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Leadership-class HPC capabilities are required for )
DOE policy and decision making

Energy: Reduce U.S. reliance on foreign
energy, reduce carbon footprint

Climate change: Understand, mitigate, and
adapt to the effects of global warming

National Nuclear Security: Maintain a safe,
secure, and reliable nuclear stockpile

Exascale computing and beyond is required to simulate complex
phenomena that characterize the DOE mission space
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Sandia
Simulations generate large, complex data sets L

= Case study: Direct Numerical Simulations & turbulent combustion

= Data size
= QO(Billions) of grid points per time step ™
= O(100K) time steps 7
= Data complexity

= Multivariate
= 0(100) chemical species
= Vector data

= Particle data Image courtesy of Hongfeng Yu and
. Jacqueline Chen
= Turbulence is a complex phenomenon

= Length scales: microns to centimeters

= Temporal scales: nanoseconds to milliseconds



Scientists are interested in analyzing their data in (e,

a variety of ways

Laboratories

We want to identify features,
characterize their shapes and
analyze the behavior of other
variables within these features

Jet-based coordinate systems allow
for aggregation of  statistics
conditioned on bulk flame position

Tracking graph

Data snapshot

Segmentation

Tracking features in space and time

Visualization provides qualitative
analysis results




Scientists are interested in analyzing their data in ) e,
a variety of ways

Laboratories

Jacqueline Chen
Big Data and Combustion Simulation

BE Plenary on Big Data and Exascale
Challenges
Monday 8:30-9:15, Room 288-289
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Data snapshot Segmentation Tracking graph =7

Visualization provides qualitative
analysis results

Tracking features in space and time




Exascale # Petascale x 1000

System Parameter

System Peak
Power
System Memory
Total Concurrency
Node Performance
Node Concurrency
Network Bandwidth
System Size (nodes)
I/O Capacity

I/O Bandwidth

2 Pf/s
6 MW
0.3PB
225K
125 GF
12
1.5 GB/s
18700
15 PB

0.2 TB/s

1 Ef/s
<20 MW

32-64 PB
1 BX10 1B X100
1TF 10 TF
1000 10000
100 GB/s 1000 GB/s
1000000 100000
30-100 PB

20-60 TB/s

Factor Change

500
3
100-200
40000-400000

8-80
83-830
66-660
50-500

20-67

10-30
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Scientific Grand Challenges

CROSSCUTTING TECHNOLOGIES FOR
COMPUTING AT THE EXASCALE

February 2-4, 2010 - Washington, D.C.

Scientific Discoveryﬁ‘:
at the Exascale:

Report fr DOE ASCR 2011 Workshop on




There is a widening gap between
compute and 1/O capabilities
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There is a widening gap between 7
compute and 1/O capabilities

Laboratories

Scientific Grand Challenges
CROSSCUTTING TECHNOLOGIES FOR

COMPUTING AT THE EXASCALE

System Parameter Factor Change

~ February 2-4, 2010 - Washington, D.C.

System Peak 2 Pf/s 1 Ef/s 500

Power

Scientific workflows are
changing

* Discovery
at the Exascale:

R 2011 Workshop on
Management, Analysis, and Visualization

Network Bandwidth  1.5GB/s 100 GB/s 1000 GB/s 66-660

System Size (nodes) 18700 1000000 100000 50-500

I/O Capacity 15 PB 30-100 PB 20-67
/O Bandwidth 0.2 TB/s 20-60 TB/s 10-30




National

Sandia
Data challenges are causing workflows to change M.

B simulation | Check-pointing [ Analysis

post
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National

Sandia
Data challenges are causing workflows to change M.

B simulation | Check-pointing [ Analysis

post
process

Discrepancy in 1/0 rate improvements means data will be stored to disk less frequently

post
process

>

Traditional
Workflow

Wall clock time
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National

Sandia
Data challenges are causing workflows to change M.

B simulation | Check-pointing [ Analysis

Some analyses are moving in-situ to capture physics insights
post

process

Discrepancy in I/O rate improvements means data will be stored to disk less frequently

post
process

>

Traditional
Workflow

Wall clock time
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Workflow change introduces research challenges ™

B Simulation [ Check-pointing | Analysis
BE Wl =TF =B =T =TT 1

Sandia
National
Laboratories

Wall clock time

= At what frequency should I/O or analysis be done?

= Can we make this decision in an adaptive, data-driven fashion at runtime?
= Avoid missing interesting science
= Avoid costly I/O when simulation state is evolving slowly

= How can we make these decisions quickly and efficiently?

= How do we change underlying analysis algorithms to be
performant in situ?

= What programming models should we use to attain maximum
performance, scalability, and resilience?
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Sublinear analysis research to enable efficient, e,
data-driven decisions at scale

Laboratories

Sublinear analysis is new theoretical subfield asking: how to
determine properties of input by seeing tiny fraction

in situ analysis

sublinear algorithms

challenges
e Small samples of data * Too much data to move
e Quantifiable time-error e Constrained time
tradeoffs budgets
e Limited primitives for e Simulation dictates data
access structures

There is strong alignment between theory and challenges
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Current research: Optimize mesh resolution and ) e

National

. . . Laboratories
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Fundamental algorithmic research can be
required when moving analysis in situ

= Computation/communication
profiles different than that of
simulation

= Simulation dictates data
structures/layout

= Strict time constraints

"= Tolearn more:
= Talk on Thursday 4:30-5:00
= Room 391-392
= Speaker: Aaditya Landge

Sandia
National
Laboratories

In-Situ Feature Extraction of
Large Scale Combustion Simulations Using
Segmented Merge Trees

Aaditya G. Landge*, Valerio Pascucci*, Attila Gyulassy*, Janine C. Bennett},
Hemanth Kolla*, Jacqueline Chen!, and Peer-Timo Bremer*!

*SCI Institute, University of Utah, Salt Lake City, UT
fLawrence Livermore National Laboratory, Livermore, CA
*Sandia National Laboratory, Livermore, CA

Abstract—The ever increasing amount of data generated by
scientific simulations coupled with system /O constraints are fu-
eling a need for in-situ analysis techniques. Of particular interest
are approaches that produce reduced data representations while
maintaining the ability to redefine, extract, and study features in
a post-process to obtain scientific insights.

‘This paper presents two variants of in-situ feature extraction
techniques using segmented merge trees, which encode a wide
range of threshold based features. The first approach is a
fast, low communication cost technique that generates an exact
solution but has limited scalability. The second is a scalable,
local approximation that nevertheless is guaranteed to correctly
extract all features up to a predefined size. We demonstrate
both variants using some of the largest combustion simulations
ayailable on leadership class supercomputers. Our approach
allows state-of-the-art, feature-based analysis to be performed
in-situ at significantly higher frequency than currently possible
and with negligible impact on the overall simulation runtime.

Keywords—topological data analysis, feature extraction, in situ
analysis, merge tree computation, segmented merge tree

L. INTRODUCTION

The continuing increase in available computing power
allows scientists to simulate ever more complex phenomena at
higher temporal and spatial resolutions. Correspondingly, the
analysis of these datasets is becoming increasingly sophisti-
cated, moving from global to local statistics and more recently
to detailed studies of small. intermittent features of interest
along with their characteristics and temporal evolution [11-[3].
However, while the need for advanced data analysis techniques
increascs, the (relative) amount of data that can be permancntly
stored keeps decreasing. This can severely impede and may
ultimately prevent an accurate and reliable analysis. State-of-
the-art simulations are already reaching the point at which

snapshors are stored too infrequently fo accurately frack fast

efficient in-situ algorithms would allow an effective analysis at
much higher frequencies than otherwise feasible. To this end
a number of in-situ visualization and analysis techniques have
been proposed [7]-[11] either as stand alone tools or as part
of existing systems. However, so far these efforis have been
restricted to comparatively simple and largely data parallel
operations and few solutions for more complex algorithms ex-
ist [12]. Furthermore, most of these analyses were designed in
the context of a post-processing workflow, in which scientists
test hypotheses by interactively adjusting input parameters Lo
analysis algorithms that provide a single answer to a given
question, to slowly converge to their results. In an in-situ
setting. however. all parameters, spatial sub-domains, temporal
windows, etc., must be specified a priori, making current

i i at best and at worst. Instead,
a new kind of meta-analysis is required that can efficiently
compute and encode a range of answers for an entire class
of questions, effectively re-enabling a flexible and unbiased
exploration of the results in post-processing.

Fig. 1. Extinction regions in a lifted ethylene jet flame extracted using
segmented merge trees and adaptive relevance thresholds.

moving or i i events, i ing the likelihood that
potentially important phenomena are lost between snapshots.

While there exist a number of mitigating strategies such as
compression [4] or advanced data management xuhmquex 51,
[6], the challenges discussed above will likely only be ad-
dressed by moving the analy: tu ie., to perform it
concurrently with the simulation. Since analysis results are
typically orders of magnitude smaller than the original data,
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One promising class of iques are topology-based
based on merge trees [13]. comour trees [14],
or Morse-Smal [15]. These segment

the domain into featu cording to either the level-set 3
thresholding) or gradient behavior of one of the simulation
variables. In particular, segmentations of the domain derived
from merge trees have been shown (o efficiently encode
threshold-based features. For example, as shown in Fig. 1.
segmented merge frees can be used to extract extinction
regions defined as areas of high scalar dissipation in turbulent




Programming models research aimed at ) i
oo oo one Laboratories
portability, performance, scalability and resilience

2011 2018 Factor Change

Scientific Grand Challenges

CROSSCUTTINS
COMPUT

System Peak 2 Pf/s 1 Ef/s
Power 6 MW <20 MW 3 i
System Memory 0.3 PB 32-64 PB 100-200
225K 1 BX10 1B X100

Total Concurrency
8-80

Node Performance 125 GF 1TF 10 TF
1000 10000 83-830

Node Concurrency 12
Network Bandwidth 1.5 GB/s 100 GB/s 1000 GB/s 66-660
1000000 100000 50-500

System Size (nodes) 18700
I/O Capacity 15 PB 30-100 PB 20-67
0.2 TB/s 20-60 TB/s 10-30

I/0 Bandwidth

Shifts in programming models

MPI+X: Cuda, OpenCL, Cilk+, OpenMP, Kokkos,
T): Charm++, Uintah, Legion,

Asynchronous Many-Task (AMT): -
Scioto, Dague, CnC, Dharma...
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Research in asynchronous many-task (AMT) ety
programming models at Sandia

= AMT programming models

Data-flow model

Task Graph

+
+ Show promise at sustaining performance
+ Work stealing enables load balancing

+

Failed tasks can be re-executed

= DHARMA project at Sandia (ASC)

= Distributed asyncHronous Adaptive
Resilient Management of Applications
= A Unified Data-Driven Approach for _—
Programming In Situ Analysis and Edges are data inputs/outputs
Visualization (ASCR)
= Joint with LANL, Stanford, U. Utah, Kitware




Research in asynchronous many-task (AMT)
programming models at Sandia

BOF: Asynchronous Many-Task
Programming Models for Next
Generation Platforms

Tuesday 12:15-1:15, Room 396
Panel Members: Charm++,
DHARMA, HPX, Legion, OCR,
STAPL, Uintah
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