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We investigate the use of Lagrangian particle methods Like any Lagrangian method, the arrangement of our particles deforms over (a) occs s () 05 o
for global atmospheric modeling applications. Particle time due to particle motion which can degrade accuracy (figure 1). We introduce
position is given by the flow map a new remeshing technique, called inverse interpolation of the flow map, avoid

17} this. We use the deformational flow tests of [3] and the moving vortices test

—x(a,t) = u(z(a,t),t), x(a,0)=a, (1) L X .

ot from [4] demonstrate remeshing in this Lagrangian Particle Method (LPM) and to
where a is a Lagrangian parameter and ¢ is time. For our compare results with the commonly used Lin-Rood scheme [5]. =
applications, the fluid velocityu is tangent to the sphere. Figure 2 shows error convergence from test case 1 in [3], where the tracer is a . =

A consequence of the flow map is that the material pair of Gaussian hills. Remeshing by inverse-interpolating the flow map Figure 1. Error due to particle distortion; (a) Figure 5. Moving vortices test, day 12; (a) tracer, (b) panels.
derivative becomes an ordinary time derivative. Hence, performs much better in both tracer error (a) and tracer integral error (b) passive tracer from the moving vortices test Inverse-interpolation of the flow map combined with adaptive
any distribution ¢(,t) that satisfies the advection compared to the standard practice of remeshing by direct tracer interpolation.  \[4] day 12; (b) panels. Y, \__refinement. Y
equation (a) tracer (b) tracer integral Figure 3 shows a discontinuous tracer [RpP— 0 adate meah

Ya Qq(w ) +u- Vg(z,t) =0 ) 10° L L 10° L L advection test from [3] for (a) Lin-Rood 00030 00030 Lt .
Dt~ o™ e & ‘ with N = 16200 grid cells, (b) LPM with o | e | ]
also satisfies o 10t ] L| remeshing by direct interpolation, of the - oo
d . 107 E tracer and (c), LPM with remeshing by 5 ] ] 3
%q(z(a, 1),t) = 0= q(z(a,1),t) = q(z(a,0),0) (3) ;g, ; 10° 4 [| inverse-interpolation of the flow map. 5 ooors ocots 3
Equation (3) states that advected tracers are constant R 3 . . E ] ]
quation (3) ec U b Adaptive refinement
following the flow. Our numerical method focuses on T 10 E . L ] ]
€ 10 direct . 0.0005 0.0005
solving (1) and (3) instead of (2), as is done by most g \ direct e Particles may be added or removed from . o
10° i i T
current operational and research models. a computation adaptively at each
e o tined i T linverse 10° 4 F| remeshing step until a chosen set of time (6ays) D e "
The sphere is discretized in space by a set of M particles 10° E —t—eq inverse g step . . . . . N — 20480
. . 1o inverse criteria are met over the whole sphere. Figure 6. Moving vortices test; (a) uniform set of N =
arranged in a collection of N panels that cover the sphere. X ’
107 10° . R . panels, (b) adaptively refined panels, N < 16082.
The particles approximate (1), x;(t) ~ x(a;,t). - “5 “‘ o e "5 "A e Figure 4 shows the Gaussian hills test at N Y
- 0 0 N 0 ° ° ° N ° 1 day 6 (maximum deformation) using two P
Tracer transpo Figure 2. Gaussian hills test error analysis. criteria designed to resolve local features I'“’

Tracer transport problems define a fluid of the tracer. oo
velocity u(z,t) and initial conditions - t=0 =172 t=T fracer o
for a tracer g(x,t) [1]. % +=T/2,N = 14933
The ODEs we solve are I‘“’
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Gi(t) = u(@;(0), 1), "

45 = q(ey), ; oo

for j=1,...,M. - il
o0

Barotroplc VO Clty equat‘ Figure 4. Gaussian hills test, day 6; (a) tracer, (b) I,,.,

The absolute vorticity w(w, t) = Q(% t) + f(‘t’ t) adaptively refined panels. Figure 7. Simulation of a Gaussian vortex; (left) vorticity, (middle)
satisfies (2), where ( = V x u is relative vorticity and Figure 5 shows the moving vortices test \panels, (right) passive tracer. Top row, day 0; bottom row, day 3. )
f(z,t) = 2Qz/Ris the Coriolis parameter. Velocity is case with refinement criteria chosen to
given by the Biot-Savart law [2] and the ODES we solve resolve the flow. Figure 6 shows error References
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