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Introduction
• The goal is to use optical emission spectroscopy 

to probe solid propellant plumes to determine 
the temperature field
– Relatively Noninvasive and Relatively Easy

• Diatomic AlO emissions are used to infer the 
temperature of aluminum particles
– AlO observed from the flame surrounding individual 

Al particles

• Thermal continuum emissions are used to 
characterize the flame temperature  
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Experimental Summary

• Probe was inserted into propellant plume to 
measure emission spectra at various 
positions

• Fiber coupled spectrometer collected 
narrowband (460-530 nm) and broadband 
(500-950 nm) spectral data

• Investigated several gap heights and 
substrate materials
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Test Set Up
• Varied position of probe within each test (~1-2 in.)

• Varied position of probe from test to test (~2-12in)
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Data Reduction

Data are analyzed in five steps

1. Spectral data are visualized

2. Calibrated for detector sensitivity and 
background

3. Analyze AlO spectra for the B 2Σ+ →X 2Σ+ 

transition 

4. Analyze background thermal emissions for 
wavelength dependent emissivity

5. Comparisons are made between fitting models
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Spectral Calibration

• Prior to analysis all 
spectra are properly 
calibrated for detector 
response and sensitivity

• Xe, Hg, Ar, Ne pen-ray 
lamps for detector 
response

• Halogen light source for 
detector sensitivity
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Calculation of Diatomic Spectra

Recipe for calculating diatomic spectra

1. Calculate positions of all possible transitions

2. Invoke electronic selection rules; 

3. Calculate Hönl-London factors S(J’,J);

4. Calculate upper and lower energy level potentials;

5. Determine Franck-Condon factors q(v’,v);

6. Evaluate r-centroids, combine with FCF to form Selec
7. Product of HLF and of electronic transition strength, 

Selec , yield total line strength.
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Calculation of Diatomic Spectra
AlO emission spectra are calculated using diatomic line strengths, Sul, 

for transitions from upper state, u, to lower state , l, [14]

Electric Dipole Operator

Analytically calculate line strength in factorized form:

Model the intensity, (Iul) incident on a detector pixel as

Leads to a simple yet rigorous selection rule
– Allowed Transitions have Non-Vanishing Line Strengths
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Calculation of Diatomic Spectra
High resolution AlO B-X v = 0 Lower Resolution AlO B-X 
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Fitting Algorithm

• Use the Nelder-Mead algorithm to fit diatomic 
spectra to theoretical calculations of spectra

• Utilizes a downhill, simplex fitting method to 
minimize input parameters

• Nelder-Mead algorithm chosen for its ability to fit 
multiple parameters simultaneously

– Temperature, Baseline Offset, Spectral Resolution 
(FWHM)
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AlO Emissions

• Error bars for AlO emissions are inferred by 
varying the resolution parameter
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Wavelength Dependent Emissions

• Small particles, with a size distribution on the 
order of the wavelength of emission, indicate 
wavelength dependent emissivity [6].

• Use poly-logarithms, Lis(z), and Lambert 
functions, W(z), to compute Wien’s 
Displacement law [7]:
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Wavelength Dependent Emissions

Derivation of Wavelength Dependent Emission Model [7]
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Wavelength Dependent Emissions

• Applying the same 
method, we find:

and
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Planck Fitting

Wavelength dependency may be used with 
Planck’s Law:

Linearize, semi-log plot for fitting

16
16

Space Institute

1exp

2),(
),(

2

5











Tk

hc

hcT
TI

B





































 
1expln

),(

),(
ln

5

Tk

hc

T

TI

B





 1

),(

),(
ln

5

Tk

hc

T

TI

B








 



Planck Fitting

• Only consider ε = 1, 
1/λ, 1/λ2 emissivity 
dependence (for now)

• Remove atomic and 
molecular emissions 
for straight line fitting

– Al, AlO, Fe, Na, and K 
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Results
Graphite, Wet Concrete, FlexFram, HI Carbon, Sandbed, Dry 

Concrete,  Substrates
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Results
Graphite, Wet Concrete, FlexFram, and HI Carbon Substrates
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Results-Positional Dependence
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• Slight positional 
dependence 
observed
• AlO emissions show 
larger variation over a 
data set than thermal 
emissions



Results-Substrate Dependence

• Substrates  are 
consistent within a 
temperature range

• 2800-3200 Kelvin 
for AlO emissions

• 2000-2400 Kelvin 
for thermal 
emissions
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Summary

• Temperatures are fairly consistent with each other;

• Very few data sets showed positional dependence;

• Gap size and propellant size does not have an 
apparent effect on the temperature;

• Substrates appear to be consistent with each other

• AlO emission temperatures 2800-3200 Kelvin;

• Thermal emissions 2000-2400 Kelvin;

• Wavelength dependence of emissivity is of 
continued interest.
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Future Considerations

• Continued laboratory 
scale testing

• Inclusion of HCl
emissions with our 
diatomic line strength 
method

• Development of a 
species density 
diagnostic (LIBS)
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