
Dynamic Characterization of IM7 
Composites in Support of M&S Efforts 

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

IM Hazards M&S PA Meeting 
December 3-4, 2014 

Los Alamos, NM 

C. Scott Alexander 
Sandia National Laboratories 

SAND2014-20168PE



Dynamic Behavior of Composite Materials 

Goals: 
Obtain shock data to characterize the 
anisotropic response of fiber composite 
materials for development of advanced 
EOS and constitutive models 
 
Utilize simulation results to better 
understand observed response 

 
Test Material: 

Hexcel IM7/8552 
unidirectional / laminate 
vary volume fraction (62, 65, 68%) 
 
Extremely low porosity material 
(ultrasound / x-ray confirmed) 
 

Hexcel Prepreg Technology Guide 
Publication No. FGU 017b 
March 2005 



Material is engineered to exhibit 
anisotropic response 

250 µm 25 µm 

6 mm 5 µm 

Cross-fiber orientation (  90°) 

On-fiber orientation (  0°) 

12 mm 

Ultrasonic Wave Speeds 
0° 10.763 km/s 
90°   3.042 km/s 



Unreinforced epoxy was characterized 
using both shock and ramp loading  

• Epoxy response is needed by 
model development effort 

• Response measured via shock 
and ramp loading techniques 

• Data similar to another common 
(well characterized) epoxy 

Hexcel epoxy 

∆t C(u)=∆h/∆t 

1.0 mm 1.5 mm 

Hexcel 8552 
epoxy test sample 



Experimental designs vary slightly 
depending on fiber orientation 

load 

load 



Response depends on fiber orientation 

90°(shock normal to fiber direction) 0°(shock along fiber direction) 

Data for 68% fiber FV 

V=1.93 km/s 

load 

V=2.01 km/s 

load 



Shock response of CFE is anisotropic up 
to ~10-12 GPa 

• Fiber stiffens matrix at low-intermediate 
pressures (up to ~10-12 GPa) 

• Response appears to become isotropic 
at higher pressures 

• Epoxy disassociates at 10-20 GPa 

The vast majority of models in the dynamic 
regime assume isotropic behavior, 
especially for shock response 



Cross-fiber material response is similar to 
pressed graphite 

• Fiber stiffens matrix at low-intermediate 
pressures (up to ~10-12 GPa) 

• Response appears to become isotropic 
at higher pressures 

• Epoxy disassociates at 10-20 GPa 
• Comparison with pressed carbon of 

similar density shows like response in 
cross-fiber orientation 

Pressed graphite ρo = 1.77 g/cm3 

CFE ρo = 1.58 g/cm3 

Cross fiber response is similar to carbon, 
stiffer than epoxy  



Fibers provide an elastic component to the 
epoxy response (HEL = 3.5 GPa) on-fiber 

• Fiber stiffens matrix at low-intermediate 
pressures (up to ~10-12 GPa) 

• Response appears to become isotropic 
at higher pressures 

• Epoxy disassociates at 10-20 GPa 
• Comparison with pressed carbon of 

similar density shows like response in 
cross-fiber orientation 

• On-fiber response shows a stiffening of 
the epoxy matrix with an HEL of 3.5 GPa 

• Different fundamental mechanisms in 
play for different orientations 

On-fiber bulk response is similar to epoxy 
but with an HEL of 3.5 GPa 



• 62% fill material (large squares) shows 
similar dynamic response to 68% fill 

• Samples tested are maximum and 
minimum possible fill volumes for this 
composite 
 

Dynamic response is not sensitive to exact 
fiber fill volume 

No observed difference in response of 
62 – 68 % fiber fill volumes 



Understanding complex material response 
is improved through numeric simulation 

• Hydrocode simulations of multiple 
shock-fiber orientations 

• Explicit modeling of all constituents 
• Small mesh to resolve fibers 

• ≥10 cells/fiber (∆x ≤ 500 nm) 
• Limited domain sufficient to achieve 

stable waves 

epoxy carbon fiber 

Fiber 
Longitudinal 

Fiber 
Transverse 

Matrix 

Mie-
Gruneisen 
EOS 

ρo=1.694 g/cc 
Co=4.50 km/s 
S=1.478 

 ρo=1.694 g/cc 
Co=2.35 km/s 
S=1.478 

ρo=1.305g/cc 
Co=2.35 km/s 
S=1.604 

Elastic-
Perfectly 
Plastic 
Strength 

ν=0.050 
Yo=3.5 GPa 

ν=0.352 
Yo=3.5 GPa 
 

ν=0.393 
Yo=0.1 GPa 
 



• VISAR diagnostics use ~200µm spot size 
• Multiple fibers and surrounding matrix are 

illuminated 
• Volume fraction weighting used to mimic 

VISAR detection 
 
 
 
 

• Periodicity of fibers in simulation domain is 
known to result in oscillatory response* 
 
 
 

Simulation data is interpreted consistent 
with VISAR diagnostic averaging 

𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= ∅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+ ∅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

VISAR 

VISAR 

~1000 fibers 
illuminated  

~40 fibers 
illuminated  

*T.J. Vogler, J.P. Borg and D.E. Grady, 
JAP 112 123507-1 (2012) 



 Simulation results are in good agreement 
with experiments 

• Shock velocities agree within 10% 
 

• Particle velocities agree within ≤ 5% 
(generally better) 

• Shock velocities agree within 10% of 
linear ramp arrival 

• Particle velocities agree within ≤ 10% 
(generally better) 
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Simulation results help to visualize and 
understand observed shock response 

uncompressed 
material bulk shock 

load 

Cross-fiber orientation (  90°) 

t1 

t2 

t3 

• Epoxy is compressed 
• Jet formation due to wave speed 

differences 
• Fiber-on-fiber contact may occur 
• Shock wave moves comparable to 

bulk carbon response at a similar 
density 
 
 Fiber 

Matrix 



Simulation results help to visualize and 
understand observed shock response 

On-fiber orientation (  0°) 

uncompressed 
material 

partially 
compressed 
epoxy 

load 

• Elastic waves travel along fibers 
• Observed elastic response 

entirely in fibers 
• Mach wave features observed in 

epoxy behind elastic waves 
• Bulk shock travels at slower epoxy 

velocity 
• Results in observed complex loading 

structure 
 
 

Bulk shock front 



Shocks in real world applications rarely travel 
only along principal axes 

• Wave speeds best observed in 
polar space 

• Measurements made in 0-90° 
• Symmetry used to complete plot 

 

• Velocities are normalized based on 
0°precursor velocity 
 

• Theory (solid curves) predicts  
• Elastic waves speeds will follow 

a cos2(θ) relation 
• Bulk shock will be isotropic 
• Elastic wave overdriven at 45o 

 

• Experiments are required to verify 
these predictions 



Off-principle-axis testing 

• Material manufactured as previously 
• Samples cut from oversized parts at fixed 

angles (7, 14, 21 degrees) 
• ±45 degree samples cut from 0-90 

cross-ply material 
 

7, 14, 21° 
samples 

± 45° 
samples 

Example 21°sample 
21o 



Off-principle-axis testing reveals trends 

• Wave profiles show systematic trends  
• Less pronounced precursor with increasing angle 

0° 7, 14, 21° ±45° 90° 

3 mm 6 mm 



Off-principle-axis testing verifies premise 
of predictions, suggests revision 

• Solid curves represent isotropic 
(circle) response and predicted 
cos2(θ) response for precursor 

• Isotropic bulk wave was observed 
• Results suggest revised (dashed) 

precursor velocity curve matching bulk 
velocity at around 70° 



Model predictions (explicit) agree well with 
off-axis test results 

• Shock velocities agree within 10% 
(generally better) 
 

• Particle velocities agree within ≤ 10% 
(generally better) 
 

• Consistent with on-axis results, 
discrepancies exist in detailed wave 
structure of precursor 

Solid: Simulation 
Dashed: Experiment 

2.00 
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1.00 

Impact Vel. 
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θ=7 deg. θ=14 deg. θ=21 deg. 



Testing was performed to support 
validation of advanced composite models 

orientation, 
deformation 

residual velocity 

• Impact 0, 90, +45, -45 layup 
composite with standard projectiles 

– Hard (440C) steel ¼” sphere 
– Soft (1018) steel ¼” sphere 
– Sourced from Bal-tec 
– Previously characterized by Tom Mason 

• Impact velocities similar to typical 
threats 

– 250, 500, 1000 m/s 
• Vary composite thickness 

– 0.25, 0.50, 1.00 inch 
• Measure impact and residual 

velocities 
• Post shot damage characterization 

via ultrasound and/or x-ray CT 
video 

camera 

x-ray film 

target 

target frame 

x-ray head 

projectile  
direction 

target support 



X-ray images provide residual velocity and 
projectile shape information 

t=201.27 µs 
t=536.86 µs 

t=1144.22 µs 

∆x= 
105mm 

∆x= 
188mm 

Residual velocity 
= 310 m/s 

Impact velocity 
= 501 m/s 



High speed video used in place of x-ray 
diagnostics on some shots 

Residual velocity 
= 615 m/s 

Impact velocity 
= 1091m/s 

target 

615 m/s 

Distance from rear surface (mm) 

Ve
lo

ci
ty

 (m
/s

) 

projectile  
direction 



Test matrix includes range of impact 
conditions resulting in varying damage 

Target 
Thickness (in) 

Impactor Impact 
Velocity (m/s) 

Residual 
Velocity (m/s) 

Diagnostics 

¼  soft 282 0 x-ray 

¼ soft 320 0 x-ray 

¼ soft 501 310 x-ray 

¼ hard 263 0 x-ray 

¼ hard 309 0 x-ray 

¼ hard 503 unknown* x-ray 

½  soft 507 0 x-ray 

½ soft 517 0 x-ray 

½ soft 1073 562 video 

½ hard 502 0 x-ray 

½ hard 520 0 x-ray 

½ hard 1091 615 video 

1 soft 1073 0 video 

1 hard 1072 0 video 

* Trigger failure on x-ray diagnostic system 

300 
m/s 

500 
m/s 

1000 
m/s 

¼”  no yes 

½” no yes 

1” no 

thick 

velocity 

Penetration? 



Ultrasound utilizes sound waves to 
characterize internal damage 

Composite 

Transducer 

Damaged Region Undamaged Region 

Undamaged ¼” Panel A-Scan Signal Damaged ¼” Panel A-Scan Signal 

Water Path 

Full Part Thickness  
Backwall  = 0.255 in 

Inspection Side to 
Damage Depth  = 
0.188 in 

Original 
Backwall 
location 

Sound reflects from first 
defect layer encountered 



6 
7 8 

9 10 

Front 
surface 

Back 
surface 

1 
2 3 4 5 

Ultrasound data used to determine depth 
of leading edge damage in target 

B-scan 
location  

C-scan Loc. 1 

Depth  = 
0.049 in 

B-scan 

A-scan 

A-scan 
location  

Back 

Front 

Point Depth into Part (in) 
1 0.049 
2 0.079 
3 0.101 
4 0.118 
5 0.132 
6 0.163 
7 0.188 
8 0.204 
9 0.236 

10 0.255 

A-scan 
location  



X-ray computed tomography (CT) provides 
3D view of damage patterns 

 

• Penetrating radiation (X-Ray) 
attenuated by composite material 

• Digital sampling of the radiation  
• Multiple images taken at different 

angles while spinning 360 
degrees. 

• Images mapped into a three 
dimensional data set 

• Data shown as single “slice” or 
rendered 



Combination of x-ray CT and ultrasound 
data will be compared to simulated damage 

• Non-penetrating shot showing 
characteristic damage pattern 

• ¼” panel, 309 m/s impact, hard sphere 



Summary of results 

• Dynamic response of composite is anisotropic 
– highlights need for advanced models 

• Compression across fibers shows: 
– no elastic precursor 
– bulk response similar to pressed carbon 

• Compression along fibers shows: 
– an elastic precursor traveling along fibers 
– a bulk response similar to the epoxy binder 

• Explicit numeric simulations confirm experimental observations 
and offer new insight 

– transverse simulations in excellent agreement with data 
– longitudinal simulations match all but fine detail in precursor wave 

• Off-axis response consistent with predictions 
– require minor alterations to form of f(θ) 
– simulations in good agreement with data 

• Testing has been performed to provide a basis for advanced model 
validation 

– Impact and residual velocities known 
– Damage characterized with x-ray CT and ultrasound 
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