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  The	
  absolute	
  vor.city	
  	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
sa.sfies	
  (2),	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  rela.ve	
  vor.city	
  and	
  	
  

	
   	
  	
  	
  	
  	
  	
  	
  is	
  the	
  Coriolis	
  parameter.	
  	
  Velocity	
  is	
  
given	
  by	
  the	
  Biot-­‐Savart	
  law	
  [2]	
  and	
  the	
  ODES	
  we	
  solve	
  
are	
  

	
  	
  We	
  inves.gate	
  the	
  use	
  of	
  Lagrangian	
  par.cle	
  methods	
  
for	
  global	
  atmospheric	
  modeling	
  applica.ons.	
  Par.cle	
  
posi.on	
  is	
  given	
  by	
  the	
  flow	
  map	
  
	
  
	
  
where	
  	
  	
  	
  	
  is	
  a	
  Lagrangian	
  parameter	
  and	
  	
  	
  	
  is	
  .me.	
  For	
  our	
  
applica.ons,	
  the	
  fluid	
  velocity	
  	
  	
  	
  	
  is	
  tangent	
  to	
  the	
  sphere.	
  
	
  	
  	
  A	
  consequence	
  of	
  the	
  flow	
  map	
  is	
  that	
  the	
  material	
  
deriva.ve	
  becomes	
  an	
  ordinary	
  .me	
  deriva.ve.	
  	
  Hence,	
  
any	
  distribu.on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  that	
  sa.sfies	
  the	
  advec.on	
  
equa.on	
  
	
  
	
  
also	
  sa.sfies	
  	
  
	
  
	
  
Equa.on	
  (3)	
  states	
  that	
  advected	
  tracers	
  are	
  constant	
  
following	
  the	
  flow.	
  Our	
  numerical	
  method	
  focuses	
  on	
  
solving	
  (1)	
  and	
  (3)	
  instead	
  of	
  (2),	
  as	
  is	
  done	
  by	
  most	
  
current	
  opera.onal	
  and	
  research	
  models.	
  	
  	
  	
  
	
  	
  The	
  sphere	
  is	
  discre.zed	
  in	
  space	
  by	
  a	
  set	
  of	
  M	
  par.cles	
  
arranged	
  in	
  a	
  collec.on	
  of	
  N	
  panels	
  that	
  cover	
  the	
  sphere.	
  	
  
The	
  par.cles	
  approximate	
  (1),	
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Introduc.on	
  

Tracer	
  transport	
  

Barotropic	
  vor.city	
  equa.on	
  

@

@t
x(a, t) = u(x(a, t), t), x(a, 0) = a,

a t
u

q(x, t)

q

(1)	
  

(2)	
  

(3)	
  
d

dt
q(x(a, t), t) = 0 ) q(x(a, t), t) = q(x(a, 0), 0)

Dq

Dt
=

@

@t
q(x, t) + u ·rq(x, t) = 0,

xj(t) ⇡ x(aj , t).

	
  	
  Tracer	
  transport	
  problems	
  define	
  a	
  fluid	
  
velocity	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  ini.al	
  condi.ons	
  
for	
  a	
  tracer	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [1].	
  
The	
  ODEs	
  we	
  solve	
  are	
  
	
  
	
  
	
  
	
  
for	
  	
  

u(x, t)

d

dt
xj(t) = u(xj(t), t),

qj = q(↵j),

j = 1, . . . ,M.

!(x, t) = ⇣(x, t) + f(x, t)

d

dt
xj(t) = � 1

4⇡R

NX

k=1
k 6=j

xj ⇥ xk

R2 � xj · xk
⇣kAk,

d

dt
⇣j(t) = �2⌦

R

@

@t
zj(t), j = 1, . . . ,M.

Remeshing	
  
	
  	
  	
  Like	
  any	
  Lagrangian	
  method,	
  the	
  arrangement	
  of	
  our	
  par.cles	
  deforms	
  over	
  
.me	
  due	
  to	
  par.cle	
  mo.on	
  which	
  can	
  degrade	
  accuracy	
  (figure	
  1).	
  We	
  introduce	
  
a	
  new	
  remeshing	
  technique,	
  called	
  inverse	
  interpola-on	
  of	
  the	
  flow	
  map,	
  avoid	
  
this.	
  We	
  use	
  the	
  deforma.onal	
  flow	
  tests	
  of	
  [3]	
  and	
  the	
  moving	
  vor.ces	
  test	
  
from	
  [4]	
  demonstrate	
  remeshing	
  in	
  this	
  Lagrangian	
  Par.cle	
  Method	
  (LPM)	
  and	
  to	
  
compare	
  results	
  with	
  the	
  commonly	
  used	
  Lin-­‐Rood	
  scheme	
  [5].	
  
	
  	
  Figure	
  2	
  shows	
  error	
  convergence	
  from	
  test	
  case	
  1	
  in	
  [3],	
  where	
  the	
  tracer	
  is	
  a	
  
pair	
  of	
  Gaussian	
  hills.	
  	
  Remeshing	
  by	
  inverse-­‐interpola.ng	
  the	
  flow	
  map	
  
performs	
  much	
  beber	
  in	
  both	
  tracer	
  error	
  (a)	
  and	
  tracer	
  integral	
  error	
  (b)	
  
compared	
  to	
  the	
  standard	
  prac.ce	
  of	
  remeshing	
  by	
  direct	
  tracer	
  interpola.on.	
  

Figure	
  1.	
  Error	
  due	
  to	
  par.cle	
  distor.on;	
  (a)	
  
passive	
  tracer	
  from	
  the	
  moving	
  vor.ces	
  test	
  
[4]	
  day	
  12;	
  (b)	
  panels.	
  

(a)	
   (b)	
  

Figure	
  3.	
  Advec.on	
  of	
  a	
  discon.nuous	
  tracer	
  by	
  reversing	
  deforma.onal	
  flow	
  [3];	
  
(a)	
  Lin-­‐Rood;	
  (b)	
  LPM,	
  remeshing	
  by	
  direct	
  tracer	
  interpola.on;	
  (c)	
  LPM,	
  remeshing	
  
by	
  inverse	
  interpola.on	
  of	
  the	
  flow	
  map.	
  

Figure	
  2.	
  Gaussian	
  hills	
  test	
  error	
  analysis.	
  

	
  	
  	
  Figure	
  3	
  shows	
  a	
  discon.nuous	
  tracer	
  
advec.on	
  test	
  from	
  [3]	
  for	
  (a)	
  Lin-­‐Rood	
  
with	
  N	
  =	
  16200	
  grid	
  cells,	
  (b)	
  LPM	
  with	
  
remeshing	
  by	
  direct	
  interpola.on,	
  of	
  the	
  
tracer	
  and	
  (c),	
  LPM	
  with	
  remeshing	
  by	
  
inverse-­‐interpola.on	
  of	
  the	
  flow	
  map.	
  	
  

Adap.ve	
  refinement	
  
	
  	
  	
  Par.cles	
  may	
  be	
  added	
  or	
  removed	
  from	
  
a	
  computa.on	
  adap.vely	
  at	
  each	
  
remeshing	
  step	
  un.l	
  a	
  chosen	
  set	
  of	
  
criteria	
  are	
  met	
  over	
  the	
  whole	
  sphere.	
  	
  	
  
	
  	
  Figure	
  4	
  shows	
  the	
  Gaussian	
  hills	
  test	
  at	
  
day	
  6	
  (maximum	
  deforma.on)	
  using	
  two	
  
criteria	
  designed	
  to	
  resolve	
  local	
  features	
  
of	
  the	
  tracer.	
  

	
  Figure	
  5	
  shows	
  the	
  moving	
  vor.ces	
  test	
  
case	
  with	
  refinement	
  criteria	
  chosen	
  to	
  
resolve	
  the	
  flow.	
  	
  Figure	
  6	
  shows	
  error	
  
analysis	
  of	
  an	
  adap.ve	
  mesh	
  compared	
  to	
  
a	
  uniform	
  mesh.	
  
	
  	
  	
  The	
  adap.vely	
  refined	
  computa.ons	
  
produce	
  smaller	
  error	
  and	
  use	
  a	
  smaller	
  
number	
  of	
  par.cles.	
  

Figure	
  4.	
  Gaussian	
  hills	
  test,	
  day	
  6;	
  (a)	
  tracer,	
  (b)	
  
adap.vely	
  refined	
  panels.	
  

Figure	
  5.	
  Moving	
  vor.ces	
  test,	
  day	
  12;	
  (a)	
  tracer,	
  (b)	
  panels.	
  
Inverse-­‐interpola.on	
  of	
  the	
  flow	
  map	
  combined	
  with	
  adap.ve	
  
refinement.	
  

(a)	
   (b)	
  

Figure	
  6.	
  Moving	
  vor.ces	
  test;	
  (a)	
  uniform	
  set	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
panels,	
  (b)	
  adap.vely	
  refined	
  panels,	
  	
  

N = 20480
N  16082.

Figure	
  7.	
  	
  Simula.on	
  of	
  a	
  Gaussian	
  vortex;	
  (leh)	
  vor.city,	
  (middle)	
  
panels,	
  (right)	
  passive	
  tracer.	
  	
  Top	
  row,	
  day	
  0;	
  bobom	
  row,	
  day	
  3.	
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