

Adaptive particle methods for global geophysical flow

Peter Bosler
Sandia National Laboratories
Multiphysics Applications
pabosle@sandia.gov

James Kent
University of Michigan
Atmospheric, Oceanic, and Space Sciences
jdkent@umich.edu

Robert Krasny
University of Michigan
Mathematics
krasny@umich.edu

Christiane Jablonowski
University of Michigan
Atmospheric, Oceanic, and Space Sciences
cjablono@umich.edu

Introduction

We investigate the use of Lagrangian particle methods for global atmospheric modeling applications. Particle position is given by the flow map

$$\frac{\partial}{\partial t} \mathbf{x}(\mathbf{a}, t) = \mathbf{u}(\mathbf{x}(\mathbf{a}, t), t), \quad \mathbf{x}(\mathbf{a}, 0) = \mathbf{a}, \quad (1)$$

where \mathbf{a} is a Lagrangian parameter and t is time. For our applications, the fluid velocity \mathbf{u} is tangent to the sphere.

A consequence of the flow map is that the material derivative becomes an ordinary time derivative. Hence, any distribution $q(\mathbf{x}, t)$ that satisfies the advection equation

$$\frac{Dq}{Dt} = \frac{\partial}{\partial t} q(\mathbf{x}, t) + \mathbf{u} \cdot \nabla q(\mathbf{x}, t) = 0, \quad (2)$$

also satisfies

$$\frac{d}{dt} q(\mathbf{x}(\mathbf{a}, t), t) = 0 \Rightarrow q(\mathbf{x}(\mathbf{a}, t), t) = q(\mathbf{x}(\mathbf{a}, 0), 0) \quad (3)$$

Equation (3) states that advected tracers are constant following the flow. Our numerical method focuses on solving (1) and (3) instead of (2), as is done by most current operational and research models.

The sphere is discretized in space by a set of M particles arranged in a collection of N panels that cover the sphere. The particles approximate (1), $\mathbf{x}_j(t) \approx \mathbf{x}(\mathbf{a}_j, t)$.

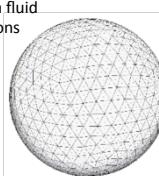
Tracer transport

Tracer transport problems define a fluid velocity $\mathbf{u}(\mathbf{x}, t)$ and initial conditions for a tracer $q(\mathbf{x}, t)$ [1].

The ODEs we solve are

$$\frac{d}{dt} \mathbf{x}_j(t) = \mathbf{u}(\mathbf{x}_j(t), t), \\ q_j = q(\mathbf{x}_j),$$

for $j = 1, \dots, M$.



Barotropic vorticity equation

The absolute vorticity $\omega(\mathbf{x}, t) = \zeta(\mathbf{x}, t) + \mathbf{f}(\mathbf{x}, t)$ satisfies (2), where $\zeta = \nabla \times \mathbf{u}$ is relative vorticity and $\mathbf{f}(\mathbf{x}, t) = 2\Omega z/R$ is the Coriolis parameter. Velocity is given by the Biot-Savart law [2] and the ODEs we solve are

$$\frac{d}{dt} \mathbf{x}_j(t) = -\frac{1}{4\pi R} \sum_{k=1, k \neq j}^N \frac{\mathbf{x}_j \times \mathbf{x}_k}{R^2 - \mathbf{x}_j \cdot \mathbf{x}_k} \zeta_k \mathbf{A}_k,$$

$$\frac{d}{dt} \zeta_j(t) = -\frac{2\Omega}{R} \frac{\partial}{\partial t} z_j(t), \quad j = 1, \dots, M.$$

Remeshing

Like any Lagrangian method, the arrangement of our particles deforms over time due to particle motion which can degrade accuracy (figure 1). We introduce a new remeshing technique, called *inverse interpolation of the flow map*, to avoid this. We use the deformational flow tests of [3] and the moving vortices test from [4] to demonstrate remeshing in this Lagrangian Particle Method (LPM) and to compare results with the commonly used Lin-Rood scheme [5].

Figure 2 shows error convergence from test case 1 in [3], where the tracer is a pair of Gaussian hills. Remeshing by inverse-interpolating the flow map performs much better in both tracer error (a) and tracer integral error (b) compared to the standard practice of remeshing by direct tracer interpolation.

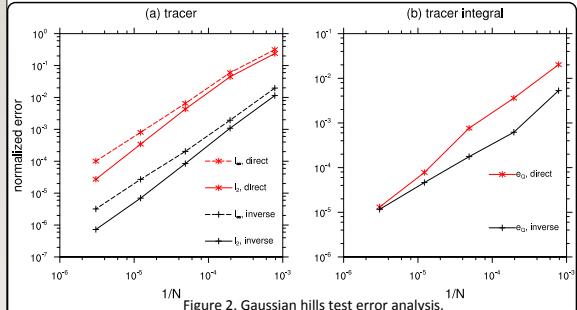
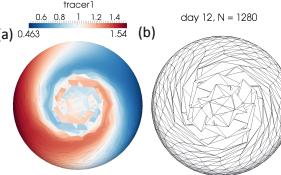


Figure 1. Error due to particle distortion; (a) passive tracer from the moving vortices test [4] day 12; (b) panels.

Figure 3 shows a discontinuous tracer advection test from [3] for (a) Lin-Rood with $N = 16200$ grid cells, (b) LPM with remeshing by direct interpolation of the tracer and (c), LPM with remeshing by inverse-interpolation of the flow map.

Adaptive refinement

Particles may be added or removed from a computation adaptively at each remeshing step until a chosen set of criteria are met over the whole sphere.

Figure 4 shows the Gaussian hills test at day 6 (maximum deformation) using two criteria designed to resolve local features of the tracer.

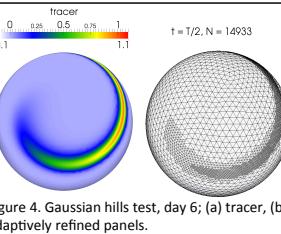


Figure 4. Gaussian hills test, day 6; (a) tracer, (b) adaptively refined panels.

Figure 5 shows the moving vortices test case with refinement criteria chosen to resolve the flow. Figure 6 shows error analysis of an adaptive mesh compared to a uniform mesh.

The adaptively refined computations produce smaller error and use a smaller number of particles.

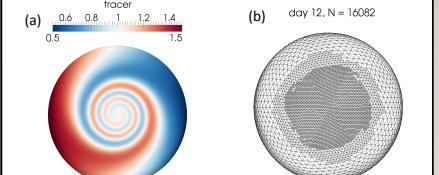


Figure 5. Moving vortices test, day 12; (a) tracer, (b) panels. Inverse-interpolation of the flow map combined with adaptive refinement.

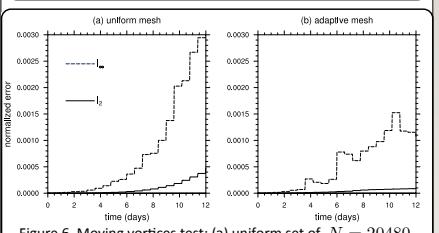


Figure 6. Moving vortices test; (a) uniform set of $N = 20480$ panels, (b) adaptively refined panels, $N \leq 16082$.

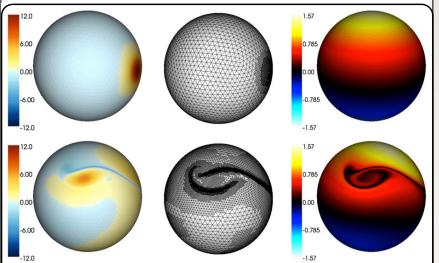


Figure 7. Simulation of a Gaussian vortex; (left) vorticity, (middle) passive tracer, (right) tracer. Top row, day 0; bottom row, day 3.

References

- [1] P. Bosler, J. Kent, R. Krasny and C. Jablonowski. A Lagrangian particle method for tracer transport on the sphere. (In preparation).
- [2] P. Bosler, L. Wang, C. Jablonowski, and R. Krasny, 2014. A Lagrangian particle/panel method for the barotropic vorticity equation on a rotating sphere. *Fluid Dynamics Research*, 46.
- [3] P. H. Lauritzen, W. C. Skamarock, M. Prothero, and M. Taylor, 2012. A standard test case suite for two-dimensional linear transport on the sphere. *Geoscientific Model Development*, 5.
- [4] R. Nair and C. Jablonowski, 2008. Moving vortices on the sphere: A test case for horizontal advection problems. *Monthly Weather Review*, 136.
- [5] S. J. Lin and R. Rood, 1996. Multidimensional flux-form semi-Lagrangian transport schemes. *Monthly Weather Review*, 124.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP.