method to

measure pulse shape of () | () ]

Single Photon Camera Scintillator Trigger PMT

- 3 quenChed plaStICS Counting PMT Aperture  Sample

— Stilbene single crystal
— EJ-309 (reference)

* System time resolution

1s comparable to pulse
width!

» Use Planacon/DRS4 in
place of PMTs?

Source
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ME=,. Signal readout/processing

Laboratories

* Not all pixels see well
separated single photons.

« Reconstruction algorithm .

assumes it 1s handed a list
of photon arrival
positions & times.

 How to analyze signal

trace?

* Use deconvolution with
average pulse shape?

 Works great with no
noise!

Signal Time Domain

i,

_

VAV

Two “average”
u J SER pulses

PR [ T T [N TN TR S S AN S M N1

P T
il E]

Processed Signal Time Domain

) ) A
ma [ra)]

Deconvolved
times (with shift)
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ME=,. Signal readout/processing

Laboratories

* Not all pixels see well
separated single photons. Snei i Darai

it

Two “average”
SER pulses
+ noise

PR T TR S N [N S T S N T S S L L
tma [rs|

* Reconstruction algorithm
assumes 1t 1s handed a list
of photon arrival
positions & times.

Procassed Signal Time Domain

 How to analyze signal
trace?

=
g 8

Al | I ]L |I|..|l.|.|‘|.l..luli
it r1|ln|l|] |‘I[| TV IRRTTITy

* Use deconvolution with
average pulse shape?

_|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

B8 EE 8,

VT R
* Broken with noise! times (with shift)
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M.  Signal readout/processing

* Not all pixels see well
separated single photons.

 Reconstruction algorithm ' -
assumes 1t 1s handed a list
of photon arrival
positions & times.

 How to analyze signal | oo S i o

trace? P
Deconvolved
times (with shift)
/‘-\'\J\_ﬁwm A

e Use Wiener
deconvolution with
average pulse shape? VT

 Better, but not great. ..

Two “average”
SER pulses

PR AN T T T N N ST S TR T [N T N N B
=)

T

J
L 1
mics e
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e MINER: Building to Building Imaging

Laboratories

FEaSANERRIL R
............ ‘

Left: source location (red star) in adjacent high-rise (28 m distance).

Right: neutron image overlaid on photograph
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M=, MINER: Neutron Spectroscopy

Laboratories

1.0 —+Pu oxide 10
§ ~#-Pu metal
= =
i ——AmBe 5
0.6 >
q 5 *°
= =
< =
& 04 5 04
= ©
% 0.2 go
El_) : wn 0.2
0.0 T - 1 0.0
0 2 4 6 8 10
Neutron Energy (MeV)

—+—Cf bare
-#-Cf behind 6" poly
Cf behind 2" lead

Neutron Energy (MeV)

1
10

Left — peak-normalized spectra as measured using MINER.

Right — insensitivity of Cf spectrum to intervening material as

measured by MINER.
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s MINER: Gamma Insensitivity for Neutron Imaging

o

186 pairs/minute

iul —
-210

428 pairs/minute

:100
201 pairs/minute |

-4.6E+4

-1E+4

i 30,773 pairs/minute

Cf Eu Cf + Eu

The images above were recorded using a 252Cf source 2 m from MINER at a relative
angle of 135°, a strong "5?Eu source 1 m from MINER at a relative angle of 0°, and both
sources together. This demonstrates the robustness of the neutron image reconstruction

Progsss,iy the presence of gamma fields . (Backgreund neutron rate: ~1.5 pairs/minute.)
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e Fast neutron imagers (@ SNL/CA

Laboratories

2 Dec 2014
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Fast neutron directional detectors

Common features

* N-P elastic scattering

e Sensitivity to direction
— Event by event (kinematics)

— Statistical (many events form a
pattern)

e Liquid scintillator based.

— Gamma discrimination

e Shielding is hydrogenous

material.

System attributes

» Effective area: area over which the
detector would be 100% efficient.

« Physical cross-sectional area
times the detection efficiency.

— %k
Aer = Aphys © €
2 Dec 2014

System angular resolution: resolution of
the reconstructed image in the far field.

Event angular resolution: resolution on
the direction of a single event.
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