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Abstract—We developed a signal-known-exactly version of
the ideal observer that processes data in list-mode format to
perform binary classification, a useful task for arms-control
treaty applications. This observer offers the best possible per-
formance and future observer models developed in our work
will be compared to this model. The two examined sources were
plutonium inspection objects developed by Idaho National Lab.
We modeled a fast-neutron coded-aperture imager, developed by
Oak Ridge National Lab and Sandia National Labs to acquire
simulation data. Monte Carlo simulations using the GEANT4
toolkit tracked photons and neutrons from these objects to the
imager. The observer model was evaluated using the area under
the ROC curve for multiple background strengths.

I. INTRODUCTION

URRENT nonproliferation-treaty verification methods
that use image reconstruction require a hardware or soft-
ware information barrier to separate the detector operator from
these images. Our goal is to develop and study mathematical
observer models that perform tasks without reconstructing
images or aggregating sensitive information. Ideally, we want
these observer models to process data in list-mode format—
reading the data recorded in each event, updating a test statistic
that will be used to make decisions, and throwing that data
away. This is a unique task in that there is generally little
incentive to prevent imaging operators from visualizing what
they are imaging. However, we believe these methods could
also be applicable to airport security imaging. They offer
the possibility of imaging people and making decisions on
potential security risks without those in control of the detector
seeing the sensitive images.
The ideal observer has complete probabilistic knowledge of
the image data and offers the best possible performance for
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a given task [1]. In this paper we formulate the theory for
a signal-known-exactly (SKE) version of the ideal observer
that performs binary classification using list-mode data. This
SKE model serves as the first step toward a more thorough
model that accurately describes the physical processes evident
in real-world classification tasks. It also serves as upper bound
for all future observers that will be generated by this project
that store less information than the ideal observer.

II. THEORY

We start by formalizing the theory for list-mode data, using
a similar framework to one developed by Luca Caucci [2].
There are two components to the image data collected. Each
detector pixel will be hit by /N photons or neutrons and each
event contains a set of list-mode parameters A,,,

A,, = {particle type, pixel number, energy absorbed}. (1)

The ideal observer makes decisions by thresholding the ratio
of the likelihood of observing the data given the Hs hypothesis
(source 2 present) compared to the H; hypothesis (source 1
present) [1]
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where {4,,} is the list-mode data for all detected particles and
N is a vector containing the number of counts in each pixel.

)

A. Single pixel case

Under SKE conditions, the background-count rate N, and
signal-count rate for source j N; are known for the pixel.
Under a set acquisition time, the ideal observer takes the form

_ e r({Ap}, N|Ny, No, H
Asicn({An}, N[N;, N7, W) = 2l NINo, Ny, H)
pr({A"}7N‘Nb7N13H1)(3)

The spectrum and number of counts observed on each pixel
are independent. Noting this, we split the likelihoods in (3)
into two components,
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where pr represents the probability density function of a
continuous random variable and Pr the probability of a
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discrete random variable. The first term on the right of (4) is
a Poisson probability on the number of observed counts given
the expected number of detected counts from the background
and source. This can be written as a sum over the various
combinations of detected signal counts N; and background
counts NV, that sum to N total counts

Ny=N
= Y Pr(N,[N,)Pr(N — N,|NN;).
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However, a convolution of 2 Poissons with different means
results in a Poisson distribution with a mean value equal to
the sum of those means

Pr(N|N;, N, H

Pr(N|Ny, N, H;) = Pr(N|(Ny + N;))- (6)

Taking the right side of (4), we recognize each observed event
is independent, resulting in
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We now define the spectrum due to source j h; and spectrum
due to the background h;. The probability of detecting a
particular list-mode energy is then

pr(An|No, Nj, Hj) = pr(An|hy) Pr(hy| Ny, N;)+

o (8)
pr(Anlh;)Pr(hi| Ny, Nj).

pr(Aplh;) is the background spectral probability of detecting
that particle’s energy. Pr(hy| Ny, N;) is the probability that the
detected particle is from the background, which is a simple
ratio of the background count rate and overall count rate
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Substituting (9) and (6) into (4)
pr({A,}, N|N,, Nj, H;) =
Nopr(An|hy) + Nypr(An|hy)
N + N,

(10)
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This equation essentially has two components, similar to (4)-a
Poisson component on the total number of counts observed,
and a spectral probability term given by the mean spectrum
found on the detector pixel. We can further define a mean
count rate and mean spectral density for the combined back-
ground and signal
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This leads to the final expression for the likelihood,

N
pr{An}, N[Ny, Ny, Hy) = Pr(N|N) [T pr(Anlhjs),
" (12)
and the ideal observer
Asxr({An}, N[Ny, N1, N2) =
Pr(N[Nap) 17 pr(Anlhg) (13)

Pr(N|[Nyp) = pr(An|h)

We envision the classification process occurring in two
stages. First, in the calibration stage, calibration data is read in
from one pair of sources, aggregating data in order to develop
the count and spectral parameters used in the observers. hip,
Nip, haoy, and Ny, are set equal to the calibration data. Second,
in the testing stage, the test statistic A for the SKE ideal
observer which is thresholded to make decisions is initialized
to one. The particle is detected, its energy is observed and
A is multiplied by the ratio of spectral probabilities for that
energy under the two hypothesis. That detected particle is
then forgotten—its information is only used to update the test
statistic. This process continues for all particles recorded in
the acquisition time. Finally, A is multiplied by the ratio of
Poisson probabilities for observing N counts in that acquisi-
tion time given the two hypothesis. It should be noted that
N is not a list-mode value as it requires storing information
from one event to the next, but this is a necessary drawback
of the ideal observer that we hope to avoid in the development
of future observers. A is then thresholded to make a decision.
We believe this model is one possible way of using detector
data from an imager while avoiding an information barrier.

B. M pixel case

Discussion in the prior section focused on development
of the SKE ideal observer for a single pixel. Taking this
analysis to M pixels is simple under the assumption that every
pixel is independent. Our detector data becomes the number
of counts detected by the m!” pixel N,, and the list-mode
data of particles hitting that pixel A,,,. The numerator and
denominator in (3) each become a product over the likelihood
for each individual pixel, and the same math discussed in (7)-
(12) applies with the understanding that each spectrum and
mean detected counts are pixel dependent. In the M pixel
case, N, Ny, N; all become vectors (denoted in bold below)
of length M. The SKE ideal observer then becomes
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with the individual likelihoods given by
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Fig. 1. Inspection objects 8 and 9 developed by INL [5]. Object 8 is plutonium
shielded by depleted uranium while object 9 is plutonium shielded by highly-
enriched uranium. Both assemblies are supported by an aluminum framework
inside an 8” by 8 aluminum box.

Combining (15) with (14),
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Calibration data requires the number of signal and back-
ground counts Njp,, and spectral density for each pixel.
Similar to the single pixel case, the test statistic A is initialized
to one. For each particle read in, its energy is observed and
A is multiplied by the ratio of spectral probabilities specific
to its pixel number. When the acquisition time is over, A is
multiplied by the ratio of Poisson probabilities under the two
hypothesis for each pixel. This means A is multiplied by M
probability ratios.

ITI. SIMULATION
A. Objects and Imager

Classification tasks were performed on inspection objects
8 and 9 developed by Idaho National Lab (INL) [S]. Due
to significant shielding of gamma rays, multiple variance
reduction methods were used to acquire an appreciable amount
of data in a reasonable period of time. The most useful step
was to choose not to emit any gammas below 100 keV, as there
is a peak at 60 keV that is roughly three orders of magnitude
more intense than any individual peak above 100 keV. We
will expand on this process and verify the object models in a
paper we plan to publish in 2015. Snapshots taken from the
schematics of these sources are shown in Figure 1.

The detector modeled in these studies is a fast-neutron
coded-aperture imager (shown in Figure 2), developed by Oak
Ridge National Lab and Sandia National Labs. The system is
designed to detect neutrons, but the mask causes attenuation
in gamma rays as well.

B. Forward model in GEANT4

The detector and INL sources were coded into our Monte
Carlo transport application that uses the GEANT4 toolkit [3],
[4]. The simulation setup is shown in Figure 3. Photons and
neutrons were tracked from these objects to the detector. Due

Fig. 2. Fast neutron coded aperture imaging system [6]. The imager uses a
polyethylene coded aperture and a 4x4 array of liquid-scintillator detectors,
each consisting of 10x10 1cm? pixels.

Fig. 3. Geant4 model of system. INL object 8 is stored inside aluminum
cube. The grey geometries in the mask are holes, and transparent sections are
the Polyethylene material (shown this way for visibility). A quarter inch lead
plate (black) is in front of the pixels, blocking low energy gammas.

to a very low detection probability, photons were emitted with
a linear energy bias and an energy cutoff of 100 keV. A
detector-response code collects the light output and bins it
into a mean pixel location. Perfect pulse-shape discrimination
between gammas and neutrons is assumed.

The two imaged sources have notably different gamma-ray
detection rates and energy spectra due to the material choice
for the shielding component(see Figure 4). A low number of
bins was chosen for the energy spectra in order to improve the
SNR of the energy bin data to prevent overly certain observer
model results. The simulated data corresponds to about 100s
of real-life time. In an actual experiment, the acquisition time
could be increased to improve the energy resolution of the two
spectra.

C. Background

The background was generated using the Gamma Detector
and Response Software (GADRAS). A plastic scintillator was
created that best modeled the known physical properties of
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Fig. 4. Comparison of 108 and 109 data. I09 with the more active shielding
material HEU and a peak at 185keV shifts the spectrum towards lower energies
and increases count rate
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Fig. 5. Background created with 1.21%K40, 1.66 ppm of uranium and 5.54
ppm of thorium were used to create the spectrum. This corresponds to the
background in Buffalo, NY.

the liquid scintillator in our detector. Spectral templates were
created for cosmic muons, 1.01% K40, 10ppm of thorium and
Sppm of uranium. Using these templates, background spectra
can be created for any location. An example gamma-ray
background is shown in Figure 5. This background spectrum
was added to all pixels.

D. Experimental outline

Two data sets were found for each object under a chosen
orientation and location. The first pair is treated as calibration
data and used to find the appropriate Ho and H; parameters
in the observer models as discussed above. These observer
models are then used to classify sample data taken from the
second set.

E. Evaluating performance

Observer models were evaluated using the area under the
ROC curve (AUC), computed using the two-alternative forced-
choice test [7]. The observer is presented with a series of pairs
of datasets. In each pair, one dataset is from a measurement
of source 1, and the other is from a measurement of source 2.
For each dataset, the observer calculates a test statistic (e.g.
A in (16)) that is intended to have a higher value for source
2 than for source 1. The fraction of pairs in which the test
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Fig. 6. This plot shows SKE observer performance under weak and strong
backgrounds. The SKE observer with a background to signal ratio of 0.01
shows unrealistically good performance (20 signal counts to achieve an AUC
of 0.9). When the background to signal ratio is ramped up to 5, about a factor
of 10 more signal counts are required.

statistic is higher for the actual source 2 dataset is equivalent
to the AUC.

IV. RESULTS

The following simulation study reflects a real world binary
classification task with objects 108 and IO9 under known
orientation and location. The calibration data and testing data
were taken from separate simulations. The calibration set was
used to develop the observer in (16) and samples were taken
from the testing set to study the performance of this model.
Observer performance with a weak background and strong
background is shown in Figure 6. As expected, performance
falls off as the background strength increases.

Performance for this specific task is very strong in the
weak background case, as 20 signal counts corresponds to
approximately 0.1 seconds of acquisition time. Generally,
performance is task-specific, and admittedly an easy task was
chosen here as the spectra of these two sources are easy to
differentiate. We remind the reader that this study is under
a very strict set of circumstances. Data for each pixel was
assumed to be independent, the background was assumed to
have no spatial variation, electronic noise was ignored and
nuisance parameters, such as object orientation, location and
material age, were not considered. As other sources of error are
included in the model, performance will decrease. However,
the takeaway from this result is that the framework developed
here can potentially be used to classify inspection objects
under an optimal set of circumstances without reconstruction
or the storage of sensitive information.

V. CONCLUSION

This work describes the implementation of an SKE ideal ob-
server that processes information in list-mode format, updating
a single test statistic and avoiding storage of sensitive infor-
mation when classifying objects. While this is a useful result
for nonproliferation treaty purposes, it is ultimately limited—
it is very unlikely that the position, orientation and material
age of the source materials is exactly known. Development
of observer models that take these nuisance parameters into



account is a necessity and our work on this subject will be sub-
mitted to a journal in the near future. In addition, the forward
model needs to become more physically accurate. Incorrect
pulse shape discrimination, more realistic background models,
electronic noise and other sources of variability not currently
modeled in our simulations must be taken into account. The
ideal observer offers optimal performance when all sources
of variability are included, but the theory presented here
does not completely describe a real world experiment yet.
Finally, observer models that store less information than the
ideal observer will be studied and their performance will be
compared to this best case scenario.
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