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Introduction

 The goal is to use optical emission spectroscopy
to probe solid propellant plumes to determine
the temperature field

— Relatively Noninvasive and Relatively Easy
 Diatomic AlO emissions are used to infer the
temperature of aluminum particles

— AlO observed from the flame surrounding individual
Al particles

* Thermal continuum emissions are used to
characterize the flame temperature
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Experimental Summary

* Probe was inserted into propellant plume to
measure emission spectra at various
positions

* Fiber coupled spectrometer collected
narrowband (460-530 nm) and broadband
(500-950 nm) spectral data

 Investigated several gap heights and
substrate materials

NIVERSITYo.
Center for Laser Applications sl J

A * TENNESSEEUr
7X 4 —— TP IR



Test Set Up

 Varied position of probe within each test (~1-2 in.)
 Varied position of probe from test to test (~2-12in)
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Additional instrumentation: substrates,
calorimeters, thermocouples and
witness materisls located in the
propeilant plume during tests. The exact
Lyout varied Between eaperiments.
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Data Reduction

Data are analyzed in five steps
1. Spectral data are visualized

2. Calibrated for detector sensitivity and
background

3. Analyze AIO spectra for the B 22* >X 23*
transition

4. Analyze background thermal emissions for
wavelength dependent emissivity

5. Comparisons are made between fitting models
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Spectral Calibration

Prior to analysis all
spectra are properly
calibrated for detector
response and sensitivity

Xe, Hg, Ar, Ne pen-ray
lamps for detector
response

Halogen light source for
detector sensitivity
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Calculation of Diatomic Spectra

Recipe for calculating diatomic spectra

Calculate positions of all possible transitions
Invoke electronic selection rules;

Calculate Honl-London factors S(J,));

Calculate upper and lower energy level potentials;
Determine Franck-Condon factors q(v,v);

Evaluate r-centroids, combine with FCF to form Se]ec

N o U s WD

Product of HLF and of electronic transition strength,
S yield total line strength.

elec?
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Calculation of Diatomic Spectra

AlIO emission spectra are calculated using diatomic line strengths, S
for transitions from upper state, u, to lower state , 1, [14]

Su :ZZK”‘T}Q)W
u |

Analytically calculate line strength in factorized form:

ul

2
, T\7... Electric Dipole Operator

S, (n'v'J'M',anM) =S (n'v',nv)S(J',J)

elec

Model the intensity, (I,,) incident on a detector pixel as

167° 2yt - — hF
ul — 67T C(aoe) 4 NOCabszvujSul eXp h .
3g,0 k,T

Leads to a simple yet rigorous selection rule
— Allowed Transitions have Non-Vanishing Line Strengths
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Calculation of Diatomic Spectra
High resolution AlIO B-X Av =0 Lower Resolution AIO B-X
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Fitting Algorithm

* Use the Nelder-Mead algorithm to fit diatomic
spectra to theoretical calculations of spectra

e Utilizes a downhill, simplex fitting method to
minimize input parameters

* Nelder-Mead algorithm chosen for its ability to fit
multiple parameters simultaneously

— Temperature, Baseline Offset, Spectral Resolution
(FWHM)
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AlO Emissions

* Error bars for AlO emissions are inferred by
varying the resolution parameter
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Wavelength Dependent Emissions

* Small particles, with a size distribution on the
order of the wavelength of emission, indicate
wavelength dependent emissivity [6].

* Use poly-logarithms, Li(z), and Lambert
functions, W(z), to compute Wien’s
Displacement law [7]:

/lmaXxT:th 1 —~ =2.898x10°nmK
ky, S+W,(-5¢")
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Wavelength Dependent Emissions

Derivation of Wavelength Dependent Emission Model [7]

k

Li(z)= i—s, z
o k
a (Li ()= Li,(2)
dz z
Consider

N

0 k
=Zx—=—1n(1—x)
o k

Now apply to Planck’s law

27thc? 1 hce
A1) 2 exp(ﬁ)—l’ﬂ Ak, T
_ 27 1 (exp(B))
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Maximize wrt A to derive Wien’s Law

5Lij(e”)—BLi_ (e")=0

(ﬂ —S)eﬁ_5 = —5¢”

Solve using the Lambert Function

W(Z)eW(Z) =

B=5+W,(-5¢7)

he 1
X =
B + 0(_ e )
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Wavelength Dependent Emissions

* Applying the same

e =1 Model
method, we find: il o
— 6 N
A’maXXT — 2'415X10 an ? 60 %= 1000 nm
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S 40 T _,=2415K
d 3 _ T _,.=2070K
dan -
— 6 o 4(')0 ' 6(')0 ' 8(I)0 ' 1 OIOO ' 12I00
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Planck Fitting

Wavelength dependency may be used with

Planck’s Law:
(A, T) 2rthe’

' ( 5 j
exXp —1
Ak, T
Linearize, semi-log plot for fitting
ln[](/l,T)x ,lSj:_ln[eXp[ he j_lj
e, T) Ak,T

5
ln(](/l,T)x/l };— he 1

e(L,T) k, T A

IA,T) =
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Planck Fitting
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Results

Graphite, Wet Concrete, FlexFram, HI Carbon, Sandbed, Dry
Concrete, Substrates

SM Test Series Results AlO Emission
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Results

Graphite, Wet Concrete, FlexFram, and HI Carbon Substrates
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Results-Positional Dependence
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Results-Substrate Dependence
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Summary

 Temperatures are fairly consistent with each other;
* Very few data sets showed positional dependence;

* Gap size and propellant size does not have an
apparent effect on the temperature;

e Substrates appear to be consistent with each other
e AIO emission temperatures 2800-3200 Kelvin;
* Thermal emissions 2000-2400 Kelvin;

* Wavelength dependence of emissivity is of
continued interest.
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Future Considerations
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