

Employment of Hypersonic Glide Vehicles – Proposed Criteria for Use

Project on Nuclear Issues 2014 Winter Conference, Washington, D.C.

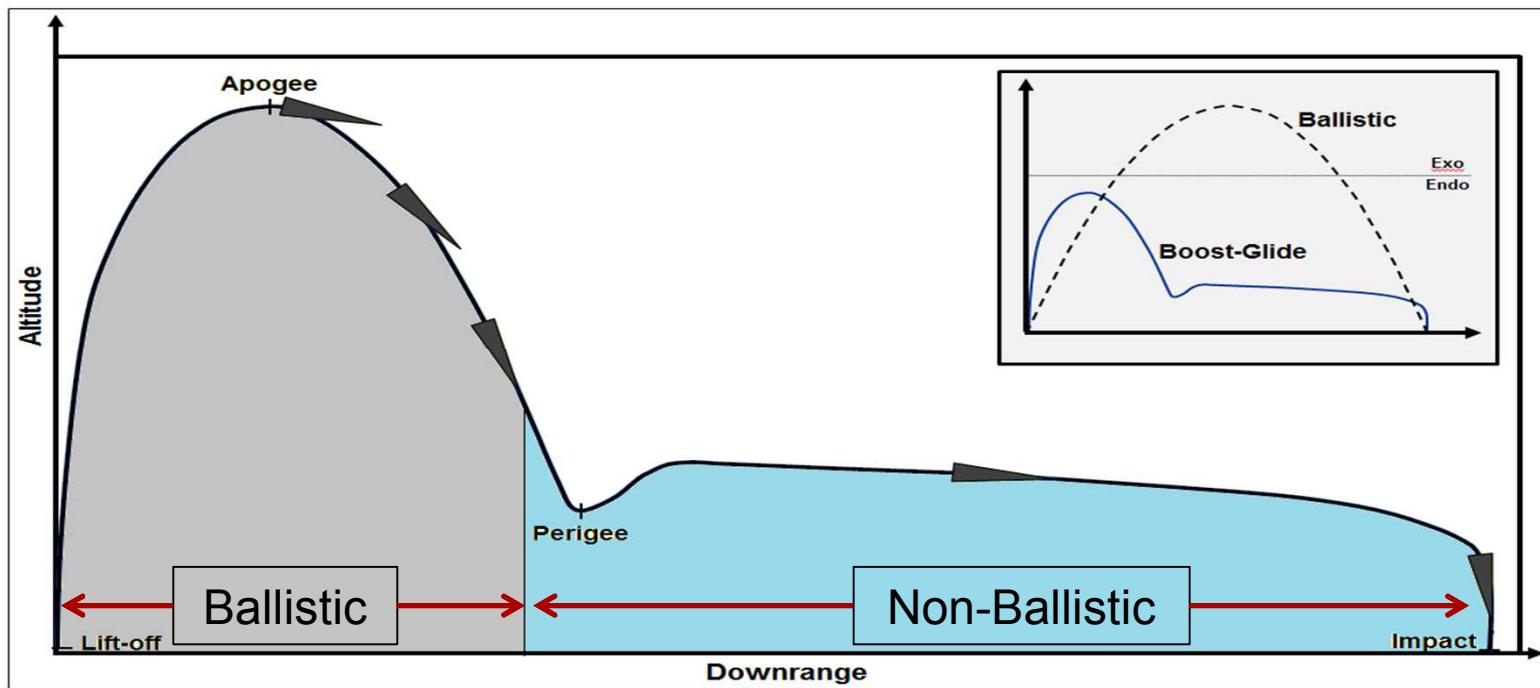
December 9-10, 2014

Abel Olguin*
Sandia National Laboratories
Systems Studies

*The views expressed in this paper are those of the author and do not necessarily reflect the views of Sandia National Laboratories.

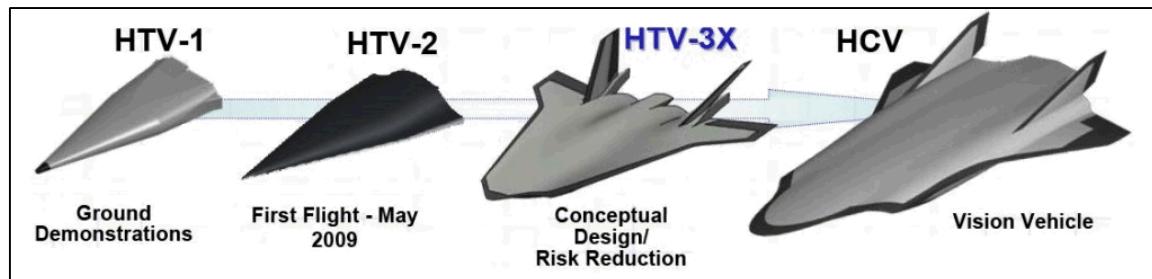
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

*Exceptional
service
in the
national
interest*


Sandia
National
Laboratories

Hypersonic Glide Vehicles (HGVs)

- A type of maneuverable reentry vehicle (RV)
- Combine exoatmospheric ballistic trajectory with in-atmosphere glide and maneuverability
- Originally designed to penetrate anti-ballistic missile (ABM) defenses
- Development began in the 1970s
- One of many technologies considered for Conventional Prompt Global Strike (CPGS)


Flight Characteristics

- Travel at hypersonic speed (above Mach 5)
- Boost phase trajectory is ballistic
- Capable of changing to a non-ballistic trajectory via aerodynamic lift and gliding

Recent Developments

- Hypersonic Technology Vehicle-2 (HTV-2)
 - The US's primary HGV effort from 2003-2012. Now considered a "risk reduction/technology maturation program"
 - Both test flights (2009, 2011) prematurely terminated by onboard flight termination system
- Advanced Hypersonic Weapon (AHW)
 - Direct descendant of Sandia Winged Energetic Reentry Vehicle Experiment (SWERVE)
 - Successful test in 2011; failed test in 2014 (booster failure)

HGV Benefits/Limitations

Benefits

- Speed
 - Quickly reach targets
 - Difficult to intercept
- Range
 - 8,000-16,000 km (5,000-10,000 mi)
- Maneuverability
 - Increases chances of penetrating enemy air defenses
 - Non-ballistic trajectory differentiates from nuclear attack

Limitations

- Technology Challenges
 - Materials development to handle temperatures and other requirements
- Cost/Deployed Numbers
 - Expensive materials will keep numbers low (tens of units)
 - Small numbers drive up per unit cost (\$26 million-\$36 million each)

Proposed Criteria for HGV Applicability

- Proposed criteria for HGV weapon applicability
 - 1. Do we need speed (or promptness)?
 - 2. Do we need surprise?
 - 3. Are there alternate means to attack the target?
- Two additional criteria to consider
 - 4. Do we have the enabling capabilities to support an alternate attack?
 - 5. Are the political enabling capabilities available?

1. Do we need speed (promptness)?

The need to reach a target promptly is often cited as the reason for the need for HGV development

- Why do we have to attack a target so quickly?
- Is there a mobile target that will temporarily be stopped?
- Is there a terrorist target at a certain location for a limited period of time?
- Does the U.S. need to prevent an enemy's attacks on radars or satellites

2. Does attack need to be a surprise?

Some targets must be attacked with as little warning as possible

- Can target detect launch of a HGV?
- What happens if the enemy knows attack is coming?
- How fast can the enemy react?
- Can the target be moved/launched in time, If warned of an incoming attack?

3. Alternate means to attack target?

Target type, penetration of airspace, range, and cost affect whether a HGV or another system should be used for an attack

- Is there a drone in the area?
- Are bombers close enough?
- Are there shorter range systems in the area?
- Can Special Forces or other troops be deployed?

4. Do we have necessary enabling capabilities to support alternate attack?

Enabling an attack requires capabilities such as target detection, location information, and damage assessment

Location information needs to be more detailed than needed for delivering a nuclear weapon

- Do we need Command and Control? Intelligence, Surveillance and Reconnaissance (ISR)? Battle damage assessment?
- Will these capabilities be in place and available to make the attack possible?

5. Political enabling capabilities available?

HGVs are likely going to need Presidential approval to be used

- Is there time to produce an assessment and enable the decision?
- What are the repercussions (political?) of the attack?
- Would the US public support the attack?
- Would the attack be the opening salvo to a larger conflict?

Summary

- With the introduction of any significant new military capability, a doctrine for use should be defined and understood
- HGV targeting will likely be limited, at least initially
- The method described here can be applied to any scenario that might benefit from a HGV's combination of speed, range, and maneuverability