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Dynamic Behavior of Composite Materials

Goals:

Obtain shock data to characterize the - .::::-
anisotropic response of fiber composite o :;!::: /
materials for development of advanced - E::;:E /
EOS and constitutive models v :EEEE: /

Utilize simulation results to better
understand observed response
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Test Material:
Hexcel IM7/8552
unidirectional / laminate
vary volume fraction (62, 65, 68%)

Extremely low porosity material

(Ultrasound / X-I‘ay Conﬁrmed) Hexcel Prepreg Technology Guide

Publication No. FGU 017b
March 2005
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- & Material is engineered to exhibit

CI"OSS-fIber OI"I ntatlon ( 900 ) T=1000KY WD=128mm Signal A= 5E2 File Name = CFE-88-0-21 _longitudin

Ultrasonic Wave Speeds
0° 10.763 km/s
90° 3.042 km/s
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Hexcel 8552
epoxy test sample

Velocity (m/s)

700

Unreinforced epoxy was characterized
using both shock and ramp loading
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» Epoxy response is needed by
model development effort

* Response measured via shock
and ramp loading techniques

« Data similar to another common
(well characterized) epoxy

8 T T T T b

Hexcel epoxy (ramp)
O Hexcel epoxy (shock)

A Epon 828 with Epi-Z A

0.0 0.050 010 0.15 020 025 0.30
strain

(1) Sandia National Laboratories



Experimental designs vary slightly
depending on fiber orientation
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Carbon Fiber EpoxXy Tests
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~— Response depends on fiber orientation
0° (shock along fiber direction) 90° (shock normal to fiber direction)
2.0 . 2.0
T
‘Impact plane Impact plane
ig‘ 101 % 1.0
s g
V=2.01 km/s V=1.93 km/s
0.0 ' 0.0°
0.0 1.0 20 0.0 1.0 2.0
Time (us) Time (us)

Data for 68% fiber FV (1) Sania National Laboratores




Shock response of CFE is anisotropic up

to ~10-12 GPa

The vast majority of models in the dynamic
regime assume isotropic  behavior,
especially for shock response

16 \ \
—®— CFE (cross-fiber, 90° ) /
14 -

—8— CFE (on-fiber, 0°)

— — Epoxy Matrix

12 -
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o
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 Fiber stiffens matrix at low-intermediate
pressures (up to ~10-12 GPa)
* Response appears to become isotropic
at higher pressures
» Epoxy disassociates at 10-20 GPa
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Cross-fiber material response is similar to
pressed graphite

Cross fiber response is similar to carbon,
stiffer than epoxy

16 j j
14 —®— CFE (cross-fiber, 90° ) /
| —®— CFE (on-fiber, 0" )
— — Epoxy Matrix
127 ¢ caren @ephic) « Comparison with pressed carbon of
T 10 similar density shows like response in
S g / cross-fiber orientation
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4 \ ,-//{,/’
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Pressed graphite p, = 1.77 g/lcm3
CFE p, = 1.58 g/cm?
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Fibers provide an elastic component to the
epoxy response (HEL = 3.5 GPa) on-fiber

On-fiber bulk response is similar to epoxy
but with an HEL of 3.5 GPa

16 ‘ ‘
/
—®— CFE (cross-fiber, 90° ) /,/
14 - —*— CFE (on-fiber, 0°)
Epoxy Matrix 7
12 | <+ carbon (graphite)
— — Epoxy Matrix (+2.6 GPa) F4
— — Extrapolated Epoxy Matrix 7/
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* On-fiber response shows a stiffening of
the epoxy matrix with an HEL of 3.5 GPa

» Different fundamental mechanisms in
play for different orientations
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Dynamic response is not sensitive to exact
fiber fill volume

No observed difference in response of
62 — 68 % fiber fill volumes

* 62% fill material (large squares) shows
similar dynamic response to 68% fill

| | | « Samples tested are maximum and

—e— 8% CFE (cross-fber, 80°) 7/ minimum possible fill volumes for this

14 —=®— 539% CFE (on-fiber, 0° )

— — Epory Matr composite
12 / |
W 629 CFE (on-fiber, 0°)

16 |

Stress (GPa)
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Understanding complex material response
IS Improved through numeric simulation

» Hydrocode simulations of multiple
shock-fiber orientations
» Explicit modeling of all constituents
« Small mesh to resolve fibers
» 210 cells/fiber (Ax < 500 nm)

l

Longitudinal Shock

'l'l;.'I'l'l'l'l'l'l'.;l'l:l' » Limited domain sufficient to achieve
29000000000 [
P '-'-'-'.'-'-'-'-'-'.'-' stable waves

20.0000.0.0.000.0.0.0.1
':'"""T'"""""""""" Fiber Fiber Matrix
ransverse Shock ] .
Longitudinal Transverse

Mie- Po=1.694 g/cc  p =1.694 g/lcc p,=1.305g/cc
Gruneisen  C,=4.50 km/s  C_=2.35 km/s C,=2.35 km/s
EOS S=1.478 S=1.478 S=1.604
Elastic- v=0.050 v=0.352 v=0.393

fallian nber S Perfectly  Y,=3.5GPa  Y,=3.5 GPa Y,=0.1 GPa
Plastic
Strength
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Simulation data is interpreted consistent
with VISAR diagnostic averaging

* VISAR diagnostics use ~200um spot size

e Multiple fibers and surrounding matrix are
illuminated

* Volume fraction weighting used to mimic

~1000 fibers VISAR detection

Longitudinal Shock Hluminated
Velcomposite

= ®fibervelfiber

+ ®matrixve lmatrix

196%%%%%% _  Periodicity of fib_ers in_simulation domain is

9.0.0.0.0.0.0.¢ 40 fibers known to result in oscillatory response*
Transverse Shock |||U mi nated

*T.J. Vogler, J.P. Borg and D.E. Grady,

JAP 112 123507-1 (2012) "]1 Sandia National Laboratories




Simulation results are in good agreement
with experiments

Impact Vel. * Impact Vel. : :
(kmis) Transverse . Longitudinal
. 2.00 200 Moo e
@ [‘I"""‘"“"""‘""m ------------------ @ W
£ E |
= T g 150~ T
E MW“WW E ::i
s 1007 - 3 1.00; P
; i @y < | -
Solid: Experiment / /
il Dashed: Simulation paal
 Time (us) A —[‘"‘ ; Time (us)
» Shock velocities agree within 10% » Shock velocities agree within 10% of
linear ramp arrival
* Particle velocities agree within < 5%  Particle velocities agree within < 10%
(generally better) (generally better)
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Cross-fiber orientation ( 90° )

uncompressed
bulk shock material
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Simulation results help to visualize and
understand observed shock response

» Epoxy is compressed
» Jet formation due to wave speed
differences
» Fiber-on-fiber contact may occur
» Shock wave moves comparable to
bulk carbon response at a similar

density

Fiber

Matrix
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Simulation results help to visualize and
understand observed shock response

On-fiber orientation ( 0° )

Elastic Wawve Front (In Fibers)
|
Tirme=t,
load —
Tinrse£t,

Elastic waves travel along fibers
» Observed elastic response
entirely in fibers
Mach wave features observed in

/' epoxy behind elastic waves

<: Bulk shock travels at slower epoxy

partially | i uncompressed velocity _ :
ggg‘xr;fesse Bulk shock front  material » Results in observed complex loading
structure
2.0 ) & mm
Impact plane
% 10 ;;'-".-.'.-‘:‘-"é'-.:"::-i]
g ‘ ‘ ' '-'-.l'f,

// V=2.01 km/s

0.0 1.0 2.0
Time (us)

0.0
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Shocks in real world applications rarely travel
only along principal axes

Polar Plot of Normalized Shock Velocity for
IM7/8552 Unidirectional Composite
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0 ~1km/s -Precursor Wave e ~1km/s - Bulk Wave
O ~1.5km/s - Precursor Wave ® ~1.5km/s - Bulk Wave
A =~2Kmis - Precursor Wave A ~2Kkm/s - Bulk Wave
——Bulk Wave - Isotropic Circle Precursor Wave - (Cos(Theta))**2

» Wave speeds best observed in

polar space
« Measurements made in 0-90°
» Symmetry used to complete plot

» Velocities are normalized based on
0° precursor velocity

* Theory (solid curves) predicts
 Elastic waves speeds will follow
a cos?(0) relation
» Bulk shock will be isotropic
 Elastic wave overdriven at 45°

» Experiments are required to verify
these predictions

117! Sandia National Laboratories




Off-principle-axis testing

+ 45°
samples

T Al
samples

\

Example 21° sample

e Material manufactured as previously
« Samples cut from oversized parts at fixed

angles (7, 14, 21 degrees)

e =45 degree samples cut from 0-90

cross-ply material
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Off-principle-axis testing reveals trends
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» Wave profiles show systematic trends
» Less pronounced precursor with increasing angle
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Off-principle-axis testing verifies premise
of predictions, suggests revision

110 1% Q0 80 4
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= ~1.5km/s - Bulk Wave
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» Solid curves represent isotropic
(circle) response and predicted
cos?(0) response for precursor

* |sotropic bulk wave was observed

» Results suggest revised (dashed)

precursor velocity curve matching bulk
velocity at around 70°
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Particle Velocity (km/s)

Model predictions (explicit) agree well with
off-axis test results

" Impact Vel. 0=7deg. - 0=14 deg. 0=21 deg.
* (km/s) \,/ 2
200 | _ ) s A
’ ;E > [ M
1.50 | | £ _3 Y
| s | [ .
1.00 ||/ £ N g (e
// - ! _,f.._.,/". """ ‘l ‘,‘I:
Tim:(ps) h : ' ! .; ” Time (us) Time (ps)
« Shock velocities agree within 10% Solid: Simulation

(generally better) Dashed: Experiment
 Particle velocities agree within < 10%
(generally better)

» Consistent with on-axis results,
discrepancies exist in detailed wave
structure of precursor
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Testing was performed to support
validation of advanced composite models

Impacty e Impact0, 90, +45, -45 layup
Chamber | composite with standard projectiles
" — Hard (440C) steel %" sphere "
I.DroJeCt”.e —  Soft (1018) steel %" sphere Oaljec
Diagnostic —  Sourced from Bal-tec "Los Alamos
Chamber —  Previously characterized by Tom Mason
Sabot Stripper g f * Impact velocities similar to typical
Chamber gl % threats
Whsp — 250, 500, 1000 m/s
Gas Baffle e Vary composite thickness
Chamber ] — 0.25,0.50, 1.00 inch

_ | &y b « Measure impact and residual
Experimental @& == Two-Stage Light Gas Gu velocities

Chamber! ' » Post shot damage characterization

via ultrasound and/or x-ray CT
video

target
o —
projectile iectil e
R x-ray film
- «— X-ray head
orientation, residual velocity target support ﬂ'l Sandia National Laboratories

deformation



X-ray images provide residual velocity and
projectile shape information

X-ray film X-ray film
Impact velocity Residual velocity
=501 m/s =310 m/s
®—

projectile

o=~ o=~
’ \ ’ \
1 1 I 1
\ ’ \ ’
\s—/ \s—/
V v foam

t=201.27 ps t=1144.22 us
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» Distance from rear surface (mm)

- ¢ High speed video used in place of x-ray
“""“’r \‘__ . .
- diagnhostics on some shots
Impact velocity Residual velocity
= 1091m/s =615 m/s
O —
target
'y CFE Test Series
i R IEE May 5-7,2014
g STAR Facility/TBF Gun <:
> [ CFE-46
% =N 6 S Average velocity 610 m/s
= " Rah Ty ) Sandia
T~ @ciisRey asa s o, ()8,
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Test matrix includes range of impact
conditions resulting in varying damage

Penetration?
Ya soft 282 0 x-ray yelociyl 300 | 500 | 1000
v, soft 320 0 x-ray thick \|M/s | m/s | m/s
Ya soft 501 310 x-ray Y4 no | yes

Ya hard 263 0 X-ray ”

Ya hard 309 0 X-ray 72 ) no yes
Y hard 503 unknown* X-ray 1” / no
Yo soft 507 0 X-ray

Yo soft 517 0 X-ray

Ya soft 1073 562 video

Yo hard 502 0 X-ray

Yo hard 520 0 X-ray

Ya hard 1091 615 video

1 soft 1073 0 video

1 hard 1072 0 video

* Trigger failure on x-ray diagnostic system
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Ultrasound utilizes sound waves to
characterize internal damage

Undamaged ¥4" Panel A-Scan Signal

Damaged %"

Panel A-Scan Signal

Full Part Thickness

Backwall =0.255in -

Inspection Side to
Damage Depth =
0.188in

V. Original
Backwall
location

Undamaged Region

X

Transducer

Water Path

Composite

&)

Damaged Region

X

Sound reflects from first

A‘:’/ defect layer encountered

m
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Ultrasound data used to determine depth
of leading edge damage in target
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X-ray computed tomography (CT) provides
3D view of damage patterns

Penetrating radiation (X-Ray)
attenuated by composite material

Digital sampling of the radiation

Multiple images taken at different
angles while spinning 360
degrees.

Images mapped into a three
dimensional data set

Data shown as single “slice” or |'
rendered
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Combination of x-ray CT and ultrasound
data will be compared to simulated damage

* Non-penetrating shot showing
characteristic damage pattern

e %" panel, 309 m/s impact, hard sphere
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Summary of results

Dynamic response of composite is anisotropic

— highlights need for advanced models
Compression across fibers shows:

— no elastic precursor

— bulk response similar to pressed carbon
Compression along fibers shows:

— an elastic precursor traveling along fibers

— a bulk response similar to the epoxy binder
Explicit numeric simulations confirm experimental observations
and offer new insight

— transverse simulations in excellent agreement with data

— longitudinal simulations match all but fine detail in precursor wave
Off-axis response consistent with predictions

— require minor alterations to form of f(0)

— simulations in good agreement with data
Testing has been performed to provide a basis for advanced model
validation

— Impact and residual velocities known

— Damage characterized with x-ray CT and ultrasound

......
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